//===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the AsmPrinter class. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "asm-printer" #include "llvm/CodeGen/AsmPrinter.h" #include "DwarfDebug.h" #include "DwarfException.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Assembly/Writer.h" #include "llvm/CodeGen/GCMetadataPrinter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineModuleInfo.h" #include "llvm/DebugInfo.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCContext.h" #include "llvm/MC/MCExpr.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCSection.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/Timer.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetOptions.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; static const char *DWARFGroupName = "DWARF Emission"; static const char *DbgTimerName = "DWARF Debug Writer"; static const char *EHTimerName = "DWARF Exception Writer"; STATISTIC(EmittedInsts, "Number of machine instrs printed"); char AsmPrinter::ID = 0; typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type; static gcp_map_type &getGCMap(void *&P) { if (P == 0) P = new gcp_map_type(); return *(gcp_map_type*)P; } /// getGVAlignmentLog2 - Return the alignment to use for the specified global /// value in log2 form. This rounds up to the preferred alignment if possible /// and legal. static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD, unsigned InBits = 0) { unsigned NumBits = 0; if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) NumBits = TD.getPreferredAlignmentLog(GVar); // If InBits is specified, round it to it. if (InBits > NumBits) NumBits = InBits; // If the GV has a specified alignment, take it into account. if (GV->getAlignment() == 0) return NumBits; unsigned GVAlign = Log2_32(GV->getAlignment()); // If the GVAlign is larger than NumBits, or if we are required to obey // NumBits because the GV has an assigned section, obey it. if (GVAlign > NumBits || GV->hasSection()) NumBits = GVAlign; return NumBits; } AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer) : MachineFunctionPass(ID), TM(tm), MAI(tm.getMCAsmInfo()), OutContext(Streamer.getContext()), OutStreamer(Streamer), LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) { DD = 0; DE = 0; MMI = 0; LI = 0; CurrentFnSym = CurrentFnSymForSize = 0; GCMetadataPrinters = 0; VerboseAsm = Streamer.isVerboseAsm(); } AsmPrinter::~AsmPrinter() { assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized"); if (GCMetadataPrinters != 0) { gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I) delete I->second; delete &GCMap; GCMetadataPrinters = 0; } delete &OutStreamer; } /// getFunctionNumber - Return a unique ID for the current function. /// unsigned AsmPrinter::getFunctionNumber() const { return MF->getFunctionNumber(); } const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const { return TM.getTargetLowering()->getObjFileLowering(); } /// getDataLayout - Return information about data layout. const DataLayout &AsmPrinter::getDataLayout() const { return *TM.getDataLayout(); } /// getCurrentSection() - Return the current section we are emitting to. const MCSection *AsmPrinter::getCurrentSection() const { return OutStreamer.getCurrentSection(); } void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesAll(); MachineFunctionPass::getAnalysisUsage(AU); AU.addRequired<MachineModuleInfo>(); AU.addRequired<GCModuleInfo>(); if (isVerbose()) AU.addRequired<MachineLoopInfo>(); } bool AsmPrinter::doInitialization(Module &M) { OutStreamer.InitStreamer(); MMI = getAnalysisIfAvailable<MachineModuleInfo>(); MMI->AnalyzeModule(M); // Initialize TargetLoweringObjectFile. const_cast<TargetLoweringObjectFile&>(getObjFileLowering()) .Initialize(OutContext, TM); Mang = new Mangler(OutContext, *TM.getDataLayout()); // Allow the target to emit any magic that it wants at the start of the file. EmitStartOfAsmFile(M); // Very minimal debug info. It is ignored if we emit actual debug info. If we // don't, this at least helps the user find where a global came from. if (MAI->hasSingleParameterDotFile()) { // .file "foo.c" OutStreamer.EmitFileDirective(M.getModuleIdentifier()); } GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); assert(MI && "AsmPrinter didn't require GCModuleInfo?"); for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I) if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I)) MP->beginAssembly(*this); // Emit module-level inline asm if it exists. if (!M.getModuleInlineAsm().empty()) { OutStreamer.AddComment("Start of file scope inline assembly"); OutStreamer.AddBlankLine(); EmitInlineAsm(M.getModuleInlineAsm()+"\n"); OutStreamer.AddComment("End of file scope inline assembly"); OutStreamer.AddBlankLine(); } if (MAI->doesSupportDebugInformation()) DD = new DwarfDebug(this, &M); switch (MAI->getExceptionHandlingType()) { case ExceptionHandling::None: return false; case ExceptionHandling::SjLj: case ExceptionHandling::DwarfCFI: DE = new DwarfCFIException(this); return false; case ExceptionHandling::ARM: DE = new ARMException(this); return false; case ExceptionHandling::Win64: DE = new Win64Exception(this); return false; } llvm_unreachable("Unknown exception type."); } void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const { switch ((GlobalValue::LinkageTypes)Linkage) { case GlobalValue::CommonLinkage: case GlobalValue::LinkOnceAnyLinkage: case GlobalValue::LinkOnceODRLinkage: case GlobalValue::LinkOnceODRAutoHideLinkage: case GlobalValue::WeakAnyLinkage: case GlobalValue::WeakODRLinkage: case GlobalValue::LinkerPrivateWeakLinkage: if (MAI->getWeakDefDirective() != 0) { // .globl _foo OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); if ((GlobalValue::LinkageTypes)Linkage != GlobalValue::LinkOnceODRAutoHideLinkage) // .weak_definition _foo OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition); else OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate); } else if (MAI->getLinkOnceDirective() != 0) { // .globl _foo OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); //NOTE: linkonce is handled by the section the symbol was assigned to. } else { // .weak _foo OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak); } break; case GlobalValue::DLLExportLinkage: case GlobalValue::AppendingLinkage: // FIXME: appending linkage variables should go into a section of // their name or something. For now, just emit them as external. case GlobalValue::ExternalLinkage: // If external or appending, declare as a global symbol. // .globl _foo OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); break; case GlobalValue::PrivateLinkage: case GlobalValue::InternalLinkage: