// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2010 Gael Guennebaud <gael.guennebaud@inria.fr> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEMATRIX_H #define EIGEN_SPARSEMATRIX_H namespace Eigen { /** \ingroup SparseCore_Module * * \class SparseMatrix * * \brief A versatible sparse matrix representation * * This class implements a more versatile variants of the common \em compressed row/column storage format. * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero * can be done with limited memory reallocation and copies. * * A call to the function makeCompressed() turns the matrix into the standard \em compressed format * compatible with many library. * * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages". * * \tparam _Scalar the scalar type, i.e. the type of the coefficients * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility * is RowMajor. The default is 0 which means column-major. * \tparam _Index the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int. * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizingEigen by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN. */ namespace internal { template<typename _Scalar, int _Options, typename _Index> struct traits<SparseMatrix<_Scalar, _Options, _Index> > { typedef _Scalar Scalar; typedef _Index Index; typedef Sparse StorageKind; typedef MatrixXpr XprKind; enum { RowsAtCompileTime = Dynamic, ColsAtCompileTime = Dynamic, MaxRowsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic, Flags = _Options | NestByRefBit | LvalueBit, CoeffReadCost = NumTraits<Scalar>::ReadCost, SupportedAccessPatterns = InnerRandomAccessPattern }; }; template<typename _Scalar, int _Options, typename _Index, int DiagIndex> struct traits<Diagonal<const SparseMatrix<_Scalar, _Options, _Index>, DiagIndex> > { typedef SparseMatrix<_Scalar, _Options, _Index> MatrixType; typedef typename nested<MatrixType>::type MatrixTypeNested; typedef typename remove_reference<MatrixTypeNested>::type _MatrixTypeNested; typedef _Scalar Scalar; typedef Dense StorageKind; typedef _Index Index; typedef MatrixXpr XprKind; enum { RowsAtCompileTime = Dynamic, ColsAtCompileTime = 1, MaxRowsAtCompileTime = Dynamic, MaxColsAtCompileTime = 1, Flags = 0, CoeffReadCost = _MatrixTypeNested::CoeffReadCost*10 }; }; } // end namespace internal template<typename _Scalar, int _Options, typename _Index> class SparseMatrix : public SparseMatrixBase<SparseMatrix<_Scalar, _Options, _Index> > { public: EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, +=) EIGEN_SPARSE_INHERIT_ASSIGNMENT_OPERATOR(SparseMatrix, -=) typedef MappedSparseMatrix<Scalar,Flags> Map; using Base::IsRowMajor; typedef internal::CompressedStorage<Scalar,Index> Storage; enum { Options = _Options }; protected: typedef SparseMatrix<Scalar,(Flags&~RowMajorBit)|(IsRowMajor?RowMajorBit:0)> TransposedSparseMatrix; Index m_outerSize; Index m_innerSize; Index* m_outerIndex; Index* m_innerNonZeros; // optional, if null then the data is compressed Storage m_data; Eigen::Map<Matrix<Index,Dynamic,1> > innerNonZeros() { return Eigen::Map<Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); } const Eigen::Map<const Matrix<Index,Dynamic,1> > innerNonZeros() const { return Eigen::Map<const Matrix<Index,Dynamic,1> >(m_innerNonZeros, m_innerNonZeros?m_outerSize:0); } public: /** \returns whether \c *this is in compressed form. */ inline bool isCompressed() const { return m_innerNonZeros==0; } /** \returns the number of rows of the matrix */ inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } /** \returns the number of columns of the matrix */ inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */ inline Index innerSize() const { return m_innerSize; } /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */ inline Index outerSize() const { return m_outerSize; } /** \returns a const pointer to the array of values. * This function is aimed at interoperability with other libraries. * \sa innerIndexPtr(), outerIndexPtr() */ inline const Scalar* valuePtr() const { return &m_data.value(0); } /** \returns a non-const pointer to the array of values. * This function is aimed at interoperability with other libraries. * \sa innerIndexPtr(), outerIndexPtr() */ inline Scalar* valuePtr() { return &m_data.value(0); } /** \returns a const pointer to the array of inner indices. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), outerIndexPtr() */ inline const Index* innerIndexPtr() const { return &m_data.index(0); } /** \returns a non-const pointer to the array of inner indices. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), outerIndexPtr() */ inline Index* innerIndexPtr() { return &m_data.index(0); } /** \returns a const pointer to the array of the starting positions of the inner vectors. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), innerIndexPtr() */ inline const Index* outerIndexPtr() const { return m_outerIndex; } /** \returns a non-const pointer to the array of the starting positions of the inner vectors. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), innerIndexPtr() */ inline Index* outerIndexPtr() { return m_outerIndex; } /** \returns a const pointer to the array of the number of non zeros of the inner vectors. * This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 in compressed mode */ inline const Index* innerNonZeroPtr() const { return m_innerNonZeros; } /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. * This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 in compressed mode */ inline Index* innerNonZeroPtr() { return m_innerNonZeros; } /** \internal */ inline Storage& data() { return m_data; } /** \internal */ inline const Storage& data() const { return m_data; } /** \returns the value of the matrix at position \a i, \a j * This function returns Scalar(0) if the element is an explicit \em zero */ inline Scalar coeff(Index row, Index col) const { const Index outer = IsRowMajor ? row : col; const Index inner = IsRowMajor ? col : row; Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; return m_data.atInRange(m_outerIndex[outer], end, inner); } /** \returns a non-const reference to the value of the matrix at position \a i, \a j * * If the element does not exist then it is inserted via the insert(Index,Index) function * which itself turns the matrix into a non compressed form if that was not the case. * * This is a O(log(nnz_j)) operation (binary search) plus the cost of insert(Index,Index) * function if the element does not already exist. */ inline Scalar& coeffRef(Index row, Index col) { const Index outer = IsRowMajor ? row : col; const Index inner = IsRowMajor ? col : row; Index start = m_outerIndex[outer]; Index end = m_innerNonZeros ? m_outerIndex[outer] + m_innerNonZeros[outer] : m_outerIndex[outer+1]; eigen_assert(end>=start && "you probably called coeffRef on a non finalized matrix"); if(end<=start) return insert(row,col); const Index p = m_data.searchLowerIndex(start,end-1,inner); if((p<end) && (m_data.index(p)==inner)) return m_data.value(p); else return insert(row,col); } /** \returns a reference to a novel non zero coefficient with coordinates \a row x \a col. * The non zero coefficient must \b not already exist. * * If the matrix \c *this is in compressed mode, then \c *this is turned into uncompressed * mode while reserving room for 2 non zeros per inner vector. It is strongly recommended to first * call reserve(const SizesType &) to reserve a more appropriate number of elements per * inner vector that better match your scenario. * * This function performs a sorted insertion in O(1) if the elements of each inner vector are * inserted in increasing inner index order, and in O(nnz_j) for a random insertion. * */ EIGEN_DONT_INLINE Scalar& insert(Index row, Index