// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #include "main.h" #include <Eigen/LU> #include <algorithm> template<typename MatrixType> void inverse_permutation_4x4() { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; Vector4i indices(0,1,2,3); for(int i = 0; i < 24; ++i) { MatrixType m = PermutationMatrix<4>(indices); MatrixType inv = m.inverse(); double error = double( (m*inv-MatrixType::Identity()).norm() / NumTraits<Scalar>::epsilon() ); EIGEN_DEBUG_VAR(error) VERIFY(error == 0.0); std::next_permutation(indices.data(),indices.data()+4); } } template<typename MatrixType> void inverse_general_4x4(int repeat) { typedef typename MatrixType::Scalar Scalar; typedef typename MatrixType::RealScalar RealScalar; double error_sum = 0., error_max = 0.; for(int i = 0; i < repeat; ++i) { MatrixType m; RealScalar absdet; do { m = MatrixType::Random(); absdet = internal::abs(m.determinant()); } while(absdet < NumTraits<Scalar>::epsilon()); MatrixType inv = m.inverse(); double error = double( (m*inv-MatrixType::Identity()).norm() * absdet / NumTraits<Scalar>::epsilon() ); error_sum += error; error_max = (std::max)(error_max, error); } std::cerr << "inverse_general_4x4, Scalar = " << type_name<Scalar>() << std::endl; double error_avg = error_sum / repeat; EIGEN_DEBUG_VAR(error_avg); EIGEN_DEBUG_VAR(error_max); // FIXME that 1.25 used to be a 1.0 until the NumTraits changes on 28 April 2010, what's going wrong?? // FIXME that 1.25 used to be 1.2 until we tested gcc 4.1 on 30 June 2010 and got 1.21. VERIFY(error_avg < (NumTraits<Scalar>::IsComplex ? 8.0 : 1.25)); VERIFY(error_max < (NumTraits<Scalar>::IsComplex ? 64.0 : 20.0)); } void test_prec_inverse_4x4() { CALL_SUBTEST_1((inverse_permutation_4x4<Matrix4f>())); CALL_SUBTEST_1(( inverse_general_4x4<Matrix4f>(200000 * g_repeat) )); CALL_SUBTEST_2((inverse_permutation_4x4<Matrix<double,4,4,RowMajor> >())); CALL_SUBTEST_2(( inverse_general_4x4<Matrix<double,4,4,RowMajor> >(200000 * g_repeat) )); CALL_SUBTEST_3((inverse_permutation_4x4<Matrix4cf>())); CALL_SUBTEST_3((inverse_general_4x4<Matrix4cf>(50000 * g_repeat))); }