// -*- coding: utf-8 // vim: set fileencoding=utf-8 // This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2009 Thomas Capricelli <orzel@freehackers.org> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_NUMERICAL_DIFF_H #define EIGEN_NUMERICAL_DIFF_H namespace Eigen { enum NumericalDiffMode { Forward, Central }; /** * This class allows you to add a method df() to your functor, which will * use numerical differentiation to compute an approximate of the * derivative for the functor. Of course, if you have an analytical form * for the derivative, you should rather implement df() by yourself. * * More information on * http://en.wikipedia.org/wiki/Numerical_differentiation * * Currently only "Forward" and "Central" scheme are implemented. */ template<typename _Functor, NumericalDiffMode mode=Forward> class NumericalDiff : public _Functor { public: typedef _Functor Functor; typedef typename Functor::Scalar Scalar; typedef typename Functor::InputType InputType; typedef typename Functor::ValueType ValueType; typedef typename Functor::JacobianType JacobianType; NumericalDiff(Scalar _epsfcn=0.) : Functor(), epsfcn(_epsfcn) {} NumericalDiff(const Functor& f, Scalar _epsfcn=0.) : Functor(f), epsfcn(_epsfcn) {} // forward constructors template<typename T0> NumericalDiff(const T0& a0) : Functor(a0), epsfcn(0) {} template<typename T0, typename T1> NumericalDiff(const T0& a0, const T1& a1) : Functor(a0, a1), epsfcn(0) {} template<typename T0, typename T1, typename T2> NumericalDiff(const T0& a0, const T1& a1, const T2& a2) : Functor(a0, a1, a2), epsfcn(0) {} enum { InputsAtCompileTime = Functor::InputsAtCompileTime, ValuesAtCompileTime = Functor::ValuesAtCompileTime }; /** * return the number of evaluation of functor */ int df(const InputType& _x, JacobianType &jac) const { /* Local variables */ Scalar h; int nfev=0; const typename InputType::Index n = _x.size(); const Scalar eps = internal::sqrt(((std::max)(epsfcn,NumTraits<Scalar>::epsilon() ))); ValueType val1, val2; InputType x = _x; // TODO : we should do this only if the size is not already known val1.resize(Functor::values()); val2.resize(Functor::values()); // initialization switch(mode) { case Forward: // compute f(x) Functor::operator()(x, val1); nfev++; break; case Central: // do nothing break; default: assert(false); }; // Function Body for (int j = 0; j < n; ++j) { h = eps * internal::abs(x[j]); if (h == 0.) { h = eps; } switch(mode) { case Forward: x[j] += h; Functor::operator()(x, val2); nfev++; x[j] = _x[j]; jac.col(j) = (val2-val1)/h; break; case Central: x[j] += h; Functor::operator()(x, val2); nfev++; x[j] -= 2*h; Functor::operator()(x, val1); nfev++; x[j] = _x[j]; jac.col(j) = (val2-val1)/(2*h); break; default: assert(false); }; } return nfev; } private: Scalar epsfcn; NumericalDiff& operator=(const NumericalDiff&); }; } // end namespace Eigen //vim: ai ts=4 sts=4 et sw=4 #endif // EIGEN_NUMERICAL_DIFF_H