// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009, 2010 Jitse Niesen <jitse@maths.leeds.ac.uk> // Copyright (C) 2011 Chen-Pang He <jdh8@ms63.hinet.net> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIX_EXPONENTIAL #define EIGEN_MATRIX_EXPONENTIAL #include "StemFunction.h" namespace Eigen { #if defined(_MSC_VER) || defined(__FreeBSD__) template <typename Scalar> Scalar log2(Scalar v) { using std::log; return log(v)/log(Scalar(2)); } #endif /** \ingroup MatrixFunctions_Module * \brief Class for computing the matrix exponential. * \tparam MatrixType type of the argument of the exponential, * expected to be an instantiation of the Matrix class template. */ template <typename MatrixType> class MatrixExponential { public: /** \brief Constructor. * * The class stores a reference to \p M, so it should not be * changed (or destroyed) before compute() is called. * * \param[in] M matrix whose exponential is to be computed. */ MatrixExponential(const MatrixType &M); /** \brief Computes the matrix exponential. * * \param[out] result the matrix exponential of \p M in the constructor. */ template <typename ResultType> void compute(ResultType &result); private: // Prevent copying MatrixExponential(const MatrixExponential&); MatrixExponential& operator=(const MatrixExponential&); /** \brief Compute the (3,3)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. * * \param[in] A Argument of matrix exponential */ void pade3(const MatrixType &A); /** \brief Compute the (5,5)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. * * \param[in] A Argument of matrix exponential */ void pade5(const MatrixType &A); /** \brief Compute the (7,7)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. * * \param[in] A Argument of matrix exponential */ void pade7(const MatrixType &A); /** \brief Compute the (9,9)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. * * \param[in] A Argument of matrix exponential */ void pade9(const MatrixType &A); /** \brief Compute the (13,13)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. * * \param[in] A Argument of matrix exponential */ void pade13(const MatrixType &A); /** \brief Compute the (17,17)-Padé approximant to the exponential. * * After exit, \f$ (V+U)(V-U)^{-1} \f$ is the Padé * approximant of \f$ \exp(A) \f$ around \f$ A = 0 \f$. * * This function activates only if your long double is double-double or quadruple. * * \param[in] A Argument of matrix exponential */ void pade17(const MatrixType &A); /** \brief Compute Padé approximant to the exponential. * * Computes \c m_U, \c m_V and \c m_squarings such that * \f$ (V+U)(V-U)^{-1} \f$ is a Padé of * \f$ \exp(2^{-\mbox{squarings}}M) \f$ around \f$ M = 0 \f$. The * degree of the Padé approximant and the value of * squarings are chosen such that the approximation error is no * more than the round-off error. * * The argument of this function should correspond with the (real * part of) the entries of \c m_M. It is used to select the * correct implementation using overloading. */ void computeUV(double); /** \brief Compute Padé approximant to the exponential. * * \sa computeUV(double); */ void computeUV(float); /** \brief Compute Padé approximant to the exponential. * * \sa computeUV(double); */ void computeUV(long double); typedef typename internal::traits<MatrixType>::Scalar Scalar; typedef typename NumTraits<Scalar>::Real RealScalar; typedef typename std::complex<RealScalar> ComplexScalar; /** \brief Reference to matrix whose exponential is to be computed. */ typename internal::nested<MatrixType>::type m_M; /** \brief Odd-degree terms in numerator of Padé approximant. */ MatrixType m_U; /** \brief Even-degree terms in numerator of Padé approximant. */ MatrixType m_V; /** \brief Used for temporary storage. */ MatrixType m_tmp1; /** \brief Used for temporary storage. */ MatrixType m_tmp2; /** \brief Identity matrix of the same size as \c m_M. */ MatrixType m_Id; /** \brief Number of squarings required in the last step. */ int m_squarings; /** \brief L1 norm of m_M. */ RealScalar m_l1norm; }; template <typename MatrixType> MatrixExponential<MatrixType>::MatrixExponential(const MatrixType &M) : m_M(M), m_U(M.rows(),M.cols()), m_V(M.rows(),M.cols()), m_tmp1(M.rows(),M.cols()), m_tmp2(M.rows(),M.cols()), m_Id(MatrixType::Identity(M.rows(), M.cols())), m_squarings(0), m_l1norm(M.cwiseAbs().colwise().sum().maxCoeff()) { /* empty