case GlobalValue::LinkerPrivateLinkage: break; default: llvm_unreachable("Unknown linkage type!"); } } /// EmitGlobalVariable - Emit the specified global variable to the .s file. void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) { if (GV->hasInitializer()) { // Check to see if this is a special global used by LLVM, if so, emit it. if (EmitSpecialLLVMGlobal(GV)) return; if (isVerbose()) { WriteAsOperand(OutStreamer.GetCommentOS(), GV, /*PrintType=*/false, GV->getParent()); OutStreamer.GetCommentOS() << '\n'; } } MCSymbol *GVSym = Mang->getSymbol(GV); EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration()); if (!GV->hasInitializer()) // External globals require no extra code. return; if (MAI->hasDotTypeDotSizeDirective()) OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject); SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM); const DataLayout *TD = TM.getDataLayout(); uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType()); // If the alignment is specified, we *must* obey it. Overaligning a global // with a specified alignment is a prompt way to break globals emitted to // sections and expected to be contiguous (e.g. ObjC metadata). unsigned AlignLog = getGVAlignmentLog2(GV, *TD); // Handle common and BSS local symbols (.lcomm). if (GVKind.isCommon() || GVKind.isBSSLocal()) { if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it. unsigned Align = 1 << AlignLog; // Handle common symbols. if (GVKind.isCommon()) { if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) Align = 0; // .comm _foo, 42, 4 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); return; } // Handle local BSS symbols. if (MAI->hasMachoZeroFillDirective()) { const MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); // .zerofill __DATA, __bss, _foo, 400, 5 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align); return; } // Use .lcomm only if it supports user-specified alignment. // Otherwise, while it would still be correct to use .lcomm in some // cases (e.g. when Align == 1), the external assembler might enfore // some -unknown- default alignment behavior, which could cause // spurious differences between external and integrated assembler. // Prefer to simply fall back to .local / .comm in this case. if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) { // .lcomm _foo, 42 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align); return; } if (!getObjFileLowering().getCommDirectiveSupportsAlignment()) Align = 0; // .local _foo OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local); // .comm _foo, 42, 4 OutStreamer.EmitCommonSymbol(GVSym, Size, Align); return; } const MCSection *TheSection = getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM); // Handle the zerofill directive on darwin, which is a special form of BSS // emission. if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) { if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined. // .globl _foo OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global); // .zerofill __DATA, __common, _foo, 400, 5 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog); return; } // Handle thread local data for mach-o which requires us to output an // additional structure of data and mangle the original symbol so that we // can reference it later. // // TODO: This should become an "emit thread local global" method on TLOF. // All of this macho specific stuff should be sunk down into TLOFMachO and // stuff like "TLSExtraDataSection" should no longer be part of the parent // TLOF class. This will also make it more obvious that stuff like // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho // specific code. if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) { // Emit the .tbss symbol MCSymbol *MangSym = OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init")); if (GVKind.isThreadBSS()) OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog); else if (GVKind.isThreadData()) { OutStreamer.SwitchSection(TheSection); EmitAlignment(AlignLog, GV); OutStreamer.EmitLabel(MangSym); EmitGlobalConstant(GV->getInitializer()); } OutStreamer.AddBlankLine(); // Emit the variable struct for the runtime. const MCSection *TLVSect = getObjFileLowering().getTLSExtraDataSection(); OutStreamer.SwitchSection(TLVSect); // Emit the linkage here. EmitLinkage(GV->getLinkage(), GVSym); OutStreamer.EmitLabel(GVSym); // Three pointers in size: // - __tlv_bootstrap - used to make sure support exists // - spare pointer, used when mapped by the runtime // - pointer to mangled symbol above with initializer unsigned PtrSize = TD->getPointerSizeInBits()/8; OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"), PtrSize); OutStreamer.EmitIntValue(0, PtrSize); OutStreamer.EmitSymbolValue(MangSym, PtrSize); OutStreamer.AddBlankLine(); return; } OutStreamer.SwitchSection(TheSection); EmitLinkage(GV->getLinkage(), GVSym); EmitAlignment(AlignLog, GV); OutStreamer.EmitLabel(GVSym); EmitGlobalConstant(GV->getInitializer()); if (MAI->hasDotTypeDotSizeDirective()) // .size foo, 42 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext)); OutStreamer.AddBlankLine(); } /// EmitFunctionHeader - This method emits the header for the current /// function. void AsmPrinter::EmitFunctionHeader() { // Print out constants referenced by the function EmitConstantPool(); // Print the 'header' of function. const Function *F = MF->getFunction(); OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM)); EmitVisibility(CurrentFnSym, F->getVisibility()); EmitLinkage(F->getLinkage(), CurrentFnSym); EmitAlignment(MF->getAlignment(), F); if (MAI->hasDotTypeDotSizeDirective()) OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction); if (isVerbose()) { WriteAsOperand(OutStreamer.GetCommentOS(), F, /*PrintType=*/false, F->getParent()); OutStreamer.GetCommentOS() << '\n'; } // Emit the CurrentFnSym. This is a virtual function to allow targets to // do their wild and crazy things as required. EmitFunctionEntryLabel(); // If the function had address-taken blocks that got deleted, then we have // references to the dangling symbols. Emit them at the start of the function // so that we don't get references to undefined symbols. std::vector<MCSymbol*> DeadBlockSyms; MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms); for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) { OutStreamer.AddComment("Address taken block that was later removed"); OutStreamer.EmitLabel(DeadBlockSyms[i]); } // Add some workaround for linkonce linkage on Cygwin\MinGW. if (MAI->getLinkOnceDirective() != 0 && (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) { // FIXME: What is