col) { if(isCompressed()) { reserve(VectorXi::Constant(outerSize(), 2)); } return insertUncompressed(row,col); } public: class InnerIterator; class ReverseInnerIterator; /** Removes all non zeros but keep allocated memory */ inline void setZero() { m_data.clear(); memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index)); if(m_innerNonZeros) memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(Index)); } /** \returns the number of non zero coefficients */ inline Index nonZeros() const { if(m_innerNonZeros) return innerNonZeros().sum(); return static_cast<Index>(m_data.size()); } /** Preallocates \a reserveSize non zeros. * * Precondition: the matrix must be in compressed mode. */ inline void reserve(Index reserveSize) { eigen_assert(isCompressed() && "This function does not make sense in non compressed mode."); m_data.reserve(reserveSize); } #ifdef EIGEN_PARSED_BY_DOXYGEN /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j. * * This function turns the matrix in non-compressed mode */ template<class SizesType> inline void reserve(const SizesType& reserveSizes); #else template<class SizesType> inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = typename SizesType::value_type()) { EIGEN_UNUSED_VARIABLE(enableif); reserveInnerVectors(reserveSizes); } template<class SizesType> inline void reserve(const SizesType& reserveSizes, const typename SizesType::Scalar& enableif = #if (!defined(_MSC_VER)) || (_MSC_VER>=1500) // MSVC 2005 fails to compile with this typename typename #endif SizesType::Scalar()) { EIGEN_UNUSED_VARIABLE(enableif); reserveInnerVectors(reserveSizes); } #endif // EIGEN_PARSED_BY_DOXYGEN protected: template<class SizesType> inline void reserveInnerVectors(const SizesType& reserveSizes) { if(isCompressed()) { std::size_t totalReserveSize = 0; // turn the matrix into non-compressed mode m_innerNonZeros = new Index[m_outerSize]; // temporarily use m_innerSizes to hold the new starting points. Index* newOuterIndex = m_innerNonZeros; Index count = 0; for(Index j=0; j<m_outerSize; ++j) { newOuterIndex[j] = count; count += reserveSizes[j] + (m_outerIndex[j+1]-m_outerIndex[j]); totalReserveSize += reserveSizes[j]; } m_data.reserve(totalReserveSize); std::ptrdiff_t previousOuterIndex = m_outerIndex[m_outerSize]; for(std::ptrdiff_t j=m_outerSize-1; j>=0; --j) { ptrdiff_t innerNNZ = previousOuterIndex - m_outerIndex[j]; for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i) { m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); } previousOuterIndex = m_outerIndex[j]; m_outerIndex[j] = newOuterIndex[j]; m_innerNonZeros[j] = innerNNZ; } m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1]; m_data.resize(m_outerIndex[m_outerSize]); } else { Index* newOuterIndex = new Index[m_outerSize+1]; Index count = 0; for(Index j=0; j<m_outerSize; ++j) { newOuterIndex[j] = count; Index alreadyReserved = (m_outerIndex[j+1]-m_outerIndex[j]) - m_innerNonZeros[j]; Index toReserve = std::max<std::ptrdiff_t>(reserveSizes[j], alreadyReserved); count += toReserve + m_innerNonZeros[j]; } newOuterIndex[m_outerSize] = count; m_data.resize(count); for(ptrdiff_t j=m_outerSize-1; j>=0; --j) { std::ptrdiff_t offset = newOuterIndex[j] - m_outerIndex[j]; if(offset>0) { std::ptrdiff_t innerNNZ = m_innerNonZeros[j]; for(std::ptrdiff_t i=innerNNZ-1; i>=0; --i) { m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); } } } std::swap(m_outerIndex, newOuterIndex); delete[] newOuterIndex; } } public: //--- low level purely coherent filling --- /** \internal * \returns a reference to the non zero coefficient at position \a row, \a col assuming that: * - the nonzero does not already exist * - the new coefficient is the last one according to the storage order * * Before filling a given inner vector you must call the statVec(Index) function. * * After an insertion session, you should call the finalize() function. * * \sa insert, insertBackByOuterInner, startVec */ inline Scalar& insertBack(Index row, Index col) { return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); } /** \internal * \sa insertBack, startVec */ inline Scalar& insertBackByOuterInner(Index outer, Index inner) { eigen_assert(size_t(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)"); eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)<inner) && "Invalid ordered insertion (invalid inner index)"); Index p = m_outerIndex[outer+1]; ++m_outerIndex[outer+1]; m_data.append(0, inner); return m_data.value(p); } /** \internal * \warning use it only if you know what you are doing */ inline Scalar& insertBackByOuterInnerUnordered(Index outer, Index inner) { Index p = m_outerIndex[outer+1]; ++m_outerIndex[outer+1]; m_data.append(0, inner); return m_data.value(p); } /** \internal * \sa insertBack, insertBackByOuterInner */ inline void startVec(Index outer) { eigen_assert(m_outerIndex[outer]==int(m_data.size()) && "You must call startVec for each inner vector sequentially"); eigen_assert(m_outerIndex[outer+1]==0 && "You must call startVec for each inner vector sequentially"); m_outerIndex[outer+1] = m_outerIndex[outer]; } /** \internal * Must be called after inserting a set of non zero entries using the low level compressed API. */ inline void finalize() { if(isCompressed()) { Index size = static_cast<Index>(m_data.size()); Index i = m_outerSize; // find the last filled column while (i>=0 && m_outerIndex[i]==0) --i; ++i; while (i<=m_outerSize) { m_outerIndex[i] = size; ++i; } } } //--- template<typename InputIterators> void setFromTriplets(const InputIterators& begin, const InputIterators& end); void sumupDuplicates(); //--- /** \internal * same as insert(Index,Index) except that the indices are given relative to the storage order */ EIGEN_DONT_INLINE Scalar& insertByOuterInner(Index j, Index i) { return insert(IsRowMajor ? j : i, IsRowMajor ? i : j); } /** Turns the matrix into the \em compressed format. */ void makeCompressed() { if(isCompressed()) return; Index oldStart = m_outerIndex[1]; m_outerIndex[1] = m_innerNonZeros[0]; for(Index j=1; j<m_outerSize; ++j) { Index nextOldStart = m_outerIndex[j+1]; std::ptrdiff_t offset = oldStart - m_outerIndex[j]; if(offset>0) { for(Index k=0; k<m_innerNonZeros[j]; ++k) { m_data.index(m_outerIndex[j]+k) = m_data.index(oldStart+k); m_data.value(m_outerIndex[j]+k) = m_data.value(oldStart+k); } } m_outerIndex[j+1] = m_outerIndex[j] + m_innerNonZeros[j]; oldStart = nextOldStart; } delete[] m_innerNonZeros; m_innerNonZeros = 0; m_data.resize(m_outerIndex[m_outerSize]); m_data.squeeze(); } /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */ void prune(Scalar reference, RealScalar epsilon = NumTraits<RealScalar>::dummy_precision()) { prune(default_prunning_func(reference,epsilon)); } /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep. * The functor type \a KeepFunc must implement the following function: * \code * bool operator() (const Index& row, const Index& col, const Scalar& value) const; * \endcode * \sa prune(Scalar,RealScalar) */ template<typename KeepFunc> void prune(const KeepFunc& keep = KeepFunc()) { // TODO optimize the uncompressed mode to avoid moving and allocating the data twice // TODO also implement a unit test makeCompressed(); Index k = 0; for(Index j=0; j<m_outerSize; ++j) { Index previousStart = m_outerIndex[j]; m_outerIndex[j] = k; Index end = m_outerIndex[j+1]; for(Index i=previousStart; i<end; ++i) { if(keep(IsRowMajor?j:m_data.index(i), IsRowMajor?m_data.index(i):j, m_data.value(i))) { m_data.value(k) = m_data.value(i); m_data.index(k) = m_data.index(i); ++k; } } } m_outerIndex[m_outerSize] = k; m_data.resize(k,0); } /** Resizes the matrix to a \a rows x \a cols matrix and initializes it to zero. * \sa resizeNonZeros(Index), reserve(), setZero() */ void resize(Index rows, Index cols) { const Index outerSize = IsRowMajor ? rows : cols; m_innerSize = IsRowMajor ? cols : rows; m_data.clear(); if (m_outerSize != outerSize || m_outerSize==0) { delete[] m_outerIndex; m_outerIndex = new Index [outerSize+1]; m_outerSize = outerSize; } if(m_innerNonZeros) { delete[] m_innerNonZeros; m_innerNonZeros = 0; } memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(Index)); } /** \internal * Resize the nonzero vector to \a size */ void resizeNonZeros(Index size) { // TODO remove this function m_data.resize(size); } /** \returns a const expression of the diagonal coefficients */ const Diagonal<const SparseMatrix> diagonal() const { return *this; } /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */ inline SparseMatrix() : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); resize(0, 0); } /** Constructs a \a rows \c x \a cols empty matrix */ inline SparseMatrix(Index rows, Index cols) : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); resize(rows, cols); } /** Constructs a sparse matrix from the sparse expression \a other */ template<typename OtherDerived> inline SparseMatrix(const SparseMatrixBase<OtherDerived>& other) : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); *this = other.derived(); } /** Copy constructor (it performs a deep copy) */ inline SparseMatrix(const SparseMatrix& other) : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); *this = other.derived(); } /** Swaps the content of two sparse matrices of the same type. * This is a fast operation that simply swaps the underlying pointers and parameters. */ inline void swap(SparseMatrix& other) { //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); std::swap(m_outerIndex, other.m_outerIndex); std::swap(m_innerSize, other.m_innerSize); std::swap(m_outerSize, other.m_outerSize); std::swap(m_innerNonZeros, other.m_innerNonZeros); m_data.swap(other.m_data); } inline SparseMatrix& operator=(const SparseMatrix& other) { if (other.isRValue()) { swap(other.const_cast_derived()); } else { initAssignment(other); if(other.isCompressed()) { memcpy(m_outerIndex, other.m_outerIndex, (m_outerSize+1)*sizeof(Index)); m_data = other.m_data; } else { Base::operator=(other); } } return *this; } #ifndef EIGEN_PARSED_BY_DOXYGEN template<typename Lhs, typename Rhs> inline SparseMatrix& operator=(const SparseSparseProduct<Lhs,Rhs>& product) { return Base::operator=(product); } template<typename OtherDerived> inline SparseMatrix& operator=(const ReturnByValue<OtherDerived>& other) { return Base::operator=(other.derived()); } template<typename OtherDerived> inline SparseMatrix& operator=(const EigenBase<OtherDerived>& other) { return Base::operator=(other.derived()); } #endif template<typename OtherDerived> EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase<OtherDerived>& other) { initAssignment(other.derived()); const bool needToTranspose = (Flags & RowMajorBit) != (OtherDerived::Flags & RowMajorBit); if (needToTranspose) { // two passes algorithm: // 1 - compute the number of coeffs per dest inner vector // 2 - do the actual copy/eval // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed typedef typename internal::nested<OtherDerived,2>::type OtherCopy; typedef typename internal::remove_all<OtherCopy>::type _OtherCopy; OtherCopy otherCopy(other.derived()); Eigen::Map<Matrix<Index, Dynamic, 1> > (m_outerIndex,outerSize()).setZero(); // pass 1 // FIXME the above copy could be merged with that pass for (Index j=0; j<otherCopy.outerSize(); ++j) for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) ++m_outerIndex[it.index()]; // prefix sum Index count = 0; VectorXi positions(outerSize()); for (Index j=0; j<outerSize(); ++j) { Index tmp = m_outerIndex[j]; m_outerIndex[j] = count; positions[j] = count; count += tmp; } m_outerIndex[outerSize()] = count; // alloc m_data.resize(count); // pass 2 for (Index j=0; j<otherCopy.outerSize(); ++j) { for (typename _OtherCopy::InnerIterator