body */ } template <typename MatrixType> template <typename ResultType> void MatrixExponential<MatrixType>::compute(ResultType &result) { #if LDBL_MANT_DIG > 112 // rarely happens if(sizeof(RealScalar) > 14) { result = m_M.matrixFunction(StdStemFunctions<ComplexScalar>::exp); return; } #endif computeUV(RealScalar()); m_tmp1 = m_U + m_V; // numerator of Pade approximant m_tmp2 = -m_U + m_V; // denominator of Pade approximant result = m_tmp2.partialPivLu().solve(m_tmp1); for (int i=0; i<m_squarings; i++) result *= result; // undo scaling by repeated squaring } template <typename MatrixType> EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade3(const MatrixType &A) { const RealScalar b[] = {120., 60., 12., 1.}; m_tmp1.noalias() = A * A; m_tmp2 = b[3]*m_tmp1 + b[1]*m_Id; m_U.noalias() = A * m_tmp2; m_V = b[2]*m_tmp1 + b[0]*m_Id; } template <typename MatrixType> EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade5(const MatrixType &A) { const RealScalar b[] = {30240., 15120., 3360., 420., 30., 1.}; MatrixType A2 = A * A; m_tmp1.noalias() = A2 * A2; m_tmp2 = b[5]*m_tmp1 + b[3]*A2 + b[1]*m_Id; m_U.noalias() = A * m_tmp2; m_V = b[4]*m_tmp1 + b[2]*A2 + b[0]*m_Id; } template <typename MatrixType> EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade7(const MatrixType &A) { const RealScalar b[] = {17297280., 8648640., 1995840., 277200., 25200., 1512., 56., 1.}; MatrixType A2 = A * A; MatrixType A4 = A2 * A2; m_tmp1.noalias() = A4 * A2; m_tmp2 = b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; m_U.noalias() = A * m_tmp2; m_V = b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; } template <typename MatrixType> EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade9(const MatrixType &A) { const RealScalar b[] = {17643225600., 8821612800., 2075673600., 302702400., 30270240., 2162160., 110880., 3960., 90., 1.}; MatrixType A2 = A * A; MatrixType A4 = A2 * A2; MatrixType A6 = A4 * A2; m_tmp1.noalias() = A6 * A2; m_tmp2 = b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; m_U.noalias() = A * m_tmp2; m_V = b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; } template <typename MatrixType> EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade13(const MatrixType &A) { const RealScalar b[] = {64764752532480000., 32382376266240000., 7771770303897600., 1187353796428800., 129060195264000., 10559470521600., 670442572800., 33522128640., 1323241920., 40840800., 960960., 16380., 182., 1.}; MatrixType A2 = A * A; MatrixType A4 = A2 * A2; m_tmp1.noalias() = A4 * A2; m_V = b[13]*m_tmp1 + b[11]*A4 + b[9]*A2; // used for temporary storage m_tmp2.noalias() = m_tmp1 * m_V; m_tmp2 += b[7]*m_tmp1 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; m_U.noalias() = A * m_tmp2; m_tmp2 = b[12]*m_tmp1 + b[10]*A4 + b[8]*A2; m_V.noalias() = m_tmp1 * m_tmp2; m_V += b[6]*m_tmp1 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; } #if LDBL_MANT_DIG > 64 template <typename MatrixType> EIGEN_STRONG_INLINE void MatrixExponential<MatrixType>::pade17(const MatrixType &A) { const RealScalar b[] = {830034394580628357120000.L, 415017197290314178560000.L, 100610229646136770560000.L, 15720348382208870400000.L, 1774878043152614400000.L, 153822763739893248000.L, 10608466464820224000.L, 595373117923584000.L, 27563570274240000.L, 1060137318240000.L, 33924394183680.L, 899510451840.L, 19554575040.L, 341863200.L, 4651200.L, 46512.L, 306.L, 1.L}; MatrixType A2 = A * A; MatrixType A4 = A2 * A2; MatrixType A6 = A4 * A2; m_tmp1.noalias() = A4 * A4; m_V = b[17]*m_tmp1 + b[15]*A6 + b[13]*A4 + b[11]*A2; // used for temporary storage m_tmp2.noalias() = m_tmp1 * m_V; m_tmp2 += b[9]*m_tmp1 + b[7]*A6 + b[5]*A4 + b[3]*A2 + b[1]*m_Id; m_U.noalias() = A * m_tmp2; m_tmp2 = b[16]*m_tmp1 + b[14]*A6 + b[12]*A4 + b[10]*A2; m_V.noalias() = m_tmp1 * m_tmp2; m_V += b[8]*m_tmp1 + b[6]*A6 + b[4]*A4 + b[2]*A2 + b[0]*m_Id; } #endif template <typename MatrixType> void MatrixExponential<MatrixType>::computeUV(float) { using std::max; using std::pow; using std::ceil; if (m_l1norm < 4.258730016922831e-001) { pade3(m_M); } else if (m_l1norm < 1.880152677804762e+000) { pade5(m_M); } else { const float maxnorm = 3.925724783138660f; m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm))); MatrixType A = m_M / pow(Scalar(2), m_squarings); pade7(A); } } template <typename MatrixType> void