this? MCSymbol *FakeStub = OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+ CurrentFnSym->getName()); OutStreamer.EmitLabel(FakeStub); } // Emit pre-function debug and/or EH information. if (DE) { NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); DE->BeginFunction(MF); } if (DD) { NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); DD->beginFunction(MF); } } /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the /// function. This can be overridden by targets as required to do custom stuff. void AsmPrinter::EmitFunctionEntryLabel() { // The function label could have already been emitted if two symbols end up // conflicting due to asm renaming. Detect this and emit an error. if (CurrentFnSym->isUndefined()) return OutStreamer.EmitLabel(CurrentFnSym); report_fatal_error("'" + Twine(CurrentFnSym->getName()) + "' label emitted multiple times to assembly file"); } /// emitComments - Pretty-print comments for instructions. static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) { const MachineFunction *MF = MI.getParent()->getParent(); const TargetMachine &TM = MF->getTarget(); // Check for spills and reloads int FI; const MachineFrameInfo *FrameInfo = MF->getFrameInfo(); // We assume a single instruction only has a spill or reload, not // both. const MachineMemOperand *MMO; if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) { if (FrameInfo->isSpillSlotObjectIndex(FI)) { MMO = *MI.memoperands_begin(); CommentOS << MMO->getSize() << "-byte Reload\n"; } } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) { if (FrameInfo->isSpillSlotObjectIndex(FI)) CommentOS << MMO->getSize() << "-byte Folded Reload\n"; } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) { if (FrameInfo->isSpillSlotObjectIndex(FI)) { MMO = *MI.memoperands_begin(); CommentOS << MMO->getSize() << "-byte Spill\n"; } } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) { if (FrameInfo->isSpillSlotObjectIndex(FI)) CommentOS << MMO->getSize() << "-byte Folded Spill\n"; } // Check for spill-induced copies if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse)) CommentOS << " Reload Reuse\n"; } /// emitImplicitDef - This method emits the specified machine instruction /// that is an implicit def. static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) { unsigned RegNo = MI->getOperand(0).getReg(); AP.OutStreamer.AddComment(Twine("implicit-def: ") + AP.TM.getRegisterInfo()->getName(RegNo)); AP.OutStreamer.AddBlankLine(); } static void emitKill(const MachineInstr *MI, AsmPrinter &AP) { std::string Str = "kill:"; for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &Op = MI->getOperand(i); assert(Op.isReg() && "KILL instruction must have only register operands"); Str += ' '; Str += AP.TM.getRegisterInfo()->getName(Op.getReg()); Str += (Op.isDef() ? "<def>" : "<kill>"); } AP.OutStreamer.AddComment(Str); AP.OutStreamer.AddBlankLine(); } /// emitDebugValueComment - This method handles the target-independent form /// of DBG_VALUE, returning true if it was able to do so. A false return /// means the target will need to handle MI in EmitInstruction. static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) { // This code handles only the 3-operand target-independent form. if (MI->getNumOperands() != 3) return false; SmallString<128> Str; raw_svector_ostream OS(Str); OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: "; // cast away const; DIetc do not take const operands for some reason. DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata())); if (V.getContext().isSubprogram()) OS << DISubprogram(V.getContext()).getDisplayName() << ":"; OS << V.getName() << " <- "; // Register or immediate value. Register 0 means undef. if (MI->getOperand(0).isFPImm()) { APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF()); if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) { OS << (double)APF.convertToFloat(); } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) { OS << APF.convertToDouble(); } else { // There is no good way to print long double. Convert a copy to // double. Ah well, it's only a comment. bool ignored; APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &ignored); OS << "(long double) " << APF.convertToDouble(); } } else if (MI->getOperand(0).isImm()) { OS << MI->getOperand(0).getImm(); } else if (MI->getOperand(0).isCImm()) { MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/); } else { assert(MI->getOperand(0).isReg() && "Unknown operand type"); if (MI->getOperand(0).getReg() == 0) { // Suppress offset, it is not meaningful here. OS << "undef"; // NOTE: Want this comment at start of line, don't emit with AddComment. AP.OutStreamer.EmitRawText(OS.str()); return true; } OS << AP.TM.getRegisterInfo()->getName(MI->getOperand(0).getReg()); } OS << '+' << MI->getOperand(1).getImm(); // NOTE: Want this comment at start of line, don't emit with AddComment. AP.OutStreamer.EmitRawText(OS.str()); return true; } AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() { if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI && MF->getFunction()->needsUnwindTableEntry()) return CFI_M_EH; if (MMI->hasDebugInfo()) return CFI_M_Debug; return CFI_M_None; } bool AsmPrinter::needsSEHMoves() { return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 && MF->getFunction()->needsUnwindTableEntry(); } bool AsmPrinter::needsRelocationsForDwarfStringPool() const { return MAI->doesDwarfUseRelocationsAcrossSections(); } void AsmPrinter::emitPrologLabel(const MachineInstr &MI) { MCSymbol *Label = MI.getOperand(0).getMCSymbol(); if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI) return; if (needsCFIMoves() == CFI_M_None) return; if (MMI->getCompactUnwindEncoding() != 0) OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding()); MachineModuleInfo &MMI = MF->getMMI(); std::vector<MachineMove> &Moves = MMI.getFrameMoves(); bool FoundOne = false; (void)FoundOne; for (std::vector<MachineMove>::iterator I = Moves.begin(), E = Moves.end(); I != E; ++I) { if (I->getLabel() == Label) { EmitCFIFrameMove(*I); FoundOne = true; } } assert(FoundOne); } /// EmitFunctionBody - This method emits the body and trailer for a /// function. void AsmPrinter::EmitFunctionBody() { // Emit target-specific gunk before the function body. EmitFunctionBodyStart(); bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo(); // Print out code for the function. bool HasAnyRealCode = false; const MachineInstr *LastMI = 0; for (MachineFunction::const_iterator I = MF->begin(), E = MF->end(); I != E; ++I) { // Print a label for the basic block. EmitBasicBlockStart(I); for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end(); II != IE; ++II) { LastMI = II; // Print the assembly for the instruction. if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() && !II->isDebugValue()) { HasAnyRealCode = true; ++EmittedInsts; } if (ShouldPrintDebugScopes) { NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); DD->beginInstruction(II); } if (isVerbose()) emitComments(*II, OutStreamer.GetCommentOS()); switch (II->getOpcode()) { case TargetOpcode::PROLOG_LABEL: emitPrologLabel(*II); break; case TargetOpcode::EH_LABEL: case TargetOpcode::GC_LABEL: OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol()); break; case TargetOpcode::INLINEASM: EmitInlineAsm(II); break; case TargetOpcode::DBG_VALUE: if (isVerbose()) { if (!emitDebugValueComment(II, *this)) EmitInstruction(II); } break; case TargetOpcode::IMPLICIT_DEF: if (isVerbose()) emitImplicitDef(II, *this); break; case TargetOpcode::KILL: if (isVerbose()) emitKill(II, *this); break; default: if (!TM.hasMCUseLoc()) MCLineEntry::Make(&OutStreamer, getCurrentSection()); EmitInstruction(II); break; } if (ShouldPrintDebugScopes) { NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); DD->endInstruction(II); } } } // If the last instruction was a prolog label, then we have a situation where // we emitted a prolog but no function body. This results in the ending prolog // label equaling the end of function label and an invalid "row" in the // FDE. We need to emit a noop in this situation so that the FDE's rows are // valid. bool RequiresNoop = LastMI && LastMI->isPrologLabel(); // If the function is empty and the object file uses .subsections_via_symbols, // then we need to emit *something* to the function body to prevent the // labels from collapsing together. Just emit a noop. if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) { MCInst Noop; TM.getInstrInfo()->getNoopForMachoTarget(Noop); if (Noop.getOpcode()) { OutStreamer.AddComment("avoids zero-length function"); OutStreamer.EmitInstruction(Noop); } else // Target not mc-ized yet. OutStreamer.EmitRawText(StringRef("\tnop\n")); } const Function *F = MF->getFunction(); for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) { const BasicBlock *BB = i; if (!BB->hasAddressTaken()) continue; MCSymbol *Sym = GetBlockAddressSymbol(BB); if (Sym->isDefined()) continue; OutStreamer.AddComment("Address of block that was removed by CodeGen"); OutStreamer.EmitLabel(Sym); } // Emit target-specific gunk after the function body. EmitFunctionBodyEnd(); // If the target wants a .size directive for the size of the function, emit // it. if (MAI->hasDotTypeDotSizeDirective()) { // Create a symbol for the end of function, so we can get the size as // difference between the function label and the temp label. MCSymbol *FnEndLabel = OutContext.CreateTempSymbol(); OutStreamer.EmitLabel(FnEndLabel); const MCExpr *SizeExp = MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext), MCSymbolRefExpr::Create(CurrentFnSymForSize, OutContext), OutContext); OutStreamer.EmitELFSize(CurrentFnSym, SizeExp); } // Emit post-function debug information. if (DD) { NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); DD->endFunction(MF); } if (DE) { NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); DE->EndFunction(); } MMI->EndFunction(); // Print out jump tables referenced by the function. EmitJumpTableInfo(); OutStreamer.AddBlankLine(); } /// getDebugValueLocation - Get location information encoded by DBG_VALUE /// operands. MachineLocation AsmPrinter:: getDebugValueLocation(const MachineInstr *MI) const { // Target specific DBG_VALUE instructions are handled by each target. return MachineLocation(); } /// EmitDwarfRegOp - Emit dwarf register operation. void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc) const { const TargetRegisterInfo *TRI = TM.getRegisterInfo(); int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false); for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0; ++SR) { Reg = TRI->getDwarfRegNum(*SR, false); // FIXME: Get the bit range this register uses of the superregister // so that we can produce a DW_OP_bit_piece } // FIXME: Handle cases like a super register being encoded as // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33 // FIXME: We have no reasonable way of handling errors in here. The // caller might be in the middle of an dwarf expression. We should // probably assert that Reg >= 0 once debug info generation is more mature. if (int Offset = MLoc.getOffset()) { if (Reg < 32) { OutStreamer.AddComment( dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg)); EmitInt8(dwarf::DW_OP_breg0 + Reg); } else { OutStreamer.AddComment("DW_OP_bregx"); EmitInt8(dwarf::DW_OP_bregx); OutStreamer.AddComment(Twine(Reg)); EmitULEB128(Reg); } EmitSLEB128(Offset); } else { if (Reg < 32) { OutStreamer.AddComment( dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg)); EmitInt8(dwarf::DW_OP_reg0 + Reg); } else { OutStreamer.AddComment("DW_OP_regx"); EmitInt8(dwarf::DW_OP_regx); OutStreamer.AddComment(Twine(Reg)); EmitULEB128(Reg); } } // FIXME: Produce a DW_OP_bit_piece if we used a superregister } bool AsmPrinter::doFinalization(Module &M) { // Emit global variables. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) EmitGlobalVariable(I); // Emit visibility info for declarations for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { const Function &F = *I; if (!F.isDeclaration()) continue; GlobalValue::VisibilityTypes V = F.getVisibility(); if (V == GlobalValue::DefaultVisibility) continue; MCSymbol *Name = Mang->getSymbol(&F); EmitVisibility(Name, V, false); } // Emit module flags. SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; M.getModuleFlagsMetadata(ModuleFlags); if (!ModuleFlags.empty()) getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM); // Finalize debug and EH information. if (DE) { { NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled); DE->EndModule(); } delete DE; DE = 0; } if (DD) { { NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled); DD->endModule(); } delete DD; DD = 0; } // If the target wants to know about weak references, print them all. if (MAI->getWeakRefDirective()) { // FIXME: This is not lazy, it would be nice to only print weak references // to stuff that is actually used. Note that doing so would require targets // to notice uses in operands (due to constant exprs etc). This should // happen with the MC stuff eventually. // Print out module-level global variables here. for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); I != E; ++I) { if (!I->hasExternalWeakLinkage()) continue; OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); } for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) { if (!I->hasExternalWeakLinkage()) continue; OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference); } } if (MAI->hasSetDirective()) { OutStreamer.AddBlankLine(); for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end(); I != E; ++I) { MCSymbol *Name = Mang->getSymbol(I); const GlobalValue *GV = I->getAliasedGlobal(); MCSymbol *Target = Mang->getSymbol(GV); if (I->hasExternalLinkage() || !MAI->getWeakRefDirective()) OutStreamer.EmitSymbolAttribute(Name, MCSA_Global); else if (I->hasWeakLinkage()) OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference); else assert(I->hasLocalLinkage() && "Invalid alias linkage"); EmitVisibility(Name, I->getVisibility()); // Emit the directives as assignments aka .set: OutStreamer.EmitAssignment(Name, MCSymbolRefExpr::Create(Target, OutContext)); } } GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>(); assert(MI && "AsmPrinter didn't require GCModuleInfo?"); for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; ) if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I)) MP->finishAssembly(*this); // If we don't have any trampolines, then we don't require stack memory // to be executable. Some targets have a directive to declare this. Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline"); if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty()) if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext)) OutStreamer.SwitchSection(S); // Allow the target to emit any magic that it wants at the end of the file, // after everything else has gone out. EmitEndOfAsmFile(M); delete Mang; Mang = 0; MMI = 0; OutStreamer.Finish(); OutStreamer.reset(); return false; } void AsmPrinter::SetupMachineFunction(MachineFunction &MF) { this->MF = &MF; // Get the function symbol. CurrentFnSym = Mang->getSymbol(MF.getFunction()); CurrentFnSymForSize = CurrentFnSym; if (isVerbose()) LI = &getAnalysis<MachineLoopInfo>(); } namespace { // SectionCPs - Keep track the alignment, constpool entries per Section. struct SectionCPs { const MCSection *S; unsigned Alignment; SmallVector<unsigned, 4> CPEs; SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {} }; } /// EmitConstantPool - Print to the current output stream assembly /// representations of the constants in the constant pool MCP. This is /// used to print out constants which have been "spilled to memory" by /// the code generator. /// void AsmPrinter::EmitConstantPool() { const MachineConstantPool *MCP = MF->getConstantPool(); const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants(); if (CP.empty()) return; // Calculate sections for constant pool entries. We collect entries to go into // the same section together to reduce amount of section switch statements. SmallVector<SectionCPs, 4> CPSections; for (unsigned i = 0, e = CP.size(); i != e; ++i) { const MachineConstantPoolEntry &CPE = CP[i]; unsigned Align = CPE.getAlignment(); SectionKind Kind; switch (CPE.getRelocationInfo()) { default: llvm_unreachable("Unknown section kind"); case 2: Kind = SectionKind::getReadOnlyWithRel(); break; case 1: Kind = SectionKind::getReadOnlyWithRelLocal(); break; case 0: switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) { case 4: Kind = SectionKind::getMergeableConst4(); break; case 8: Kind = SectionKind::getMergeableConst8(); break; case 16: Kind = SectionKind::getMergeableConst16();break; default: Kind = SectionKind::getMergeableConst(); break; } } const MCSection *S = getObjFileLowering().getSectionForConstant(Kind); // The number of sections are small, just do a linear search from the // last section to the first. bool Found = false; unsigned SecIdx = CPSections.size(); while (SecIdx != 0) { if (CPSections[--SecIdx].S == S) { Found = true; break; } } if (!Found) { SecIdx = CPSections.size(); CPSections.push_back(SectionCPs(S, Align)); } if (Align > CPSections[SecIdx].Alignment) CPSections[SecIdx].Alignment = Align; CPSections[SecIdx].CPEs.push_back(i); } // Now print stuff into the calculated sections. for (unsigned i = 0, e = CPSections.size(); i != e; ++i) { OutStreamer.SwitchSection(CPSections[i].S); EmitAlignment(Log2_32(CPSections[i].Alignment)); unsigned Offset = 0; for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) { unsigned CPI = CPSections[i].CPEs[j]; MachineConstantPoolEntry CPE = CP[CPI]; // Emit inter-object padding for alignment. unsigned AlignMask = CPE.getAlignment() - 1; unsigned NewOffset = (Offset + AlignMask) & ~AlignMask; OutStreamer.EmitZeros(NewOffset - Offset); Type *Ty = CPE.getType(); Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty); OutStreamer.EmitLabel(GetCPISymbol(CPI)); if (CPE.isMachineConstantPoolEntry()) EmitMachineConstantPoolValue(CPE.Val.MachineCPVal); else EmitGlobalConstant(CPE.Val.ConstVal); } } } /// EmitJumpTableInfo - Print assembly representations of the jump tables used /// by the current function to the current output stream. /// void AsmPrinter::EmitJumpTableInfo() { const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo(); if (MJTI == 0) return; if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return; const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables(); if (JT.empty()) return; // Pick the directive to use to print the jump table entries, and switch to // the appropriate section. const Function *F = MF->getFunction(); bool JTInDiffSection = false; if (// In PIC mode, we need to emit the jump table to the same section as the // function body itself, otherwise the label differences won't make sense. // FIXME: Need a better predicate for this: what about custom entries? MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 || // We should also do if the section name is NULL or function is declared // in discardable section // FIXME: this isn't the right predicate, should be based on the MCSection // for the function. F->isWeakForLinker()) { OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM)); } else { // Otherwise, drop it in the readonly section. const MCSection *ReadOnlySection = getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly()); OutStreamer.SwitchSection(ReadOnlySection); JTInDiffSection = true; } EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout()))); // Jump tables in code sections are marked with a data_region directive // where that's supported. if (!JTInDiffSection) OutStreamer.EmitDataRegion(MCDR_DataRegionJT32); for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) { const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs; // If this jump table was deleted, ignore it. if (JTBBs.empty()) continue; // For the EK_LabelDifference32 entry, if the target supports .set, emit