//===-- Lint.cpp - Check for common errors in LLVM IR ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass statically checks for common and easily-identified constructs // which produce undefined or likely unintended behavior in LLVM IR. // // It is not a guarantee of correctness, in two ways. First, it isn't // comprehensive. There are checks which could be done statically which are // not yet implemented. Some of these are indicated by TODO comments, but // those aren't comprehensive either. Second, many conditions cannot be // checked statically. This pass does no dynamic instrumentation, so it // can't check for all possible problems. // // Another limitation is that it assumes all code will be executed. A store // through a null pointer in a basic block which is never reached is harmless, // but this pass will warn about it anyway. This is the main reason why most // of these checks live here instead of in the Verifier pass. // // Optimization passes may make conditions that this pass checks for more or // less obvious. If an optimization pass appears to be introducing a warning, // it may be that the optimization pass is merely exposing an existing // condition in the code. // // This code may be run before instcombine. In many cases, instcombine checks // for the same kinds of things and turns instructions with undefined behavior // into unreachable (or equivalent). Because of this, this pass makes some // effort to look through bitcasts and so on. // //===----------------------------------------------------------------------===// #include "llvm/Analysis/Lint.h" #include "llvm/ADT/STLExtras.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/Loads.h" #include "llvm/Analysis/Passes.h" #include "llvm/Analysis/ValueTracking.h" #include "llvm/Assembly/Writer.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Function.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/InstVisitor.h" #include "llvm/Pass.h" #include "llvm/PassManager.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLibraryInfo.h" using namespace llvm; namespace { namespace MemRef { static unsigned Read = 1; static unsigned Write = 2; static unsigned Callee = 4; static unsigned Branchee = 8; } class Lint : public FunctionPass, public InstVisitor<Lint> { friend class InstVisitor<Lint>; void visitFunction(Function &F); void visitCallSite(CallSite CS); void visitMemoryReference(Instruction &I, Value *Ptr, uint64_t Size, unsigned Align, Type *Ty, unsigned Flags); void visitCallInst(CallInst &I); void visitInvokeInst(InvokeInst &I); void visitReturnInst(ReturnInst &I); void visitLoadInst(LoadInst &I); void visitStoreInst(StoreInst &I); void visitXor(BinaryOperator &I); void visitSub(BinaryOperator &I); void visitLShr(BinaryOperator &I); void visitAShr(BinaryOperator &I); void visitShl(BinaryOperator &I); void visitSDiv(BinaryOperator &I); void visitUDiv(BinaryOperator &I); void visitSRem(BinaryOperator &I); void visitURem(BinaryOperator &I); void visitAllocaInst(AllocaInst &I); void visitVAArgInst(VAArgInst &I); void visitIndirectBrInst(IndirectBrInst &I); void visitExtractElementInst(ExtractElementInst &I); void visitInsertElementInst(InsertElementInst &I); void visitUnreachableInst(UnreachableInst &I); Value *findValue(Value *V, bool OffsetOk) const; Value *findValueImpl(Value *V, bool OffsetOk, SmallPtrSet<Value *, 4> &Visited) const; public: Module *Mod; AliasAnalysis *AA; DominatorTree *DT; DataLayout *TD; TargetLibraryInfo *TLI; std::string Messages; raw_string_ostream MessagesStr; static char ID; // Pass identification, replacement for typeid Lint() : FunctionPass(ID), MessagesStr(Messages) { initializeLintPass(*PassRegistry::getPassRegistry()); } virtual bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); AU.addRequired<AliasAnalysis>(); AU.addRequired<TargetLibraryInfo>(); AU.addRequired<DominatorTree>(); } virtual void print(raw_ostream &O, const Module *M) const {} void WriteValue(const Value *V) { if (!V) return; if (isa<Instruction>(V)) { MessagesStr << *V << '\n'; } else { WriteAsOperand(MessagesStr, V, true, Mod); MessagesStr << '\n'; } } // CheckFailed - A check failed, so print out the condition and the message // that failed. This provides a nice place to put a breakpoint if you want // to see why something is not correct. void CheckFailed(const Twine &Message, const Value *V1 = 0, const Value *V2 = 0, const Value *V3 = 0, const Value *V4 = 0) { MessagesStr << Message.str() << "\n"; WriteValue(V1); WriteValue(V2); WriteValue(V3); WriteValue(V4); } }; } char Lint::ID = 0; INITIALIZE_PASS_BEGIN(Lint, "lint", "Statically lint-checks LLVM IR", false, true) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_PASS_DEPENDENCY(DominatorTree) INITIALIZE_AG_DEPENDENCY(AliasAnalysis) INITIALIZE_PASS_END(Lint, "lint", "Statically lint-checks LLVM IR", false, true) // Assert - We know that cond should be true, if not print an error message. #define Assert(C, M) \ do { if (!(C)) { CheckFailed(M); return; } } while (0) #define Assert1(C, M, V1) \ do { if (!(C)) { CheckFailed(M, V1); return; } } while (0) #define Assert2(C, M, V1, V2) \ do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0) #define Assert3(C, M, V1, V2, V3) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0) #define Assert4(C, M, V1, V2, V3, V4) \ do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0) // Lint::run - This is the main Analysis entry point for a // function. // bool Lint::runOnFunction(Function &F) { Mod = F.getParent(); AA = &getAnalysis<AliasAnalysis>(); DT = &getAnalysis<DominatorTree>(); TD = getAnalysisIfAvailable<DataLayout>(); TLI = &getAnalysis<TargetLibraryInfo>(); visit(F); dbgs() << MessagesStr.str(); Messages.clear(); return false; } void Lint::visitFunction(Function &F) { // This isn't undefined behavior, it's just a little unusual, and it's a // fairly common mistake to neglect to name a function. Assert1(F.hasName() || F.hasLocalLinkage(), "Unusual: Unnamed function with non-local linkage", &F); // TODO: Check for irreducible control flow. } void Lint::visitCallSite(CallSite CS) { Instruction &I = *CS.getInstruction(); Value *Callee = CS.getCalledValue(); visitMemoryReference(I, Callee, AliasAnalysis::UnknownSize, 0, 0, MemRef::Callee); if (Function *F = dyn_cast<Function>(findValue(Callee, /*OffsetOk=*/false))) { Assert1(CS.getCallingConv() == F->getCallingConv(), "Undefined behavior: Caller and callee calling convention differ", &I); FunctionType *FT = F->getFunctionType(); unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin()); Assert1(FT->isVarArg() ? FT->getNumParams() <= NumActualArgs : FT->getNumParams() == NumActualArgs, "Undefined behavior: Call argument count mismatches callee " "argument count", &I); Assert1(FT->getReturnType() == I.getType(), "Undefined behavior: Call return type mismatches " "callee return type", &I); // Check argument types (in case the callee was casted) and attributes. // TODO: Verify that caller and callee attributes are compatible. Function::arg_iterator PI = F->arg_begin(), PE = F->arg_end(); CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); for (; AI != AE; ++AI) { Value *Actual = *AI; if (PI != PE) { Argument *Formal = PI++; Assert1(Formal->getType() == Actual->getType(), "Undefined behavior: Call argument type mismatches " "callee parameter type", &I); // Check that noalias arguments don't alias other arguments. This is // not fully precise because we don't know the sizes of the dereferenced // memory regions. if (Formal->hasNoAliasAttr() && Actual->getType()->isPointerTy()) for (CallSite::arg_iterator BI = CS.arg_begin(); BI != AE; ++BI) if (AI != BI && (*BI)->getType()->isPointerTy()) { AliasAnalysis::AliasResult Result = AA->alias(*AI, *BI); Assert1(Result != AliasAnalysis::MustAlias && Result != AliasAnalysis::PartialAlias, "Unusual: noalias argument aliases another argument", &I); } // Check that an sret argument points to valid memory. if (Formal->hasStructRetAttr() && Actual->getType()->isPointerTy()) { Type *Ty = cast<PointerType>(Formal->getType())->getElementType(); visitMemoryReference(I, Actual, AA->getTypeStoreSize(Ty), TD ? TD->getABITypeAlignment(Ty) : 0, Ty, MemRef::Read | MemRef::Write); } } } } if (CS.isCall() && cast<CallInst>(CS.getInstruction())->isTailCall()) for (CallSite::arg_iterator AI = CS.arg_begin(), AE = CS.arg_end(); AI != AE; ++AI) { Value *Obj = findValue(*AI, /*OffsetOk=*/true); Assert1(!isa<AllocaInst>(Obj), "Undefined behavior: Call with \"tail\" keyword references " "alloca", &I); } if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(&I)) switch (II->getIntrinsicID()) { default: break; // TODO: Check more intrinsics case Intrinsic::memcpy: { MemCpyInst *MCI = cast<MemCpyInst>(&I); // TODO: If the size is known, use it. visitMemoryReference(I, MCI->getDest(), AliasAnalysis::UnknownSize, MCI->getAlignment(), 0, MemRef::Write); visitMemoryReference(I, MCI->getSource(), AliasAnalysis::UnknownSize, MCI->getAlignment(), 0, MemRef::Read); // Check that the memcpy arguments don't overlap. The AliasAnalysis API // isn't expressive enough for what we really want to do. Known partial // overlap is not distinguished from the case where nothing is known. uint64_t Size = 0; if (const ConstantInt *Len = dyn_cast<ConstantInt>(findValue(MCI->getLength(), /*OffsetOk=*/false))) if (Len->getValue().isIntN(32)) Size = Len->getValue().getZExtValue(); Assert1(AA->alias(MCI->getSource(), Size, MCI->getDest(), Size) != AliasAnalysis::MustAlias, "Undefined behavior: memcpy source and destination overlap", &I); break; } case Intrinsic::memmove: { MemMoveInst *MMI = cast<MemMoveInst>(&I); // TODO: If the size is known, use it. visitMemoryReference(I, MMI->getDest(), AliasAnalysis::UnknownSize, MMI->getAlignment(), 0, MemRef::Write); visitMemoryReference(I, MMI->getSource(), AliasAnalysis::UnknownSize, MMI->getAlignment(), 0, MemRef::Read); break; } case Intrinsic::memset: { MemSetInst *MSI = cast<MemSetInst>(&I); // TODO: If the size is known, use it. visitMemoryReference(I, MSI->getDest(), AliasAnalysis::UnknownSize, MSI->getAlignment(), 0, MemRef::Write); break; } case Intrinsic::vastart: Assert1(I.getParent()->getParent()->isVarArg(), "Undefined behavior: va_start called in a non-varargs function", &I); visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize, 0, 0, MemRef::Read | MemRef::Write); break; case Intrinsic::vacopy: visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize, 0, 0, MemRef::Write); visitMemoryReference(I, CS.getArgument(1), AliasAnalysis::UnknownSize, 0, 0, MemRef::Read); break; case Intrinsic::vaend: visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize, 0, 0, MemRef::Read | MemRef::Write); break; case Intrinsic::stackrestore: // Stackrestore doesn't read or write memory, but it sets the // stack pointer, which the compiler may read from or write to // at any time, so check it for both readability and writeability. visitMemoryReference(I, CS.getArgument(0), AliasAnalysis::UnknownSize, 0, 0, MemRef::Read | MemRef::Write); break; } } void Lint::visitCallInst(CallInst &I) { return visitCallSite(&I); } void Lint::visitInvokeInst(InvokeInst &I) { return visitCallSite(&I); } void Lint::visitReturnInst(ReturnInst &I) { Function *F = I.getParent()->getParent(); Assert1(!F->doesNotReturn(), "Unusual: Return statement