// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2011 Jitse Niesen <jitse@maths.leeds.ac.uk> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIX_SQUARE_ROOT #define EIGEN_MATRIX_SQUARE_ROOT namespace Eigen { /** \ingroup MatrixFunctions_Module * \brief Class for computing matrix square roots of upper quasi-triangular matrices. * \tparam MatrixType type of the argument of the matrix square root, * expected to be an instantiation of the Matrix class template. * * This class computes the square root of the upper quasi-triangular * matrix stored in the upper Hessenberg part of the matrix passed to * the constructor. * * \sa MatrixSquareRoot, MatrixSquareRootTriangular */ template <typename MatrixType> class MatrixSquareRootQuasiTriangular { public: /** \brief Constructor. * * \param[in] A upper quasi-triangular matrix whose square root * is to be computed. * * The class stores a reference to \p A, so it should not be * changed (or destroyed) before compute() is called. */ MatrixSquareRootQuasiTriangular(const MatrixType& A) : m_A(A) { eigen_assert(A.rows() == A.cols()); } /** \brief Compute the matrix square root * * \param[out] result square root of \p A, as specified in the constructor. * * Only the upper Hessenberg part of \p result is updated, the * rest is not touched. See MatrixBase::sqrt() for details on * how this computation is implemented. */ template <typename ResultType> void compute(ResultType &result); private: typedef typename MatrixType::Index Index; typedef typename MatrixType::Scalar Scalar; void computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T); void computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T); void compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i); void compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j); void compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j); void compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j); void compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j); template <typename SmallMatrixType> static void solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A, const SmallMatrixType& B, const SmallMatrixType& C); const MatrixType& m_A; }; template <typename MatrixType> template <typename ResultType> void MatrixSquareRootQuasiTriangular<MatrixType>::compute(ResultType &result) { // Compute Schur decomposition of m_A const RealSchur<MatrixType> schurOfA(m_A); const MatrixType& T = schurOfA.matrixT(); const MatrixType& U = schurOfA.matrixU(); // Compute square root of T MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows()); computeDiagonalPartOfSqrt(sqrtT, T); computeOffDiagonalPartOfSqrt(sqrtT, T); // Compute square root of m_A result = U * sqrtT * U.adjoint(); } // pre: T is quasi-upper-triangular and sqrtT is a zero matrix of the same size // post: the diagonal blocks of sqrtT are the square roots of the diagonal blocks of T template <typename MatrixType> void MatrixSquareRootQuasiTriangular<MatrixType>::computeDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T) { const Index size = m_A.rows(); for (Index i = 0; i < size; i++) { if (i == size - 1 || T.coeff(i+1, i) == 0) { eigen_assert(T(i,i) > 0); sqrtT.coeffRef(i,i) = internal::sqrt(T.coeff(i,i)); } else { compute2x2diagonalBlock(sqrtT, T, i); ++i; } } } // pre: T is quasi-upper-triangular and diagonal blocks of sqrtT are square root of diagonal blocks of T. // post: sqrtT is the square root of T. template <typename MatrixType> void MatrixSquareRootQuasiTriangular<MatrixType>::computeOffDiagonalPartOfSqrt(MatrixType& sqrtT, const MatrixType& T) { const Index size = m_A.rows(); for (Index j = 1; j < size; j++) { if (T.coeff(j, j-1) != 0) // if T(j-1:j, j-1:j) is a 2-by-2 block continue; for (Index i = j-1; i >= 0; i--) { if (i > 0 && T.coeff(i, i-1) != 0) // if T(i-1:i, i-1:i) is a 2-by-2 block continue; bool iBlockIs2x2 = (i < size - 1) && (T.coeff(i+1, i) != 0); bool jBlockIs2x2 = (j < size - 1) && (T.coeff(j+1, j) != 0); if (iBlockIs2x2 && jBlockIs2x2) compute2x2offDiagonalBlock(sqrtT, T, i, j); else if (iBlockIs2x2 && !jBlockIs2x2) compute2x1offDiagonalBlock(sqrtT, T, i, j); else if (!iBlockIs2x2 && jBlockIs2x2) compute1x2offDiagonalBlock(sqrtT, T, i, j); else if (!iBlockIs2x2 && !jBlockIs2x2) compute1x1offDiagonalBlock(sqrtT, T, i, j); } } } // pre: T.block(i,i,2,2) has complex conjugate eigenvalues // post: sqrtT.block(i,i,2,2) is square root of T.block(i,i,2,2) template <typename MatrixType> void MatrixSquareRootQuasiTriangular<MatrixType> ::compute2x2diagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i) { // TODO: This case (2-by-2 blocks with complex conjugate eigenvalues) is probably hidden somewhere // in EigenSolver. If we expose it, we could call it directly from here. Matrix<Scalar,2,2> block = T.template block<2,2>(i,i); EigenSolver<Matrix<Scalar,2,2> > es(block); sqrtT.template block<2,2>(i,i) = (es.eigenvectors() * es.eigenvalues().cwiseSqrt().asDiagonal() * es.eigenvectors().inverse()).real(); } // pre: block structure of T is such that (i,j) is a 1x1 block, // all blocks of sqrtT to left of and below (i,j) are correct // post: sqrtT(i,j) has the correct value template <typename MatrixType> void MatrixSquareRootQuasiTriangular<MatrixType> ::compute1x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j) { Scalar tmp = (sqrtT.row(i).segment(i+1,j-i-1) * sqrtT.col(j).segment(i+1,j-i-1)).value(); sqrtT.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (sqrtT.coeff(i,i) + sqrtT.coeff(j,j)); } // similar to compute1x1offDiagonalBlock() template <typename MatrixType> void MatrixSquareRootQuasiTriangular<MatrixType> ::compute1x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j) { Matrix<Scalar,1,2> rhs = T.template block<1,2>(i,j); if (j-i > 1) rhs -= sqrtT.block(i, i+1, 1, j-i-1) * sqrtT.block(i+1, j, j-i-1, 2); Matrix<Scalar,2,2> A = sqrtT.coeff(i,i) * Matrix<Scalar,2,2>::Identity(); A += sqrtT.template block<2,2>(j,j).transpose(); sqrtT.template block<1,2>(i,j).transpose() = A.fullPivLu().solve(rhs.transpose()); } // similar to compute1x1offDiagonalBlock() template <typename MatrixType> void MatrixSquareRootQuasiTriangular<MatrixType> ::compute2x1offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j) { Matrix<Scalar,2,1> rhs = T.template block<2,1>(i,j); if (j-i > 2) rhs -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 1); Matrix<Scalar,2,2> A = sqrtT.coeff(j,j) * Matrix<Scalar,2,2>::Identity(); A += sqrtT.template block<2,2>(i,i); sqrtT.template block<2,1>(i,j) = A.fullPivLu().solve(rhs); } // similar to compute1x1offDiagonalBlock() template <typename MatrixType> void MatrixSquareRootQuasiTriangular<MatrixType> ::compute2x2offDiagonalBlock(MatrixType& sqrtT, const MatrixType& T, typename MatrixType::Index i, typename MatrixType::Index j) { Matrix<Scalar,2,2> A = sqrtT.template block<2,2>(i,i); Matrix<Scalar,2,2> B = sqrtT.template block<2,2>(j,j); Matrix<Scalar,2,2> C = T.template block<2,2>(i,j); if (j-i > 2) C -= sqrtT.block(i, i+2, 2, j-i-2) * sqrtT.block(i+2, j, j-i-2, 2); Matrix<Scalar,2,2> X; solveAuxiliaryEquation(X, A, B, C); sqrtT.template block<2,2>(i,j) = X; } // solves the equation A X + X B = C where all matrices are 2-by-2 template <typename MatrixType> template <typename SmallMatrixType> void MatrixSquareRootQuasiTriangular<MatrixType> ::solveAuxiliaryEquation(SmallMatrixType& X, const SmallMatrixType& A, const SmallMatrixType& B, const SmallMatrixType& C) { EIGEN_STATIC_ASSERT((internal::is_same<SmallMatrixType, Matrix<Scalar,2,2> >::value), EIGEN_INTERNAL_ERROR_PLEASE_FILE_A_BUG_REPORT); Matrix<Scalar,4,4> coeffMatrix = Matrix<Scalar,4,4>::Zero(); coeffMatrix.coeffRef(0,0) = A.coeff(0,0) + B.coeff(0,0); coeffMatrix.coeffRef(1,1) = A.coeff(0,0) + B.coeff(1,1); coeffMatrix.coeffRef(2,2) = A.coeff(1,1) + B.coeff(0,0); coeffMatrix.coeffRef(3,3) = A.coeff(1,1) + B.coeff(1,1); coeffMatrix.coeffRef(0,1) = B.coeff(1,0); coeffMatrix.coeffRef(0,2) = A.coeff(0,1); coeffMatrix.coeffRef(1,0) = B.coeff(0,1); coeffMatrix.coeffRef(1,3) = A.coeff(0,1); coeffMatrix.coeffRef(2,0) = A.coeff(1,0); coeffMatrix.coeffRef(2,3) = B.coeff(1,0); coeffMatrix.coeffRef(3,1) = A.coeff(1,0); coeffMatrix.coeffRef(3,2) = B.coeff(0,1); Matrix<Scalar,4,1> rhs; rhs.coeffRef(0) = C.coeff(0,0); rhs.coeffRef(1) = C.coeff(0,1); rhs.coeffRef(2) = C.coeff(1,0); rhs.coeffRef(3) = C.coeff(1,1); Matrix<Scalar,4,1> result; result = coeffMatrix.fullPivLu().solve(rhs); X.coeffRef(0,0) = result.coeff(0); X.coeffRef(0,1) = result.coeff(1); X.coeffRef(1,0) = result.coeff(2); X.coeffRef(1,1) = result.coeff(3); } /** \ingroup MatrixFunctions_Module * \brief Class for computing matrix square roots of upper triangular matrices. * \tparam MatrixType type of the argument of the matrix square root, * expected to be an instantiation of the Matrix class template. * * This class computes the square root of the upper triangular matrix * stored in the upper triangular part (including the diagonal) of * the matrix passed to the constructor. * * \sa MatrixSquareRoot, MatrixSquareRootQuasiTriangular */ template <typename MatrixType> class MatrixSquareRootTriangular { public: MatrixSquareRootTriangular(const MatrixType& A) : m_A(A) { eigen_assert(A.rows() == A.cols()); } /** \brief Compute the matrix square root * * \param[out] result square root of \p A, as specified in the constructor. * * Only the upper triangular part (including the diagonal) of * \p result is updated, the rest is not touched. See * MatrixBase::sqrt() for details on how this computation is * implemented. */ template <typename ResultType> void compute(ResultType &result); private: const MatrixType& m_A; }; template <typename MatrixType> template <typename ResultType> void MatrixSquareRootTriangular<MatrixType>::compute(ResultType &result) { // Compute Schur decomposition of m_A const ComplexSchur<MatrixType> schurOfA(m_A); const MatrixType& T = schurOfA.matrixT(); const MatrixType& U = schurOfA.matrixU(); // Compute square root of T and store it in upper triangular part of result // This uses that the square root of triangular matrices can be computed directly. result.resize(m_A.rows(), m_A.cols()); typedef typename MatrixType::Index Index; for (Index i = 0; i < m_A.rows(); i++) { result.coeffRef(i,i) = internal::sqrt(T.coeff(i,i)); } for (Index j = 1; j < m_A.cols(); j++) { for (Index i = j-1; i >= 0; i--) { typedef typename MatrixType::Scalar Scalar; // if i = j-1, then segment has length 0 so tmp = 0 Scalar tmp = (result.row(i).segment(i+1,j-i-1) * result.col(j).segment(i+1,j-i-1)).value(); // denominator may be zero if original matrix is singular result.coeffRef(i,j) = (T.coeff(i,j) - tmp) / (result.coeff(i,i) + result.coeff(j,j)); } } // Compute square root of m_A as U * result * U.adjoint() MatrixType tmp; tmp.noalias() = U * result.template triangularView<Upper>(); result.noalias() = tmp * U.adjoint(); } /** \ingroup MatrixFunctions_Module * \brief Class for computing matrix square roots of general matrices. * \tparam MatrixType type of the argument of the matrix square root, * expected to be an instantiation of the Matrix class template. * * \sa MatrixSquareRootTriangular, MatrixSquareRootQuasiTriangular, MatrixBase::sqrt() */ template <typename MatrixType, int IsComplex = NumTraits<typename internal::traits<MatrixType>::Scalar>::IsComplex> class