a // .set directive for each unique entry. This reduces the number of // relocations the assembler will generate for the jump table. if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 && MAI->hasSetDirective()) { SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets; const TargetLowering *TLI = TM.getTargetLowering(); const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext); for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) { const MachineBasicBlock *MBB = JTBBs[ii]; if (!EmittedSets.insert(MBB)) continue; // .set LJTSet, LBB32-base const MCExpr *LHS = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()), MCBinaryExpr::CreateSub(LHS, Base, OutContext)); } } // On some targets (e.g. Darwin) we want to emit two consecutive labels // before each jump table. The first label is never referenced, but tells // the assembler and linker the extents of the jump table object. The // second label is actually referenced by the code. if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0]) // FIXME: This doesn't have to have any specific name, just any randomly // named and numbered 'l' label would work. Simplify GetJTISymbol. OutStreamer.EmitLabel(GetJTISymbol(JTI, true)); OutStreamer.EmitLabel(GetJTISymbol(JTI)); for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) EmitJumpTableEntry(MJTI, JTBBs[ii], JTI); } if (!JTInDiffSection) OutStreamer.EmitDataRegion(MCDR_DataRegionEnd); } /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the /// current stream. void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB, unsigned UID) const { assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block"); const MCExpr *Value = 0; switch (MJTI->getEntryKind()) { case MachineJumpTableInfo::EK_Inline: llvm_unreachable("Cannot emit EK_Inline jump table entry"); case MachineJumpTableInfo::EK_Custom32: Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID, OutContext); break; case MachineJumpTableInfo::EK_BlockAddress: // EK_BlockAddress - Each entry is a plain address of block, e.g.: // .word LBB123 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); break; case MachineJumpTableInfo::EK_GPRel32BlockAddress: { // EK_GPRel32BlockAddress - Each entry is an address of block, encoded // with a relocation as gp-relative, e.g.: // .gprel32 LBB123 MCSymbol *MBBSym = MBB->getSymbol(); OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); return; } case MachineJumpTableInfo::EK_GPRel64BlockAddress: { // EK_GPRel64BlockAddress - Each entry is an address of block, encoded // with a relocation as gp-relative, e.g.: // .gpdword LBB123 MCSymbol *MBBSym = MBB->getSymbol(); OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext)); return; } case MachineJumpTableInfo::EK_LabelDifference32: { // EK_LabelDifference32 - Each entry is the address of the block minus // the address of the jump table. This is used for PIC jump tables where // gprel32 is not supported. e.g.: // .word LBB123 - LJTI1_2 // If the .set directive is supported, this is emitted as: // .set L4_5_set_123, LBB123 - LJTI1_2 // .word L4_5_set_123 // If we have emitted set directives for the jump table entries, print // them rather than the entries themselves. If we're emitting PIC, then // emit the table entries as differences between two text section labels. if (MAI->hasSetDirective()) { // If we used .set, reference the .set's symbol. Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()), OutContext); break; } // Otherwise, use the difference as the jump table entry. Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext); const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext); Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext); break; } } assert(Value && "Unknown entry kind!"); unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout()); OutStreamer.EmitValue(Value, EntrySize); } /// EmitSpecialLLVMGlobal - Check to see if the specified global is a /// special global used by LLVM. If so, emit it and return true, otherwise /// do nothing and return false. bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) { if (GV->getName() == "llvm.used") { if (MAI->hasNoDeadStrip()) // No need to emit this at all. EmitLLVMUsedList(GV->getInitializer()); return true; } // Ignore debug and non-emitted data. This handles llvm.compiler.used. if (GV->getSection() == "llvm.metadata" || GV->hasAvailableExternallyLinkage()) return true; if (!GV->hasAppendingLinkage()) return false; assert(GV->hasInitializer() && "Not a special LLVM global!"); if (GV->getName() == "llvm.global_ctors") { EmitXXStructorList(GV->getInitializer(), /* isCtor */ true); if (TM.getRelocationModel() == Reloc::Static && MAI->hasStaticCtorDtorReferenceInStaticMode()) { StringRef Sym(".constructors_used"); OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), MCSA_Reference); } return true; } if (GV->getName() == "llvm.global_dtors") { EmitXXStructorList(GV->getInitializer(), /* isCtor */ false); if (TM.getRelocationModel() == Reloc::Static && MAI->hasStaticCtorDtorReferenceInStaticMode()) { StringRef Sym(".destructors_used"); OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym), MCSA_Reference); } return true; } return false; } /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each /// global in the specified llvm.used list for which emitUsedDirectiveFor /// is true, as being used with this directive. void AsmPrinter::EmitLLVMUsedList(const Constant *List) { // Should be an array of 'i8*'. const ConstantArray *InitList = dyn_cast<ConstantArray>(List); if (InitList == 0) return; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { const GlobalValue *GV = dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts()); if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang)) OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip); } } typedef std::pair<unsigned, Constant*> Structor; static bool priority_order(const Structor& lhs, const Structor& rhs) { return lhs.first < rhs.first; } /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init /// priority. void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) { // Should be an array of '{ int, void ()* }' structs. The first value is the // init priority. if (!isa<ConstantArray>(List)) return; // Sanity check the structors list. const ConstantArray *InitList = dyn_cast<ConstantArray>(List); if (!InitList) return; // Not an array! StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType()); if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs! if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) || !