MatrixExponential<MatrixType>::computeUV(double) { using std::max; using std::pow; using std::ceil; if (m_l1norm < 1.495585217958292e-002) { pade3(m_M); } else if (m_l1norm < 2.539398330063230e-001) { pade5(m_M); } else if (m_l1norm < 9.504178996162932e-001) { pade7(m_M); } else if (m_l1norm < 2.097847961257068e+000) { pade9(m_M); } else { const double maxnorm = 5.371920351148152; m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm))); MatrixType A = m_M / pow(Scalar(2), m_squarings); pade13(A); } } template <typename MatrixType> void MatrixExponential<MatrixType>::computeUV(long double) { using std::max; using std::pow; using std::ceil; #if LDBL_MANT_DIG == 53 // double precision computeUV(double()); #elif LDBL_MANT_DIG <= 64 // extended precision if (m_l1norm < 4.1968497232266989671e-003L) { pade3(m_M); } else if (m_l1norm < 1.1848116734693823091e-001L) { pade5(m_M); } else if (m_l1norm < 5.5170388480686700274e-001L) { pade7(m_M); } else if (m_l1norm < 1.3759868875587845383e+000L) { pade9(m_M); } else { const long double maxnorm = 4.0246098906697353063L; m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm))); MatrixType A = m_M / pow(Scalar(2), m_squarings); pade13(A); } #elif LDBL_MANT_DIG <= 106 // double-double if (m_l1norm < 3.2787892205607026992947488108213e-005L) { pade3(m_M); } else if (m_l1norm < 6.4467025060072760084130906076332e-003L) { pade5(m_M); } else if (m_l1norm < 6.8988028496595374751374122881143e-002L) { pade7(m_M); } else if (m_l1norm < 2.7339737518502231741495857201670e-001L) { pade9(m_M); } else if (m_l1norm < 1.3203382096514474905666448850278e+000L) { pade13(m_M); } else { const long double maxnorm = 3.2579440895405400856599663723517L; m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm))); MatrixType A = m_M / pow(Scalar(2), m_squarings); pade17(A); } #elif LDBL_MANT_DIG <= 112 // quadruple precison if (m_l1norm < 1.639394610288918690547467954466970e-005L) { pade3(m_M); } else if (m_l1norm < 4.253237712165275566025884344433009e-003L) { pade5(m_M); } else if (m_l1norm < 5.125804063165764409885122032933142e-002L) { pade7(m_M); } else if (m_l1norm < 2.170000765161155195453205651889853e-001L) { pade9(m_M); } else if (m_l1norm < 1.125358383453143065081397882891878e+000L) { pade13(m_M); } else { const long double maxnorm = 2.884233277829519311757165057717815L; m_squarings = (max)(0, (int)ceil(log2(m_l1norm / maxnorm))); MatrixType A = m_M / pow(Scalar(2), m_squarings); pade17(A); } #else // this case should be handled in compute() eigen_assert(false && "Bug in MatrixExponential"); #endif // LDBL_MANT_DIG } /** \ingroup MatrixFunctions_Module * * \brief Proxy for the matrix exponential of some matrix (expression). * * \tparam Derived Type of the argument to the matrix exponential. * * This class holds the argument to the matrix exponential until it * is assigned or evaluated for some other reason (so the argument * should not be changed in the meantime). It is the return type of * MatrixBase::exp() and most of the time this is the only way it is * used. */ template<typename Derived> struct MatrixExponentialReturnValue : public ReturnByValue<MatrixExponentialReturnValue<Derived> > { typedef typename Derived::Index Index; public: /** \brief Constructor. * * \param[in] src %Matrix (expression) forming the argument of the * matrix exponential. */ MatrixExponentialReturnValue(const Derived& src) : m_src(src) { } /** \brief Compute the matrix exponential. * * \param[out] result the matrix exponential of \p src in the * constructor. */ template <typename ResultType> inline void evalTo(ResultType& result) const { const typename Derived::PlainObject srcEvaluated = m_src.eval(); MatrixExponential<typename Derived::PlainObject> me(srcEvaluated); me.compute(result); } Index rows() const { return m_src.rows(); } Index cols() const { return m_src.cols(); } protected: const Derived& m_src; private: MatrixExponentialReturnValue& operator=(const MatrixExponentialReturnValue&); }; namespace internal { template<typename Derived> struct traits<MatrixExponentialReturnValue<Derived> > { typedef typename Derived::PlainObject ReturnType; }; } template <typename Derived> const MatrixExponentialReturnValue<Derived> MatrixBase<Derived>::exp() const { eigen_assert(rows() == cols()); return MatrixExponentialReturnValue<Derived>(derived()); } } // end namespace Eigen #endif // EIGEN_MATRIX_EXPONENTIAL