it(otherCopy, j); it; ++it) { Index pos = positions[it.index()]++; m_data.index(pos) = j; m_data.value(pos) = it.value(); } } return *this; } else { // there is no special optimization return Base::operator=(other.derived()); } } friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m) { EIGEN_DBG_SPARSE( s << "Nonzero entries:\n"; if(m.isCompressed()) for (Index i=0; i<m.nonZeros(); ++i) s << "(" << m.m_data.value(i) << "," << m.m_data.index(i) << ") "; else for (Index i=0; i<m.outerSize(); ++i) { int p = m.m_outerIndex[i]; int pe = m.m_outerIndex[i]+m.m_innerNonZeros[i]; Index k=p; for (; k<pe; ++k) s << "(" << m.m_data.value(k) << "," << m.m_data.index(k) << ") "; for (; k<m.m_outerIndex[i+1]; ++k) s << "(_,_) "; } s << std::endl; s << std::endl; s << "Outer pointers:\n"; for (Index i=0; i<m.outerSize(); ++i) s << m.m_outerIndex[i] << " "; s << " $" << std::endl; if(!m.isCompressed()) { s << "Inner non zeros:\n"; for (Index i=0; i<m.outerSize(); ++i) s << m.m_innerNonZeros[i] << " "; s << " $" << std::endl; } s << std::endl; ); s << static_cast<const SparseMatrixBase<SparseMatrix>&>(m); return s; } /** Destructor */ inline ~SparseMatrix() { delete[] m_outerIndex; delete[] m_innerNonZeros; } #ifndef EIGEN_PARSED_BY_DOXYGEN /** Overloaded for performance */ Scalar sum() const; #endif # ifdef EIGEN_SPARSEMATRIX_PLUGIN # include EIGEN_SPARSEMATRIX_PLUGIN # endif protected: template<typename Other> void initAssignment(const Other& other) { resize(other.rows(), other.cols()); if(m_innerNonZeros) { delete[] m_innerNonZeros; m_innerNonZeros = 0; } } /** \internal * \sa insert(Index,Index) */ EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col) { eigen_assert(isCompressed()); const Index outer = IsRowMajor ? row : col; const Index inner = IsRowMajor ? col : row; Index previousOuter = outer; if (m_outerIndex[outer+1]==0) { // we start a new inner vector while (previousOuter>=0 && m_outerIndex[previousOuter]==0) { m_outerIndex[previousOuter] = static_cast<Index>(m_data.size()); --previousOuter; } m_outerIndex[outer+1] = m_outerIndex[outer]; } // here we have to handle the tricky case where the outerIndex array // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g., // the 2nd inner vector... bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0)) && (size_t(m_outerIndex[outer+1]) == m_data.size()); size_t startId = m_outerIndex[outer]; // FIXME let's make sure sizeof(long int) == sizeof(size_t) size_t p = m_outerIndex[outer+1]; ++m_outerIndex[outer+1]; float reallocRatio = 1; if (m_data.allocatedSize()<=m_data.size()) { // if there is no preallocated memory, let's reserve a minimum of 32 elements if (m_data.size()==0) { m_data.reserve(32); } else { // we need to reallocate the data, to reduce multiple reallocations // we use a smart resize algorithm based on the current filling ratio // in addition, we use float to avoid integers overflows float nnzEstimate = float(m_outerIndex[outer])*float(m_outerSize)/float(outer+1); reallocRatio = (nnzEstimate-float(m_data.size()))/float(m_data.size()); // furthermore we bound the realloc ratio to: // 1) reduce multiple minor realloc when the matrix is almost filled // 2) avoid to allocate too much memory when the matrix is almost empty reallocRatio = (std::min)((std::max)(reallocRatio,1.5f),8.f); } } m_data.resize(m_data.size()+1,reallocRatio); if (!isLastVec) { if (previousOuter==-1) { // oops wrong guess. // let's correct the outer offsets for (Index k=0; k<=(outer+1); ++k) m_outerIndex[k] = 0; Index k=outer+1; while(m_outerIndex[k]==0) m_outerIndex[k++] = 1; while (k<=m_outerSize && m_outerIndex[k]!=0) m_outerIndex[k++]++; p = 0; --k; k = m_outerIndex[k]-1; while (k>0) { m_data.index(k) = m_data.index(k-1); m_data.value(k) = m_data.value(k-1); k--; } } else { // we are not inserting into the last inner vec // update outer indices: Index j = outer+2; while (j<=m_outerSize && m_outerIndex[j]!