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr). // Gather the structors in a form that's convenient for sorting by priority. SmallVector<Structor, 8> Structors; for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) { ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i)); if (!CS) continue; // Malformed. if (CS->getOperand(1)->isNullValue()) break; // Found a null terminator, skip the rest. ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0)); if (!Priority) continue; // Malformed. Structors.push_back(std::make_pair(Priority->getLimitedValue(65535), CS->getOperand(1))); } // Emit the function pointers in the target-specific order const DataLayout *TD = TM.getDataLayout(); unsigned Align = Log2_32(TD->getPointerPrefAlignment()); std::stable_sort(Structors.begin(), Structors.end(), priority_order); for (unsigned i = 0, e = Structors.size(); i != e; ++i) { const MCSection *OutputSection = (isCtor ? getObjFileLowering().getStaticCtorSection(Structors[i].first) : getObjFileLowering().getStaticDtorSection(Structors[i].first)); OutStreamer.SwitchSection(OutputSection); if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection()) EmitAlignment(Align); EmitXXStructor(Structors[i].second); } } //===--------------------------------------------------------------------===// // Emission and print routines // /// EmitInt8 - Emit a byte directive and value. /// void AsmPrinter::EmitInt8(int Value) const { OutStreamer.EmitIntValue(Value, 1); } /// EmitInt16 - Emit a short directive and value. /// void AsmPrinter::EmitInt16(int Value) const { OutStreamer.EmitIntValue(Value, 2); } /// EmitInt32 - Emit a long directive and value. /// void AsmPrinter::EmitInt32(int Value) const { OutStreamer.EmitIntValue(Value, 4); } /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size /// in bytes of the directive is specified by Size and Hi/Lo specify the /// labels. This implicitly uses .set if it is available. void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo, unsigned Size) const { // Get the Hi-Lo expression. const MCExpr *Diff = MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext), MCSymbolRefExpr::Create(Lo, OutContext), OutContext); if (!MAI->hasSetDirective()) { OutStreamer.EmitValue(Diff, Size); return; } // Otherwise, emit with .set (aka assignment). MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); OutStreamer.EmitAssignment(SetLabel, Diff); OutStreamer.EmitSymbolValue(SetLabel, Size); } /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo" /// where the size in bytes of the directive is specified by Size and Hi/Lo /// specify the labels. This implicitly uses .set if it is available. void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset, const MCSymbol *Lo, unsigned Size) const { // Emit Hi+Offset - Lo // Get the Hi+Offset expression. const MCExpr *Plus = MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext), MCConstantExpr::Create(Offset, OutContext), OutContext); // Get the Hi+Offset-Lo expression. const MCExpr *Diff = MCBinaryExpr::CreateSub(Plus, MCSymbolRefExpr::Create(Lo, OutContext), OutContext); if (!MAI->hasSetDirective()) OutStreamer.EmitValue(Diff, 4); else { // Otherwise, emit with .set (aka assignment). MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++); OutStreamer.EmitAssignment(SetLabel, Diff); OutStreamer.EmitSymbolValue(SetLabel, 4); } } /// EmitLabelPlusOffset - Emit something like ".long Label+Offset" /// where the size in bytes of the directive is specified by Size and Label /// specifies the label. This implicitly uses .set if it is available. void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset, unsigned Size) const { // Emit Label+Offset (or just Label if Offset is zero) const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext); if (Offset) Expr = MCBinaryExpr::CreateAdd(Expr, MCConstantExpr::Create(Offset, OutContext), OutContext); OutStreamer.EmitValue(Expr, Size); } //===----------------------------------------------------------------------===// // EmitAlignment - Emit an alignment directive to the specified power of // two boundary. For example, if you pass in 3 here, you will get an 8 // byte alignment. If a global value is specified, and if that global has // an explicit alignment requested, it will override the alignment request // if required for correctness. // void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const { if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits); if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment. if (getCurrentSection()->getKind().isText()) OutStreamer.EmitCodeAlignment(1 << NumBits); else OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0); } //===----------------------------------------------------------------------===// // Constant emission. //===----------------------------------------------------------------------===// /// lowerConstant - Lower the specified LLVM Constant to an MCExpr. /// static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) { MCContext &Ctx = AP.OutContext; if (CV->isNullValue() || isa<UndefValue>(CV)) return MCConstantExpr::Create(0, Ctx); if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) return MCConstantExpr::Create(CI->getZExtValue(), Ctx); if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx); if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx); const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV); if (CE == 0) { llvm_unreachable("Unknown constant value to lower!"); } switch (CE->getOpcode()) { default: // If the code isn't optimized, there may be outstanding folding // opportunities. Attempt to fold the expression using DataLayout as a // last resort before giving up. if (Constant *C = ConstantFoldConstantExpression(CE, AP.TM.getDataLayout())) if (C != CE) return lowerConstant(C, AP); // Otherwise report the problem to the user. { std::string S; raw_string_ostream OS(S); OS << "Unsupported expression in static initializer: "; WriteAsOperand(OS, CE, /*PrintType=*/false, !AP.MF ? 