// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 20010-2011 Hauke Heibel <hauke.heibel@gmail.com> // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPLINE_H #define EIGEN_SPLINE_H #include "SplineFwd.h" namespace Eigen { /** * \ingroup Splines_Module * \class Spline class * \brief A class representing multi-dimensional spline curves. * * The class represents B-splines with non-uniform knot vectors. Each control * point of the B-spline is associated with a basis function * \f{align*} * C(u) & = \sum_{i=0}^{n}N_{i,p}(u)P_i * \f} * * \tparam _Scalar The underlying data type (typically float or double) * \tparam _Dim The curve dimension (e.g. 2 or 3) * \tparam _Degree Per default set to Dynamic; could be set to the actual desired * degree for optimization purposes (would result in stack allocation * of several temporary variables). **/ template <typename _Scalar, int _Dim, int _Degree> class Spline { public: typedef _Scalar Scalar; /*!< The spline curve's scalar type. */ enum { Dimension = _Dim /*!< The spline curve's dimension. */ }; enum { Degree = _Degree /*!< The spline curve's degree. */ }; /** \brief The point type the spline is representing. */ typedef typename SplineTraits<Spline>::PointType PointType; /** \brief The data type used to store knot vectors. */ typedef typename SplineTraits<Spline>::KnotVectorType KnotVectorType; /** \brief The data type used to store non-zero basis functions. */ typedef typename SplineTraits<Spline>::BasisVectorType BasisVectorType; /** \brief The data type representing the spline's control points. */ typedef typename SplineTraits<Spline>::ControlPointVectorType ControlPointVectorType; /** * \brief Creates a spline from a knot vector and control points. * \param knots The spline's knot vector. * \param ctrls The spline's control point vector. **/ template <typename OtherVectorType, typename OtherArrayType> Spline(const OtherVectorType& knots, const OtherArrayType& ctrls) : m_knots(knots), m_ctrls(ctrls) {} /** * \brief Copy constructor for splines. * \param spline The input spline. **/ template <int OtherDegree> Spline(const Spline<Scalar, Dimension, OtherDegree>& spline) : m_knots(spline.knots()), m_ctrls(spline.ctrls()) {} /** * \brief Returns the knots of the underlying spline. **/ const KnotVectorType& knots() const { return m_knots; } /** * \brief Returns the knots of the underlying spline. **/ const ControlPointVectorType& ctrls() const { return m_ctrls; } /** * \brief Returns the spline value at a given site \f$u\f$. * * The function returns * \f{align*} * C(u) & = \sum_{i=0}^{n}N_{i,p}P_i * \f} * * \param u Parameter \f$u \in [0;1]\f$ at which the spline is evaluated. * \return The spline value at the given location \f$u\f$. **/ PointType operator()(Scalar u) const; /** * \brief Evaluation of spline derivatives of up-to given order. * * The function returns * \f{align*} * \frac{d^i}{du^i}C(u) & = \sum_{i=0}^{n} \frac{d^i}{du^i} N_{i,p}(u)P_i * \f} * for i ranging between 0 and order. * * \param u Parameter \f$u \in [0;1]\f$ at which the spline derivative is evaluated. * \param order The order up to which the derivatives are computed. **/ typename SplineTraits<Spline>::DerivativeType derivatives(Scalar u, DenseIndex order) const; /** * \copydoc Spline::derivatives * Using the template version of this function is more efficieent since * temporary objects are allocated on the stack whenever this is possible. **/ template <int DerivativeOrder> typename SplineTraits<Spline,DerivativeOrder>::DerivativeType derivatives(Scalar u, DenseIndex order = DerivativeOrder) const; /** * \brief Computes the non-zero basis functions at the given site. * * Splines have local support and a point from their image is defined * by exactly \f$p+1\f$ control points \f$P_i\f$ where \f$p\f$ is the * spline degree. * * This function computes the \f$p+1\f$ non-zero basis function values * for a given parameter value \f$u\f$. It returns * \f{align*}{ * N_{i,p}(u), \hdots, N_{i+p+1,p}(u) * \f} * * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis functions * are computed. **/ typename SplineTraits<Spline>::BasisVectorType basisFunctions(Scalar u) const; /** * \brief Computes the non-zero spline basis function derivatives up to given order. * * The function computes * \f{align*}{ * \frac{d^i}{du^i} N_{i,p}(u), \hdots, \frac{d^i}{du^i} N_{i+p+1,p}(u) * \f} * with i ranging from 0 up to the specified order. * * \param u Parameter \f$u \in [0;1]\f$ at which the non-zero basis function * derivatives are computed. * \param order The order up to which the basis function derivatives are computes. **/ typename SplineTraits<Spline>::BasisDerivativeType basisFunctionDerivatives(Scalar u, DenseIndex