=0) m_outerIndex[j++]++; --j; // shift data of last vecs: Index k = m_outerIndex[j]-1; while (k>=Index(p)) { m_data.index(k) = m_data.index(k-1); m_data.value(k) = m_data.value(k-1); k--; } } } while ( (p > startId) && (m_data.index(p-1) > inner) ) { m_data.index(p) = m_data.index(p-1); m_data.value(p) = m_data.value(p-1); --p; } m_data.index(p) = inner; return (m_data.value(p) = 0); } /** \internal * A vector object that is equal to 0 everywhere but v at the position i */ class SingletonVector { Index m_index; Index m_value; public: typedef Index value_type; SingletonVector(Index i, Index v) : m_index(i), m_value(v) {} Index operator[](Index i) const { return i==m_index ? m_value : 0; } }; /** \internal * \sa insert(Index,Index) */ EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col) { eigen_assert(!isCompressed()); const Index outer = IsRowMajor ? row : col; const Index inner = IsRowMajor ? col : row; std::ptrdiff_t room = m_outerIndex[outer+1] - m_outerIndex[outer]; std::ptrdiff_t innerNNZ = m_innerNonZeros[outer]; if(innerNNZ>=room) { // this inner vector is full, we need to reallocate the whole buffer :( reserve(SingletonVector(outer,std::max<std::ptrdiff_t>(2,innerNNZ))); } Index startId = m_outerIndex[outer]; Index p = startId + m_innerNonZeros[outer]; while ( (p > startId) && (m_data.index(p-1) > inner) ) { m_data.index(p) = m_data.index(p-1); m_data.value(p) = m_data.value(p-1); --p; } m_innerNonZeros[outer]++; m_data.index(p) = inner; return (m_data.value(p) = 0); } public: /** \internal * \sa insert(Index,Index) */ inline Scalar& insertBackUncompressed(Index row, Index col) { const Index outer = IsRowMajor ? row : col; const Index inner = IsRowMajor ? col : row; eigen_assert(!isCompressed()); eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer])); Index p = m_outerIndex[outer] + m_innerNonZeros[outer]; m_innerNonZeros[outer]++; m_data.index(p) = inner; return (m_data.value(p) = 0); } private: static void check_template_parameters() { EIGEN_STATIC_ASSERT(NumTraits<Index>::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); } struct default_prunning_func { default_prunning_func(Scalar ref, RealScalar eps) : reference(ref), epsilon(eps) {} inline bool operator() (const Index&, const Index&, const Scalar& value) const { return !internal::isMuchSmallerThan(value, reference, epsilon); } Scalar reference; RealScalar epsilon; }; }; template<typename Scalar, int _Options, typename _Index> class SparseMatrix<Scalar,_Options,_Index>::InnerIterator { public: InnerIterator(const SparseMatrix& mat, Index outer) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_id(mat.m_outerIndex[outer]) { if(mat.isCompressed()) m_end = mat.m_outerIndex[outer+1]; else m_end = m_id + mat.m_innerNonZeros[outer]; } inline InnerIterator& operator++() { m_id++; return *this; } inline const Scalar& value() const { return m_values[m_id]; } inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id]); } inline Index index() const { return m_indices[m_id]; } inline Index outer() const { return m_outer; } inline Index row() const { return IsRowMajor ? m_outer : index(); } inline Index col() const { return IsRowMajor ? index() : m_outer; } inline operator bool() const { return (m_id < m_end); } protected: const Scalar* m_values; const Index* m_indices; const Index m_outer; Index m_id; Index m_end; }; template<typename Scalar, int _Options, typename _Index> class SparseMatrix<Scalar,_Options,_Index>::ReverseInnerIterator { public: ReverseInnerIterator(const SparseMatrix& mat, Index outer) : m_values(mat.valuePtr()), m_indices(mat.innerIndexPtr()), m_outer(outer), m_start(mat.m_outerIndex[outer]) { if(mat.isCompressed()) m_id = mat.m_outerIndex[outer+1]; else m_id = m_start + mat.m_innerNonZeros[outer]; } inline ReverseInnerIterator& operator--() { --m_id; return *this; } inline const Scalar& value() const { return m_values[m_id-1]; } inline