in function with noreturn attribute", &I); if (Value *V = I.getReturnValue()) { Value *Obj = findValue(V, /*OffsetOk=*/true); Assert1(!isa<AllocaInst>(Obj), "Unusual: Returning alloca value", &I); } } // TODO: Check that the reference is in bounds. // TODO: Check readnone/readonly function attributes. void Lint::visitMemoryReference(Instruction &I, Value *Ptr, uint64_t Size, unsigned Align, Type *Ty, unsigned Flags) { // If no memory is being referenced, it doesn't matter if the pointer // is valid. if (Size == 0) return; Value *UnderlyingObject = findValue(Ptr, /*OffsetOk=*/true); Assert1(!isa<ConstantPointerNull>(UnderlyingObject), "Undefined behavior: Null pointer dereference", &I); Assert1(!isa<UndefValue>(UnderlyingObject), "Undefined behavior: Undef pointer dereference", &I); Assert1(!isa<ConstantInt>(UnderlyingObject) || !cast<ConstantInt>(UnderlyingObject)->isAllOnesValue(), "Unusual: All-ones pointer dereference", &I); Assert1(!isa<ConstantInt>(UnderlyingObject) || !cast<ConstantInt>(UnderlyingObject)->isOne(), "Unusual: Address one pointer dereference", &I); if (Flags & MemRef::Write) { if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(UnderlyingObject)) Assert1(!GV->isConstant(), "Undefined behavior: Write to read-only memory", &I); Assert1(!isa<Function>(UnderlyingObject) && !isa<BlockAddress>(UnderlyingObject), "Undefined behavior: Write to text section", &I); } if (Flags & MemRef::Read) { Assert1(!isa<Function>(UnderlyingObject), "Unusual: Load from function body", &I); Assert1(!isa<BlockAddress>(UnderlyingObject), "Undefined behavior: Load from block address", &I); } if (Flags & MemRef::Callee) { Assert1(!isa<BlockAddress>(UnderlyingObject), "Undefined behavior: Call to block address", &I); } if (Flags & MemRef::Branchee) { Assert1(!isa<Constant>(UnderlyingObject) || isa<BlockAddress>(UnderlyingObject), "Undefined behavior: Branch to non-blockaddress", &I); } // Check for buffer overflows and misalignment. // Only handles memory references that read/write something simple like an // alloca instruction or a global variable. int64_t Offset = 0; if (Value *Base = GetPointerBaseWithConstantOffset(Ptr, Offset, TD)) { // OK, so the access is to a constant offset from Ptr. Check that Ptr is // something we can handle and if so extract the size of this base object // along with its alignment. uint64_t BaseSize = AliasAnalysis::UnknownSize; unsigned BaseAlign = 0; if (AllocaInst *AI = dyn_cast<AllocaInst>(Base)) { Type *ATy = AI->getAllocatedType(); if (TD && !AI->isArrayAllocation() && ATy->isSized()) BaseSize = TD->getTypeAllocSize(ATy); BaseAlign = AI->getAlignment(); if (TD && BaseAlign == 0 && ATy->isSized()) BaseAlign = TD->getABITypeAlignment(ATy); } else if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Base)) { // If the global may be defined differently in another compilation unit // then don't warn about funky memory accesses. if (GV->hasDefinitiveInitializer()) { Type *GTy = GV->getType()->getElementType(); if (TD && GTy->isSized()) BaseSize = TD->getTypeAllocSize(GTy); BaseAlign = GV->getAlignment(); if (TD && BaseAlign == 0 && GTy->isSized()) BaseAlign = TD->getABITypeAlignment(GTy); } } // Accesses from before the start or after the end of the object are not // defined. Assert1(Size == AliasAnalysis::UnknownSize || BaseSize == AliasAnalysis::UnknownSize || (Offset >= 0 && Offset + Size <= BaseSize), "Undefined behavior: Buffer overflow", &I); // Accesses that say that the memory is more aligned than it is are not // defined. if (TD && Align == 0 && Ty && Ty->isSized()) Align = TD->getABITypeAlignment(Ty); Assert1(!BaseAlign || Align <= MinAlign(BaseAlign, Offset), "Undefined behavior: Memory reference address is misaligned", &I); } } void Lint::visitLoadInst(LoadInst &I) { visitMemoryReference(I, I.getPointerOperand(), AA->getTypeStoreSize(I.getType()), I.getAlignment(), I.getType(), MemRef::Read); } void Lint::visitStoreInst(StoreInst &I) { visitMemoryReference(I, I.getPointerOperand(), AA->getTypeStoreSize(I.getOperand(0)->getType()), I.getAlignment(), I.getOperand(0)->getType(), MemRef::Write); } void Lint::visitXor(BinaryOperator &I) { Assert1(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), "Undefined result: xor(undef, undef)", &I); } void Lint::visitSub(BinaryOperator &I) { Assert1(!isa<UndefValue>(I.getOperand(0)) || !isa<UndefValue>(I.getOperand(1)), "Undefined result: sub(undef, undef)", &I); } void Lint::visitLShr(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), "Undefined result: Shift count out of range", &I); } void Lint::visitAShr(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), "Undefined result: Shift count out of range", &I); } void Lint::visitShl(BinaryOperator &I) { if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(1), /*OffsetOk=*/false))) Assert1(CI->getValue().ult(cast<IntegerType>(I.getType())->getBitWidth()), "Undefined result: Shift count out of range", &I); } static bool isZero(Value *V, DataLayout *TD) { // Assume undef could be zero. if (isa<UndefValue>(V)) return true; unsigned BitWidth = cast<IntegerType>(V->getType())->getBitWidth(); APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0); ComputeMaskedBits(V, KnownZero, KnownOne, TD); return KnownZero.isAllOnesValue(); } void Lint::visitSDiv(BinaryOperator &I) { Assert1(!isZero(I.getOperand(1), TD), "Undefined behavior: Division by zero", &I); } void Lint::visitUDiv(BinaryOperator &I) { Assert1(!isZero(I.getOperand(1), TD), "Undefined behavior: Division by zero", &I); } void Lint::visitSRem(BinaryOperator &I) { Assert1(!isZero(I.getOperand(1), TD), "Undefined behavior: Division by zero", &I); } void Lint::visitURem(BinaryOperator &I) { Assert1(!isZero(I.getOperand(1), TD), "Undefined behavior: Division by zero", &I); } void Lint::visitAllocaInst(AllocaInst &I) { if (isa<ConstantInt>(I.getArraySize())) // This isn't undefined behavior, it's just an obvious pessimization. Assert1(&I.getParent()->getParent()->getEntryBlock() == I.getParent(), "Pessimization: Static alloca outside of entry block", &I); // TODO: Check for an unusual size (MSB set?) } void Lint::visitVAArgInst(VAArgInst &I) { visitMemoryReference(I, I.getOperand(0), AliasAnalysis::UnknownSize, 0, 0, MemRef::Read | MemRef::Write); } void Lint::visitIndirectBrInst(IndirectBrInst &I) { visitMemoryReference(I, I.getAddress(), AliasAnalysis::UnknownSize, 0, 0, MemRef::Branchee); Assert1(I.getNumDestinations() != 0, "Undefined behavior: indirectbr with no destinations", &I); } void Lint::visitExtractElementInst(ExtractElementInst &I) { if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getIndexOperand(), /*OffsetOk=*/false))) Assert1(CI->getValue().ult(I.getVectorOperandType()->getNumElements()), "Undefined result: extractelement index out of range", &I); } void Lint::visitInsertElementInst(InsertElementInst &I) { if (ConstantInt *CI = dyn_cast<ConstantInt>(findValue(I.getOperand(2), /*OffsetOk=*/false))) Assert1(CI->getValue().ult(I.getType()->getNumElements()), "Undefined result: insertelement index out of range", &I); } void Lint::visitUnreachableInst(UnreachableInst &I) { // This isn't undefined behavior, it's merely suspicious. Assert1(&I == I.getParent()->begin() || prior(BasicBlock::iterator(&I))->mayHaveSideEffects(), "Unusual: unreachable immediately preceded by instruction without " "side effects", &I); } /// findValue - Look through bitcasts and simple memory reference patterns /// to identify an equivalent, but more informative, value. If OffsetOk /// is true, look through getelementptrs