order) const; /** * \copydoc Spline::basisFunctionDerivatives * Using the template version of this function is more efficieent since * temporary objects are allocated on the stack whenever this is possible. **/ template <int DerivativeOrder> typename SplineTraits<Spline,DerivativeOrder>::BasisDerivativeType basisFunctionDerivatives(Scalar u, DenseIndex order = DerivativeOrder) const; /** * \brief Returns the spline degree. **/ DenseIndex degree() const; /** * \brief Returns the span within the knot vector in which u is falling. * \param u The site for which the span is determined. **/ DenseIndex span(Scalar u) const; /** * \brief Computes the spang within the provided knot vector in which u is falling. **/ static DenseIndex Span(typename SplineTraits<Spline>::Scalar u, DenseIndex degree, const typename SplineTraits<Spline>::KnotVectorType& knots); /** * \brief Returns the spline's non-zero basis functions. * * The function computes and returns * \f{align*}{ * N_{i,p}(u), \hdots, N_{i+p+1,p}(u) * \f} * * \param u The site at which the basis functions are computed. * \param degree The degree of the underlying spline. * \param knots The underlying spline's knot vector. **/ static BasisVectorType BasisFunctions(Scalar u, DenseIndex degree, const KnotVectorType& knots); private: KnotVectorType m_knots; /*!< Knot vector. */ ControlPointVectorType m_ctrls; /*!< Control points. */ }; template <typename _Scalar, int _Dim, int _Degree> DenseIndex Spline<_Scalar, _Dim, _Degree>::Span( typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::Scalar u, DenseIndex degree, const typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::KnotVectorType& knots) { // Piegl & Tiller, "The NURBS Book", A2.1 (p. 68) if (u <= knots(0)) return degree; const Scalar* pos = std::upper_bound(knots.data()+degree-1, knots.data()+knots.size()-degree-1, u); return static_cast<DenseIndex>( std::distance(knots.data(), pos) - 1 ); } template <typename _Scalar, int _Dim, int _Degree> typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType Spline<_Scalar, _Dim, _Degree>::BasisFunctions( typename Spline<_Scalar, _Dim, _Degree>::Scalar u, DenseIndex degree, const typename Spline<_Scalar, _Dim, _Degree>::KnotVectorType& knots) { typedef typename Spline<_Scalar, _Dim, _Degree>::BasisVectorType BasisVectorType; const DenseIndex p = degree; const DenseIndex i = Spline::Span(u, degree, knots); const KnotVectorType& U = knots; BasisVectorType left(p+1); left(0) = Scalar(0); BasisVectorType right(p+1); right(0) = Scalar(0); VectorBlock<BasisVectorType,Degree>(left,1,p) = u - VectorBlock<const KnotVectorType,Degree>(U,i+1-p,p).reverse(); VectorBlock<BasisVectorType,Degree>(right,1,p) = VectorBlock<const KnotVectorType,Degree>(U,i+1,p) - u; BasisVectorType N(1,p+1); N(0) = Scalar(1); for (DenseIndex j=1; j<=p; ++j) { Scalar saved = Scalar(0); for (DenseIndex r=0; r<j; r++) { const Scalar tmp = N(r)/(right(r+1)+left(j-r)); N[r] = saved + right(r+1)*tmp; saved = left(j-r)*tmp; } N(j) = saved; } return N; } template <typename _Scalar, int _Dim, int _Degree> DenseIndex Spline<_Scalar, _Dim, _Degree>::degree() const { if (_Degree == Dynamic) return m_knots.size() - m_ctrls.cols() - 1; else return _Degree; } template <typename _Scalar, int _Dim, int _Degree> DenseIndex Spline<_Scalar, _Dim, _Degree>::span(Scalar u) const { return Spline::Span(u, degree(), knots()); } template <typename _Scalar, int _Dim, int _Degree> typename Spline<_Scalar, _Dim, _Degree>::PointType Spline<_Scalar, _Dim, _Degree>::operator()(Scalar u) const { enum { Order = SplineTraits<Spline>::OrderAtCompileTime }; const DenseIndex span = this->span(u); const DenseIndex p = degree(); const BasisVectorType basis_funcs = basisFunctions(u); const Replicate<BasisVectorType,Dimension,1> ctrl_weights(basis_funcs); const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(ctrls(),0,span-p,Dimension,p+1); return (ctrl_weights * ctrl_pts).rowwise().sum(); } /* --------------------------------------------------------------------------------------------- */ template <typename SplineType, typename DerivativeType> void derivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& der) { enum { Dimension = SplineTraits<SplineType>::Dimension }; enum { Order = SplineTraits<SplineType>::OrderAtCompileTime }; enum { DerivativeOrder = DerivativeType::ColsAtCompileTime }; typedef typename SplineTraits<SplineType>::Scalar Scalar; typedef typename SplineTraits<SplineType>::BasisVectorType BasisVectorType; typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType; typedef typename SplineTraits<SplineType,DerivativeOrder>::BasisDerivativeType BasisDerivativeType; typedef typename BasisDerivativeType::ConstRowXpr