// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_AMBIVECTOR_H #define EIGEN_AMBIVECTOR_H namespace Eigen { namespace internal { /** \internal * Hybrid sparse/dense vector class designed for intensive read-write operations. * * See BasicSparseLLT and SparseProduct for usage examples. */ template<typename _Scalar, typename _Index> class AmbiVector { public: typedef _Scalar Scalar; typedef _Index Index; typedef typename NumTraits<Scalar>::Real RealScalar; AmbiVector(Index size) : m_buffer(0), m_zero(0), m_size(0), m_allocatedSize(0), m_allocatedElements(0), m_mode(-1) { resize(size); } void init(double estimatedDensity); void init(int mode); Index nonZeros() const; /** Specifies a sub-vector to work on */ void setBounds(Index start, Index end) { m_start = start; m_end = end; } void setZero(); void restart(); Scalar& coeffRef(Index i); Scalar& coeff(Index i); class Iterator; ~AmbiVector() { delete[] m_buffer; } void resize(Index size) { if (m_allocatedSize < size) reallocate(size); m_size = size; } Index size() const { return m_size; } protected: void reallocate(Index size) { // if the size of the matrix is not too large, let's allocate a bit more than needed such // that we can handle dense vector even in sparse mode. delete[] m_buffer; if (size<1000) { Index allocSize = (size * sizeof(ListEl))/sizeof(Scalar); m_allocatedElements = (allocSize*sizeof(Scalar))/sizeof(ListEl); m_buffer = new Scalar[allocSize]; } else { m_allocatedElements = (size*sizeof(Scalar))/sizeof(ListEl); m_buffer = new Scalar[size]; } m_size = size; m_start = 0; m_end = m_size; } void reallocateSparse() { Index copyElements = m_allocatedElements; m_allocatedElements = (std::min)(Index(m_allocatedElements*1.5),m_size); Index allocSize = m_allocatedElements * sizeof(ListEl); allocSize = allocSize/sizeof(Scalar) + (allocSize%sizeof(Scalar)>0?1:0); Scalar* newBuffer = new Scalar[allocSize]; memcpy(newBuffer, m_buffer, copyElements * sizeof(ListEl)); delete[] m_buffer; m_buffer = newBuffer; } protected: // element type of the linked list struct ListEl { Index next; Index index; Scalar value; }; // used to store data in both mode Scalar* m_buffer; Scalar m_zero; Index m_size; Index m_start; Index m_end; Index m_allocatedSize; Index m_allocatedElements; Index m_mode; // linked list mode Index m_llStart; Index m_llCurrent; Index m_llSize; }; /** \returns the number of non zeros in the current sub vector */ template<typename _Scalar,typename _Index> _Index AmbiVector<_Scalar,_Index>::nonZeros() const { if (m_mode==IsSparse) return m_llSize; else return m_end - m_start; } template<typename _Scalar,typename _Index> void AmbiVector<_Scalar,_Index>::init(double estimatedDensity) { if (estimatedDensity>0.1) init(IsDense); else init(IsSparse); } template<typename _Scalar,typename _Index> void AmbiVector<_Scalar,_Index>::init(int mode) { m_mode = mode; if (m_mode==IsSparse) { m_llSize = 0; m_llStart = -1; } } /** Must be called whenever we might perform a write access * with an index smaller than the previous one. * * Don't worry, this function is extremely cheap. */ template<typename _Scalar,typename _Index> void AmbiVector<_Scalar,_Index>::restart() { m_llCurrent = m_llStart; } /** Set all coefficients of current subvector to zero */ template<typename _Scalar,typename _Index> void AmbiVector<_Scalar,_Index>::setZero() { if (m_mode==IsDense) { for (Index i=m_start; i<m_end; ++i) m_buffer[i] = Scalar(0); } else { eigen_assert(m_mode==IsSparse); m_llSize = 0; m_llStart = -1; } } template<typename _Scalar,typename _Index> _Scalar& AmbiVector<_Scalar,_Index>::coeffRef(_Index i) { if (m_mode==IsDense) return m_buffer[i]; else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer); // TODO factorize the following code to reduce code generation eigen_assert(m_mode==IsSparse); if (m_llSize==0) { // this is the first element m_llStart = 0; m_llCurrent = 0; ++m_llSize; llElements[0].value = Scalar(0); llElements[0].index = i; llElements[0].next = -1; return llElements[0].value; } else if (i<llElements[m_llStart].index) { // this is going to be the new first element of the list ListEl& el = llElements[m_llSize]; el.value = Scalar(0); el.index = i; el.next = m_llStart; m_llStart = m_llSize; ++m_llSize; m_llCurrent = m_llStart; return el.value; } else { Index nextel = llElements[m_llCurrent].next; eigen_assert(i>=llElements[m_llCurrent].index && "you must call restart() before inserting an element with lower or equal index"); while (nextel >= 0 && llElements[nextel].index<=i) { m_llCurrent = nextel; nextel = llElements[nextel].next; } if (llElements[m_llCurrent].index==i) { // the coefficient already exists and we found it ! return llElements[m_llCurrent].value; } else { if (m_llSize>=m_allocatedElements) { reallocateSparse(); llElements = reinterpret_cast<ListEl*>(m_buffer); } eigen_internal_assert(m_llSize<m_allocatedElements && "internal error: overflow in sparse mode"); // let's insert a new coefficient ListEl& el = llElements[m_llSize]; el.value = Scalar(0); el.index = i; el.next = llElements[m_llCurrent].next; llElements[m_llCurrent].next = m_llSize; ++m_llSize; return el.value; } } } } template<typename _Scalar,typename _Index> _Scalar& AmbiVector<_Scalar,_Index>::coeff(_Index i) { if (m_mode==IsDense) return m_buffer[i]; else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_buffer); eigen_assert(m_mode==IsSparse); if ((m_llSize==0) || (i<llElements[m_llStart].index)) { return m_zero; } else { Index elid = m_llStart; while (elid >= 0 && llElements[elid].index<i) elid = llElements[elid].next; if (llElements[elid].index==i) return llElements[m_llCurrent].value; else return m_zero; } } } /** Iterator over the nonzero coefficients */ template<typename _Scalar,typename _Index> class AmbiVector<_Scalar,_Index>::Iterator { public: typedef _Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; /** Default constructor * \param vec the vector on which we iterate * \param epsilon the minimal value used to prune zero coefficients. * In practice, all coefficients having a magnitude smaller than \a epsilon * are skipped. */ Iterator(const AmbiVector& vec, RealScalar epsilon = 0) : m_vector(vec) { m_epsilon = epsilon; m_isDense = m_vector.m_mode==IsDense; if (m_isDense) { m_currentEl = 0; // this is to avoid a compilation warning m_cachedValue = 0; // this is to avoid a compilation warning m_cachedIndex = m_vector.m_start-1; ++(*this); } else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer); m_currentEl = m_vector.m_llStart; while (m_currentEl>=0 && internal::abs(llElements[m_currentEl].value)<=m_epsilon) m_currentEl = llElements[m_currentEl].next; if (m_currentEl<0) { m_cachedValue = 0; // this is to avoid a compilation warning m_cachedIndex = -1; } else { m_cachedIndex = llElements[m_currentEl].index; m_cachedValue = llElements[m_currentEl].value; } } } Index index() const { return m_cachedIndex; } Scalar value() const { return m_cachedValue; } operator bool() const { return m_cachedIndex>=0; } Iterator& operator++() { if (m_isDense) { do { ++m_cachedIndex; } while (m_cachedIndex<m_vector.m_end && internal::abs(m_vector.m_buffer[m_cachedIndex])<m_epsilon); if (m_cachedIndex<m_vector.m_end) m_cachedValue = m_vector.m_buffer[m_cachedIndex]; else m_cachedIndex=-1; } else { ListEl* EIGEN_RESTRICT llElements = reinterpret_cast<ListEl*>(m_vector.m_buffer); do { m_currentEl = llElements[m_currentEl].next; } while (m_currentEl>=0 && internal::abs(llElements[m_currentEl].value)<m_epsilon); if (m_currentEl<0) { m_cachedIndex = -1; } else { m_cachedIndex = llElements[m_currentEl].index; m_cachedValue = llElements[m_currentEl].value; } } return *this; } protected: const AmbiVector& m_vector; // the target vector Index m_currentEl; // the current element in sparse/linked-list mode RealScalar m_epsilon; // epsilon used to prune zero coefficients Index m_cachedIndex; // current coordinate Scalar m_cachedValue; // current value bool m_isDense; // mode of the vector }; } // end namespace internal } // end namespace Eigen #endif // EIGEN_AMBIVECTOR_H