Scalar& valueRef() { return const_cast<Scalar&>(m_values[m_id-1]); } inline Index index() const { return m_indices[m_id-1]; } inline Index outer() const { return m_outer; } inline Index row() const { return IsRowMajor ? m_outer : index(); } inline Index col() const { return IsRowMajor ? index() : m_outer; } inline operator bool() const { return (m_id > m_start); } protected: const Scalar* m_values; const Index* m_indices; const Index m_outer; Index m_id; const Index m_start; }; namespace internal { template<typename InputIterator, typename SparseMatrixType> void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, int Options = 0) { EIGEN_UNUSED_VARIABLE(Options); enum { IsRowMajor = SparseMatrixType::IsRowMajor }; typedef typename SparseMatrixType::Scalar Scalar; typedef typename SparseMatrixType::Index Index; SparseMatrix<Scalar,IsRowMajor?ColMajor:RowMajor> trMat(mat.rows(),mat.cols()); // pass 1: count the nnz per inner-vector VectorXi wi(trMat.outerSize()); wi.setZero(); for(InputIterator it(begin); it!=end; ++it) wi(IsRowMajor ? it->col() : it->row())++; // pass 2: insert all the elements into trMat trMat.reserve(wi); for(InputIterator it(begin); it!=end; ++it) trMat.insertBackUncompressed(it->row(),it->col()) = it->value(); // pass 3: trMat.sumupDuplicates(); // pass 4: transposed copy -> implicit sorting mat = trMat; } } /** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \b. * * A \em triplet is a tuple (i,j,value) defining a non-zero element. * The input list of triplets does not have to be sorted, and can contains duplicated elements. * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up. * This is a \em O(n) operation, with \em n the number of triplet elements. * The initial contents of \c *this is destroyed. * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, * or the resize(Index,Index) method. The sizes are not extracted from the triplet list. * * The \a InputIterators value_type must provide the following interface: * \code * Scalar value() const; // the value * Scalar row() const; // the row index i * Scalar col() const; // the column index j * \endcode * See for instance the Eigen::Triplet template class. * * Here is a typical usage example: * \code typedef Triplet<double> T; std::vector<T> tripletList; triplets.reserve(estimation_of_entries); for(...) { // ... tripletList.push_back(T(i,j,v_ij)); } SparseMatrixType m(rows,cols); m.setFromTriplets(tripletList.begin(), tripletList.end()); // m is ready to go! * \endcode * * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather * be explicitely stored into a std::vector for instance. */ template<typename Scalar, int _Options, typename _Index> template<typename InputIterators> void SparseMatrix<Scalar,_Options,_Index>::setFromTriplets(const InputIterators& begin, const InputIterators& end) { internal::set_from_triplets(begin, end, *this); } /** \internal */ template<typename Scalar, int _Options, typename _Index> void SparseMatrix<Scalar,_Options,_Index>::sumupDuplicates() { eigen_assert(!isCompressed()); // TODO, in practice we should be able to use m_innerNonZeros for that task VectorXi wi(innerSize()); wi.fill(-1); Index count = 0; // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers for(int j=0; j<outerSize(); ++j) { Index start = count; Index oldEnd = m_outerIndex[j]+m_innerNonZeros[j]; for(Index k=m_outerIndex[j]; k<oldEnd; ++k) { Index i = m_data.index(k); if(wi(i)>=start) { // we already meet this entry => accumulate it m_data.value(wi(i)) += m_data.value(k); } else { m_data.value(count) = m_data.value(k); m_data.index(count) = m_data.index(k); wi(i) = count; ++count; } } m_outerIndex[j] = start; } m_outerIndex[m_outerSize] = count; // turn the matrix into compressed form delete[] m_innerNonZeros; m_innerNonZeros = 0; m_data.resize(m_outerIndex[m_outerSize]); } } // end namespace Eigen #endif // EIGEN_SPARSEMATRIX_H