BasisDerivativeRowXpr; const DenseIndex p = spline.degree(); const DenseIndex span = spline.span(u); const DenseIndex n = (std::min)(p, order); der.resize(Dimension,n+1); // Retrieve the basis function derivatives up to the desired order... const BasisDerivativeType basis_func_ders = spline.template basisFunctionDerivatives<DerivativeOrder>(u, n+1); // ... and perform the linear combinations of the control points. for (DenseIndex der_order=0; der_order<n+1; ++der_order) { const Replicate<BasisDerivativeRowXpr,Dimension,1> ctrl_weights( basis_func_ders.row(der_order) ); const Block<const ControlPointVectorType,Dimension,Order> ctrl_pts(spline.ctrls(),0,span-p,Dimension,p+1); der.col(der_order) = (ctrl_weights * ctrl_pts).rowwise().sum(); } } template <typename _Scalar, int _Dim, int _Degree> typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::DerivativeType Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const { typename SplineTraits< Spline >::DerivativeType res; derivativesImpl(*this, u, order, res); return res; } template <typename _Scalar, int _Dim, int _Degree> template <int DerivativeOrder> typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::DerivativeType Spline<_Scalar, _Dim, _Degree>::derivatives(Scalar u, DenseIndex order) const { typename SplineTraits< Spline, DerivativeOrder >::DerivativeType res; derivativesImpl(*this, u, order, res); return res; } template <typename _Scalar, int _Dim, int _Degree> typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisVectorType Spline<_Scalar, _Dim, _Degree>::basisFunctions(Scalar u) const { return Spline::BasisFunctions(u, degree(), knots()); } /* --------------------------------------------------------------------------------------------- */ template <typename SplineType, typename DerivativeType> void basisFunctionDerivativesImpl(const SplineType& spline, typename SplineType::Scalar u, DenseIndex order, DerivativeType& N_) { enum { Order = SplineTraits<SplineType>::OrderAtCompileTime }; typedef typename SplineTraits<SplineType>::Scalar Scalar; typedef typename SplineTraits<SplineType>::BasisVectorType BasisVectorType; typedef typename SplineTraits<SplineType>::KnotVectorType KnotVectorType; typedef typename SplineTraits<SplineType>::ControlPointVectorType ControlPointVectorType; const KnotVectorType& U = spline.knots(); const DenseIndex p = spline.degree(); const DenseIndex span = spline.span(u); const DenseIndex n = (std::min)(p, order); N_.resize(n+1, p+1); BasisVectorType left = BasisVectorType::Zero(p+1); BasisVectorType right = BasisVectorType::Zero(p+1); Matrix<Scalar,Order,Order> ndu(p+1,p+1); double saved, temp; ndu(0,0) = 1.0; DenseIndex j; for (j=1; j<=p; ++j) { left[j] = u-U[span+1-j]; right[j] = U[span+j]-u; saved = 0.0; for (DenseIndex r=0; r<j; ++r) { /* Lower triangle */ ndu(j,r) = right[r+1]+left[j-r]; temp = ndu(r,j-1)/ndu(j,r); /* Upper triangle */ ndu(r,j) = static_cast<Scalar>(saved+right[r+1] * temp); saved = left[j-r] * temp; } ndu(j,j) = static_cast<Scalar>(saved); } for (j = p; j>=0; --j) N_(0,j) = ndu(j,p); // Compute the derivatives DerivativeType a(n+1,p+1); DenseIndex r=0; for (; r<=p; ++r) { DenseIndex s1,s2; s1 = 0; s2 = 1; // alternate rows in array a a(0,0) = 1.0; // Compute the k-th derivative for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k) { double d = 0.0; DenseIndex rk,pk,j1,j2; rk = r-k; pk = p-k; if (r>=k) { a(s2,0) = a(s1,0)/ndu(pk+1,rk); d = a(s2,0)*ndu(rk,pk); } if (rk>=-1) j1 = 1; else j1 = -rk; if (r-1 <= pk) j2 = k-1; else j2 = p-r; for (j=j1; j<=j2; ++j) { a(s2,j) = (a(s1,j)-a(s1,j-1))/ndu(pk+1,rk+j); d += a(s2,j)*ndu(rk+j,pk); } if (r<=pk) { a(s2,k) = -a(s1,k-1)/ndu(pk+1,r); d += a(s2,k)*ndu(r,pk); } N_(k,r) = static_cast<Scalar>(d); j = s1; s1 = s2; s2 = j; // Switch rows } } /* Multiply through by the correct factors */ /* (Eq. [2.9]) */ r = p; for (DenseIndex k=1; k<=static_cast<DenseIndex>(n); ++k) { for (DenseIndex j=p; j>=0; --j) N_(k,j) *= r; r *= p-k; } } template <typename _Scalar, int _Dim, int _Degree> typename SplineTraits< Spline<_Scalar, _Dim, _Degree> >::BasisDerivativeType Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const { typename SplineTraits< Spline >::BasisDerivativeType der; basisFunctionDerivativesImpl(*this, u, order, der); return der; } template <typename _Scalar, int _Dim, int _Degree> template <int DerivativeOrder> typename SplineTraits< Spline<_Scalar, _Dim, _Degree>, DerivativeOrder >::BasisDerivativeType Spline<_Scalar, _Dim, _Degree>::basisFunctionDerivatives(Scalar u, DenseIndex order) const { typename SplineTraits< Spline, DerivativeOrder >::BasisDerivativeType der; basisFunctionDerivativesImpl(*this, u, order, der); return der; } } #endif // EIGEN_SPLINE_H