with non-zero offsets too. /// /// Most analysis passes don't require this logic, because instcombine /// will simplify most of these kinds of things away. But it's a goal of /// this Lint pass to be useful even on non-optimized IR. Value *Lint::findValue(Value *V, bool OffsetOk) const { SmallPtrSet<Value *, 4> Visited; return findValueImpl(V, OffsetOk, Visited); } /// findValueImpl - Implementation helper for findValue. Value *Lint::findValueImpl(Value *V, bool OffsetOk, SmallPtrSet<Value *, 4> &Visited) const { // Detect self-referential values. if (!Visited.insert(V)) return UndefValue::get(V->getType()); // TODO: Look through sext or zext cast, when the result is known to // be interpreted as signed or unsigned, respectively. // TODO: Look through eliminable cast pairs. // TODO: Look through calls with unique return values. // TODO: Look through vector insert/extract/shuffle. V = OffsetOk ? GetUnderlyingObject(V, TD) : V->stripPointerCasts(); if (LoadInst *L = dyn_cast<LoadInst>(V)) { BasicBlock::iterator BBI = L; BasicBlock *BB = L->getParent(); SmallPtrSet<BasicBlock *, 4> VisitedBlocks; for (;;) { if (!VisitedBlocks.insert(BB)) break; if (Value *U = FindAvailableLoadedValue(L->getPointerOperand(), BB, BBI, 6, AA)) return findValueImpl(U, OffsetOk, Visited); if (BBI != BB->begin()) break; BB = BB->getUniquePredecessor(); if (!BB) break; BBI = BB->end(); } } else if (PHINode *PN = dyn_cast<PHINode>(V)) { if (Value *W = PN->hasConstantValue()) if (W != V) return findValueImpl(W, OffsetOk, Visited); } else if (CastInst *CI = dyn_cast<CastInst>(V)) { if (CI->isNoopCast(TD ? TD->getIntPtrType(V->getContext()) : Type::getInt64Ty(V->getContext()))) return findValueImpl(CI->getOperand(0), OffsetOk, Visited); } else if (ExtractValueInst *Ex = dyn_cast<ExtractValueInst>(V)) { if (Value *W = FindInsertedValue(Ex->getAggregateOperand(), Ex->getIndices())) if (W != V) return findValueImpl(W, OffsetOk, Visited); } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { // Same as above, but for ConstantExpr instead of Instruction. if (Instruction::isCast(CE->getOpcode())) { if (CastInst::isNoopCast(Instruction::CastOps(CE->getOpcode()), CE->getOperand(0)->getType(), CE->getType(), TD ? TD->getIntPtrType(V->getContext()) : Type::getInt64Ty(V->getContext()))) return findValueImpl(CE->getOperand(0), OffsetOk, Visited); } else if (CE->getOpcode() == Instruction::ExtractValue) { ArrayRef<unsigned> Indices = CE->getIndices(); if (Value *W = FindInsertedValue(CE->getOperand(0), Indices)) if (W != V) return findValueImpl(W, OffsetOk, Visited); } } // As a last resort, try SimplifyInstruction or constant folding. if (Instruction *Inst = dyn_cast<Instruction>(V)) { if (Value *W = SimplifyInstruction(Inst, TD, TLI, DT)) return findValueImpl(W, OffsetOk, Visited); } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { if (Value *W = ConstantFoldConstantExpression(CE, TD, TLI)) if (W != V) return findValueImpl(W, OffsetOk, Visited); } return V; } //===----------------------------------------------------------------------===// // Implement the public interfaces to this file... //===----------------------------------------------------------------------===// FunctionPass *llvm::createLintPass() { return new Lint(); } /// lintFunction - Check a function for errors, printing messages on stderr. /// void llvm::lintFunction(const Function &f) { Function &F = const_cast<Function&>(f); assert(!F.isDeclaration() && "Cannot lint external functions"); FunctionPassManager FPM(F.getParent()); Lint *V = new Lint(); FPM.add(V); FPM.run(F); } /// lintModule - Check a module for errors, printing messages on stderr. /// void llvm::lintModule(const Module &M) { PassManager PM; Lint *V = new Lint(); PM.add(V); PM.run(const_cast<Module&>(M)); }