// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2009 Gael Guennebaud <gael.guennebaud@inria.fr> // Copyright (C) 2006-2008 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" // using namespace Eigen; namespace Eigen { namespace internal { template<typename T> T negate(const T& x) { return -x; } } } template<typename Scalar> bool isApproxAbs(const Scalar& a, const Scalar& b, const typename NumTraits<Scalar>::Real& refvalue) { return internal::isMuchSmallerThan(a-b, refvalue); } template<typename Scalar> bool areApproxAbs(const Scalar* a, const Scalar* b, int size, const typename NumTraits<Scalar>::Real& refvalue) { for (int i=0; i<size; ++i) { if (!isApproxAbs(a[i],b[i],refvalue)) { std::cout << "[" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != " << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "\n"; return false; } } return true; } template<typename Scalar> bool areApprox(const Scalar* a, const Scalar* b, int size) { for (int i=0; i<size; ++i) { if (!internal::isApprox(a[i],b[i])) { std::cout << "[" << Map<const Matrix<Scalar,1,Dynamic> >(a,size) << "]" << " != " << Map<const Matrix<Scalar,1,Dynamic> >(b,size) << "\n"; return false; } } return true; } #define CHECK_CWISE2(REFOP, POP) { \ for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i], data1[i+PacketSize]); \ internal::pstore(data2, POP(internal::pload<Packet>(data1), internal::pload<Packet>(data1+PacketSize))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ } #define CHECK_CWISE1(REFOP, POP) { \ for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i]); \ internal::pstore(data2, POP(internal::pload<Packet>(data1))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ } template<bool Cond,typename Packet> struct packet_helper { template<typename T> inline Packet load(const T* from) const { return internal::pload<Packet>(from); } template<typename T> inline void store(T* to, const Packet& x) const { internal::pstore(to,x); } }; template<typename Packet> struct packet_helper<false,Packet> { template<typename T> inline T load(const T* from) const { return *from; } template<typename T> inline void store(T* to, const T& x) const { *to = x; } }; #define CHECK_CWISE1_IF(COND, REFOP, POP) if(COND) { \ packet_helper<COND,Packet> h; \ for (int i=0; i<PacketSize; ++i) \ ref[i] = REFOP(data1[i]); \ h.store(data2, POP(h.load(data1))); \ VERIFY(areApprox(ref, data2, PacketSize) && #POP); \ } #define REF_ADD(a,b) ((a)+(b)) #define REF_SUB(a,b) ((a)-(b)) #define REF_MUL(a,b) ((a)*(b)) #define REF_DIV(a,b) ((a)/(b)) template<typename Scalar> void packetmath() { typedef typename internal::packet_traits<Scalar>::type Packet; const int PacketSize = internal::packet_traits<Scalar>::size; typedef typename NumTraits<Scalar>::Real RealScalar; const int size = PacketSize*4; EIGEN_ALIGN16 Scalar data1[internal::packet_traits<Scalar>::size*4]; EIGEN_ALIGN16 Scalar data2[internal::packet_traits<Scalar>::size*4]; EIGEN_ALIGN16 Packet packets[PacketSize*2]; EIGEN_ALIGN16 Scalar ref[internal::packet_traits<Scalar>::size*4]; RealScalar refvalue = 0; for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>()/RealScalar(PacketSize); data2[i] = internal::random<Scalar>()/RealScalar(PacketSize); refvalue = (std::max)(refvalue,internal::abs(data1[i])); } internal::pstore(data2, internal::pload<Packet>(data1)); VERIFY(areApprox(data1, data2, PacketSize) && "aligned load/store"); for (int offset=0; offset<PacketSize; ++offset) { internal::pstore(data2, internal::ploadu<Packet>(data1+offset)); VERIFY(areApprox(data1+offset, data2, PacketSize) && "internal::ploadu"); } for (int offset=0; offset<PacketSize; ++offset) { internal::pstoreu(data2+offset, internal::pload<Packet>(data1)); VERIFY(areApprox(data1, data2+offset, PacketSize) && "internal::pstoreu"); } for (int offset=0; offset<PacketSize; ++offset) { packets[0] = internal::pload<Packet>(data1); packets[1] = internal::pload<Packet>(data1+PacketSize); if (offset==0) internal::palign<0>(packets[0], packets[1]); else if (offset==1) internal::palign<1>(packets[0], packets[1]); else if (offset==2) internal::palign<2>(packets[0], packets[1]); else if (offset==3) internal::palign<3>(packets[0], packets[1]); internal::pstore(data2, packets[0]); for (int i=0; i<PacketSize; ++i) ref[i] = data1[i+offset]; typedef Matrix<Scalar, PacketSize, 1> Vector; VERIFY(areApprox(ref, data2, PacketSize) && "internal::palign"); } CHECK_CWISE2(REF_ADD, internal::padd); CHECK_CWISE2(REF_SUB, internal::psub); CHECK_CWISE2(REF_MUL, internal::pmul); #ifndef EIGEN_VECTORIZE_ALTIVEC if (!internal::is_same<Scalar,int>::value) CHECK_CWISE2(REF_DIV, internal::pdiv); #endif CHECK_CWISE1(internal::negate, internal::pnegate); CHECK_CWISE1(internal::conj, internal::pconj); for(int offset=0;offset<3;++offset) { for (int i=0; i<PacketSize; ++i) ref[i] = data1[offset]; internal::pstore(data2, internal::pset1<Packet>(data1[offset])); VERIFY(areApprox(ref, data2, PacketSize) && "internal::pset1"); } VERIFY(internal::isApprox(data1[0], internal::pfirst(internal::pload<Packet>(data1))) && "internal::pfirst"); if(PacketSize>1) { for(int offset=0;offset<4;++offset) { for(int i=0;i<PacketSize/2;++i) ref[2*i+0] = ref[2*i+1] = data1[offset+i]; internal::pstore(data2,internal::ploaddup<Packet>(data1+offset)); VERIFY(areApprox(ref, data2, PacketSize) && "ploaddup"); } } ref[0] = 0; for (int i=0; i<PacketSize; ++i) ref[0] += data1[i]; VERIFY(isApproxAbs(ref[0], internal::predux(internal::pload<Packet>(data1)), refvalue) && "internal::predux"); ref[0] = 1; for (int i=0; i<PacketSize; ++i) ref[0] *= data1[i]; VERIFY(internal::isApprox(ref[0], internal::predux_mul(internal::pload<Packet>(data1))) && "internal::predux_mul"); for (int j=0; j<PacketSize; ++j) { ref[j] = 0; for (int i=0; i<PacketSize; ++i) ref[j] += data1[i+j*PacketSize]; packets[j] = internal::pload<Packet>(data1+j*PacketSize); } internal::pstore(data2, internal::preduxp(packets)); VERIFY(areApproxAbs(ref, data2, PacketSize, refvalue) && "internal::preduxp"); for (int i=0; i<PacketSize; ++i) ref[i] = data1[PacketSize-i-1]; internal::pstore(data2, internal::preverse(internal::pload<Packet>(data1))); VERIFY(areApprox(ref, data2, PacketSize) && "internal::preverse"); } template<typename Scalar> void packetmath_real() { typedef typename internal::packet_traits<Scalar>::type Packet; const int PacketSize = internal::packet_traits<Scalar>::size; const int size = PacketSize*4; EIGEN_ALIGN16 Scalar data1[internal::packet_traits<Scalar>::size*4]; EIGEN_ALIGN16 Scalar data2[internal::packet_traits<Scalar>::size*4]; EIGEN_ALIGN16 Scalar ref[internal::packet_traits<Scalar>::size*4]; for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>(-1e3,1e3); data2[i] = internal::random<Scalar>(-1e3,1e3); } CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasSin, internal::sin, internal::psin); CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasCos, internal::cos, internal::pcos); CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasTan, internal::tan, internal::ptan); for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>(-1,1); data2[i] = internal::random<Scalar>(-1,1); } CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasASin, internal::asin, internal::pasin); CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasACos, internal::acos, internal::pacos); for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>(-87,88); data2[i] = internal::random<Scalar>(-87,88); } CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasExp, internal::exp, internal::pexp); for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>(0,1e6); data2[i] = internal::random<Scalar>(0,1e6); } CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasLog, internal::log, internal::plog); CHECK_CWISE1_IF(internal::packet_traits<Scalar>::HasSqrt, internal::sqrt, internal::psqrt); ref[0] = data1[0]; for (int i=0; i<PacketSize; ++i) ref[0] = (std::min)(ref[0],data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_min(internal::pload<Packet>(data1))) && "internal::predux_min"); CHECK_CWISE2((std::min), internal::pmin); CHECK_CWISE2((std::max), internal::pmax); CHECK_CWISE1(internal::abs, internal::pabs); ref[0] = data1[0]; for (int i=0; i<PacketSize; ++i) ref[0] = (std::max)(ref[0],data1[i]); VERIFY(internal::isApprox(ref[0], internal::predux_max(internal::pload<Packet>(data1))) && "internal::predux_max"); for (int i=0; i<PacketSize; ++i) ref[i] = data1[0]+Scalar(i); internal::pstore(data2, internal::plset(data1[0])); VERIFY(areApprox(ref, data2, PacketSize) && "internal::plset"); } template<typename Scalar,bool ConjLhs,bool ConjRhs> void test_conj_helper(Scalar* data1, Scalar* data2, Scalar* ref, Scalar* pval) { typedef typename internal::packet_traits<Scalar>::type Packet; const int PacketSize = internal::packet_traits<Scalar>::size; internal::conj_if<ConjLhs> cj0; internal::conj_if<ConjRhs> cj1; internal::conj_helper<Scalar,Scalar,ConjLhs,ConjRhs> cj; internal::conj_helper<Packet,Packet,ConjLhs,ConjRhs> pcj; for(int i=0;i<PacketSize;++i) { ref[i] = cj0(data1[i]) * cj1(data2[i]); VERIFY(internal::isApprox(ref[i], cj.pmul(data1[i],data2[i])) && "conj_helper pmul"); } internal::pstore(pval,pcj.pmul(internal::pload<Packet>(data1),internal::pload<Packet>(data2))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmul"); for(int i=0;i<PacketSize;++i) { Scalar tmp = ref[i]; ref[i] += cj0(data1[i]) * cj1(data2[i]); VERIFY(internal::isApprox(ref[i], cj.pmadd(data1[i],data2[i],tmp)) && "conj_helper pmadd"); } internal::pstore(pval,pcj.pmadd(internal::pload<Packet>(data1),internal::pload<Packet>(data2),internal::pload<Packet>(pval))); VERIFY(areApprox(ref, pval, PacketSize) && "conj_helper pmadd"); } template<typename Scalar> void packetmath_complex() { typedef typename internal::packet_traits<Scalar>::type Packet; const int PacketSize = internal::packet_traits<Scalar>::size; const int size = PacketSize*4; EIGEN_ALIGN16 Scalar data1[PacketSize*4]; EIGEN_ALIGN16 Scalar data2[PacketSize*4]; EIGEN_ALIGN16 Scalar ref[PacketSize*4]; EIGEN_ALIGN16 Scalar pval[PacketSize*4]; for (int i=0; i<size; ++i) { data1[i] = internal::random<Scalar>() * Scalar(1e2); data2[i] = internal::random<Scalar>() * Scalar(1e2); } test_conj_helper<Scalar,false,false> (data1,data2,ref,pval); test_conj_helper<Scalar,false,true> (data1,data2,ref,pval); test_conj_helper<Scalar,true,false> (data1,data2,ref,pval); test_conj_helper<Scalar,true,true> (data1,data2,ref,pval); { for(int i=0;i<PacketSize;++i) ref[i] = Scalar(std::imag(data1[i]),std::real(data1[i])); internal::pstore(pval,internal::pcplxflip(internal::pload<Packet>(data1))); VERIFY(areApprox(ref, pval, PacketSize) && "pcplxflip"); } } void test_packetmath() { for(int i = 0; i < g_repeat; i++) { CALL_SUBTEST_1( packetmath<float>() ); CALL_SUBTEST_2( packetmath<double>() ); CALL_SUBTEST_3( packetmath<int>() ); CALL_SUBTEST_1( packetmath<std::complex<float> >() ); CALL_SUBTEST_2( packetmath<std::complex<double> >() ); CALL_SUBTEST_1( packetmath_real<float>() ); CALL_SUBTEST_2( packetmath_real<double>() ); CALL_SUBTEST_1( packetmath_complex<std::complex<float> >() ); CALL_SUBTEST_2( packetmath_complex<std::complex<double> >() ); } }