// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Benoit Jacob <jacob.benoit.1@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #define EIGEN_NO_STATIC_ASSERT #include "main.h" template<typename ArrayType> void vectorwiseop_array(const ArrayType& m) { typedef typename ArrayType::Index Index; typedef typename ArrayType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Array<Scalar, ArrayType::RowsAtCompileTime, 1> ColVectorType; typedef Array<Scalar, 1, ArrayType::ColsAtCompileTime> RowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1); ArrayType m1 = ArrayType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); // test multiplication m2 = m1; m2.colwise() *= colvec; VERIFY_IS_APPROX(m2, m1.colwise() * colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) * colvec); VERIFY_RAISES_ASSERT(m2.colwise() *= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() * colvec.transpose()); m2 = m1; m2.rowwise() *= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() * rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) * rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() *= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() * rowvec.transpose()); // test quotient m2 = m1; m2.colwise() /= colvec; VERIFY_IS_APPROX(m2, m1.colwise() / colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) / colvec); VERIFY_RAISES_ASSERT(m2.colwise() /= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() / colvec.transpose()); m2 = m1; m2.rowwise() /= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() / rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) / rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() /= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() / rowvec.transpose()); } template<typename MatrixType> void vectorwiseop_matrix(const MatrixType& m) { typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef Matrix<Scalar, MatrixType::RowsAtCompileTime, 1> ColVectorType; typedef Matrix<Scalar, 1, MatrixType::ColsAtCompileTime> RowVectorType; Index rows = m.rows(); Index cols = m.cols(); Index r = internal::random<Index>(0, rows-1), c = internal::random<Index>(0, cols-1); MatrixType m1 = MatrixType::Random(rows, cols), m2(rows, cols), m3(rows, cols); ColVectorType colvec = ColVectorType::Random(rows); RowVectorType rowvec = RowVectorType::Random(cols); // test addition m2 = m1; m2.colwise() += colvec; VERIFY_IS_APPROX(m2, m1.colwise() + colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) + colvec); VERIFY_RAISES_ASSERT(m2.colwise() += colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() + colvec.transpose()); m2 = m1; m2.rowwise() += rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() + rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) + rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() += rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() + rowvec.transpose()); // test substraction m2 = m1; m2.colwise() -= colvec; VERIFY_IS_APPROX(m2, m1.colwise() - colvec); VERIFY_IS_APPROX(m2.col(c), m1.col(c) - colvec); VERIFY_RAISES_ASSERT(m2.colwise() -= colvec.transpose()); VERIFY_RAISES_ASSERT(m1.colwise() - colvec.transpose()); m2 = m1; m2.rowwise() -= rowvec; VERIFY_IS_APPROX(m2, m1.rowwise() - rowvec); VERIFY_IS_APPROX(m2.row(r), m1.row(r) - rowvec); VERIFY_RAISES_ASSERT(m2.rowwise() -= rowvec.transpose()); VERIFY_RAISES_ASSERT(m1.rowwise() - rowvec.transpose()); } void test_vectorwiseop() { CALL_SUBTEST_1(vectorwiseop_array(Array22cd())); CALL_SUBTEST_2(vectorwiseop_array(Array<double, 3, 2>())); CALL_SUBTEST_3(vectorwiseop_array(ArrayXXf(3, 4))); CALL_SUBTEST_4(vectorwiseop_matrix(Matrix4cf())); CALL_SUBTEST_5(vectorwiseop_matrix(Matrix<float,4,5>())); CALL_SUBTEST_6(vectorwiseop_matrix(MatrixXd(7,2))); }