MatrixSquareRoot { public: /** \brief Constructor. * * \param[in] A matrix whose square root is to be computed. * * The class stores a reference to \p A, so it should not be * changed (or destroyed) before compute() is called. */ MatrixSquareRoot(const MatrixType& A); /** \brief Compute the matrix square root * * \param[out] result square root of \p A, as specified in the constructor. * * See MatrixBase::sqrt() for details on how this computation is * implemented. */ template <typename ResultType> void compute(ResultType &result); }; // ********** Partial specialization for real matrices ********** template <typename MatrixType> class MatrixSquareRoot<MatrixType, 0> { public: MatrixSquareRoot(const MatrixType& A) : m_A(A) { eigen_assert(A.rows() == A.cols()); } template <typename ResultType> void compute(ResultType &result) { // Compute Schur decomposition of m_A const RealSchur<MatrixType> schurOfA(m_A); const MatrixType& T = schurOfA.matrixT(); const MatrixType& U = schurOfA.matrixU(); // Compute square root of T MatrixSquareRootQuasiTriangular<MatrixType> tmp(T); MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows()); tmp.compute(sqrtT); // Compute square root of m_A result = U * sqrtT * U.adjoint(); } private: const MatrixType& m_A; }; // ********** Partial specialization for complex matrices ********** template <typename MatrixType> class MatrixSquareRoot<MatrixType, 1> { public: MatrixSquareRoot(const MatrixType& A) : m_A(A) { eigen_assert(A.rows() == A.cols()); } template <typename ResultType> void compute(ResultType &result) { // Compute Schur decomposition of m_A const ComplexSchur<MatrixType> schurOfA(m_A); const MatrixType& T = schurOfA.matrixT(); const MatrixType& U = schurOfA.matrixU(); // Compute square root of T MatrixSquareRootTriangular<MatrixType> tmp(T); MatrixType sqrtT = MatrixType::Zero(m_A.rows(), m_A.rows()); tmp.compute(sqrtT); // Compute square root of m_A result = U * sqrtT * U.adjoint(); } private: const MatrixType& m_A; }; /** \ingroup MatrixFunctions_Module * * \brief Proxy for the matrix square root of some matrix (expression). * * \tparam Derived Type of the argument to the matrix square root. * * This class holds the argument to the matrix square root until it * is assigned or evaluated for some other reason (so the argument * should not be changed in the meantime). It is the return type of * MatrixBase::sqrt() and most of the time this is the only way it is * used. */ template<typename Derived> class MatrixSquareRootReturnValue : public ReturnByValue<MatrixSquareRootReturnValue<Derived> > { typedef typename Derived::Index Index; public: /** \brief Constructor. * * \param[in] src %Matrix (expression) forming the argument of the * matrix square root. */ MatrixSquareRootReturnValue(const Derived& src) : m_src(src) { } /** \brief Compute the matrix square root. * * \param[out] result the matrix square root of \p src in the * constructor. */ template <typename ResultType> inline void evalTo(ResultType& result) const { const typename Derived::PlainObject srcEvaluated = m_src.eval(); MatrixSquareRoot<typename Derived::PlainObject> me(srcEvaluated); me.compute(result); } Index rows() const { return m_src.rows(); } Index cols() const { return m_src.cols(); } protected: const Derived& m_src; private: MatrixSquareRootReturnValue& operator=(const MatrixSquareRootReturnValue&); }; namespace internal { template<typename Derived> struct traits<MatrixSquareRootReturnValue<Derived> > { typedef typename Derived::PlainObject ReturnType; }; } template <typename Derived> const MatrixSquareRootReturnValue<Derived> MatrixBase<Derived>::sqrt() const { eigen_assert(rows() == cols()); return MatrixSquareRootReturnValue<Derived>(derived()); } } // end namespace Eigen #endif // EIGEN_MATRIX_FUNCTION