// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/SVD> template<typename MatrixType, typename JacobiScalar> void jacobi(const MatrixType& m = MatrixType()) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::Index Index; Index rows = m.rows(); Index cols = m.cols(); enum { RowsAtCompileTime = MatrixType::RowsAtCompileTime, ColsAtCompileTime = MatrixType::ColsAtCompileTime }; typedef Matrix<JacobiScalar, 2, 1> JacobiVector; const MatrixType a(MatrixType::Random(rows, cols)); JacobiVector v = JacobiVector::Random().normalized(); JacobiScalar c = v.x(), s = v.y(); JacobiRotation<JacobiScalar> rot(c, s); { Index p = internal::random<Index>(0, rows-1); Index q; do { q = internal::random<Index>(0, rows-1); } while (q == p); MatrixType b = a; b.applyOnTheLeft(p, q, rot); VERIFY_IS_APPROX(b.row(p), c * a.row(p) + internal::conj(s) * a.row(q)); VERIFY_IS_APPROX(b.row(q), -s * a.row(p) + internal::conj(c) * a.row(q)); } { Index p = internal::random<Index>(0, cols-1); Index q; do { q = internal::random<Index>(0, cols-1); } while (q == p); MatrixType b = a; b.applyOnTheRight(p, q, rot); VERIFY_IS_APPROX(b.col(p), c * a.col(p) - s * a.col(q)); VERIFY_IS_APPROX(b.col(q), internal::conj(s) * a.col(p) + internal::conj(c) * a.col(q)); } } void test_jacobi() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1(( jacobi<Matrix3f, float>() )); CALL_SUBTEST_2(( jacobi<Matrix4d, double>() )); CALL_SUBTEST_3(( jacobi<Matrix4cf, float>() )); CALL_SUBTEST_3(( jacobi<Matrix4cf, std::complex<float> >() )); int r = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2), c = internal::random<int>(2, internal::random<int>(1,EIGEN_TEST_MAX_SIZE)/2); CALL_SUBTEST_4(( jacobi<MatrixXf, float>(MatrixXf(r,c)) )); CALL_SUBTEST_5(( jacobi<MatrixXcd, double>(MatrixXcd(r,c)) )); CALL_SUBTEST_5(( jacobi<MatrixXcd, std::complex<double> >(MatrixXcd(r,c)) )); // complex<float> is really important to test as it is the only way to cover conjugation issues in certain unaligned paths CALL_SUBTEST_6(( jacobi<MatrixXcf, float>(MatrixXcf(r,c)) )); CALL_SUBTEST_6(( jacobi<MatrixXcf, std::complex<float> >(MatrixXcf(r,c)) )); (void) r; (void) c; } }