0 : AP.MF->getFunction()->getParent()); report_fatal_error(OS.str()); } case Instruction::GetElementPtr: { const DataLayout &TD = *AP.TM.getDataLayout(); // Generate a symbolic expression for the byte address APInt OffsetAI(TD.getPointerSizeInBits(), 0); cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI); const MCExpr *Base = lowerConstant(CE->getOperand(0), AP); if (!OffsetAI) return Base; int64_t Offset = OffsetAI.getSExtValue(); return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx), Ctx); } case Instruction::Trunc: // We emit the value and depend on the assembler to truncate the generated // expression properly. This is important for differences between // blockaddress labels. Since the two labels are in the same function, it // is reasonable to treat their delta as a 32-bit value. // FALL THROUGH. case Instruction::BitCast: return lowerConstant(CE->getOperand(0), AP); case Instruction::IntToPtr: { const DataLayout &TD = *AP.TM.getDataLayout(); // Handle casts to pointers by changing them into casts to the appropriate // integer type. This promotes constant folding and simplifies this code. Constant *Op = CE->getOperand(0); Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()), false/*ZExt*/); return lowerConstant(Op, AP); } case Instruction::PtrToInt: { const DataLayout &TD = *AP.TM.getDataLayout(); // Support only foldable casts to/from pointers that can be eliminated by // changing the pointer to the appropriately sized integer type. Constant *Op = CE->getOperand(0); Type *Ty = CE->getType(); const MCExpr *OpExpr = lowerConstant(Op, AP); // We can emit the pointer value into this slot if the slot is an // integer slot equal to the size of the pointer. if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType())) return OpExpr; // Otherwise the pointer is smaller than the resultant integer, mask off // the high bits so we are sure to get a proper truncation if the input is // a constant expr. unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType()); const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx); return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx); } // The MC library also has a right-shift operator, but it isn't consistently // signed or unsigned between different targets. case Instruction::Add: case Instruction::Sub: case Instruction::Mul: case Instruction::SDiv: case Instruction::SRem: case Instruction::Shl: case Instruction::And: case Instruction::Or: case Instruction::Xor: { const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP); const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP); switch (CE->getOpcode()) { default: llvm_unreachable("Unknown binary operator constant cast expr"); case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx); case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx); case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx); case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx); case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx); case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx); case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx); case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx); case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx); } } } } static void emitGlobalConstantImpl(const Constant *C, unsigned AddrSpace, AsmPrinter &AP); /// isRepeatedByteSequence - Determine whether the given value is /// composed of a repeated sequence of identical bytes and return the /// byte value. If it is not a repeated sequence, return -1. static int isRepeatedByteSequence(const ConstantDataSequential *V) { StringRef Data = V->getRawDataValues(); assert(!Data.empty() && "Empty aggregates should be CAZ node"); char C = Data[0]; for (unsigned i = 1, e = Data.size(); i != e; ++i) if (Data[i] != C) return -1; return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1. } /// isRepeatedByteSequence - Determine whether the given value is /// composed of a repeated sequence of identical bytes and return the /// byte value. If it is not a repeated sequence, return -1. static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) { if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) { if (CI->getBitWidth() > 64) return -1; uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType()); uint64_t Value = CI->getZExtValue(); // Make sure the constant is at least 8 bits long and has a power // of 2 bit width. This guarantees the constant bit width is // always a multiple of 8 bits, avoiding issues with padding out // to Size and other such corner cases. if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1; uint8_t Byte = static_cast<uint8_t>(Value); for (unsigned i = 1; i < Size; ++i) { Value >>= 8; if (static_cast<uint8_t>(Value) != Byte) return -1; } return Byte; } if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) { // Make sure all array elements are sequences of the same repeated // byte. assert(CA->getNumOperands() != 0 && "Should be a CAZ"); int Byte = isRepeatedByteSequence(CA->getOperand(0), TM); if (Byte == -1) return -1; for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) { int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM); if (ThisByte == -1) return -1; if (Byte != ThisByte) return -1; } return Byte; } if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V)) return isRepeatedByteSequence(CDS); return -1; } static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS, unsigned AddrSpace,AsmPrinter &AP){ // See if we can aggregate this into a .fill, if so, emit it as such. int Value = isRepeatedByteSequence(CDS, AP.TM); if (Value != -1) { uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType()); // Don't emit a 1-byte object as a .fill. if (Bytes > 1) return AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); } // If this can be emitted with .ascii/.asciz, emit it as such. if (CDS->isString()) return AP.OutStreamer.EmitBytes(CDS->getAsString(), AddrSpace); // Otherwise, emit the values in successive locations. unsigned ElementByteSize = CDS->getElementByteSize(); if (isa<IntegerType>(CDS->getElementType())) { for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { if (AP.isVerbose()) AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", CDS->getElementAsInteger(i)); AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i), ElementByteSize, AddrSpace); } } else if (ElementByteSize == 4) { // FP Constants are printed as integer constants to avoid losing // precision. assert(CDS->getElementType()->isFloatTy()); for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { union { float F; uint32_t I; }; F = CDS->getElementAsFloat(i); if (AP.isVerbose()) AP.OutStreamer.GetCommentOS() << "float " << F << '\n'; AP.OutStreamer.EmitIntValue(I, 4, AddrSpace); } } else { assert(CDS->getElementType()->isDoubleTy()); for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) { union { double F; uint64_t I; }; F = CDS->getElementAsDouble(i); if (AP.isVerbose()) AP.OutStreamer.GetCommentOS() << "double " << F << '\n'; AP.OutStreamer.EmitIntValue(I, 8, AddrSpace); } } const DataLayout &TD = *AP.TM.getDataLayout(); unsigned Size = TD.getTypeAllocSize(CDS->getType()); unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) * CDS->getNumElements(); if (unsigned Padding = Size - EmittedSize) AP.OutStreamer.EmitZeros(Padding, AddrSpace); } static void emitGlobalConstantArray(const ConstantArray *CA, unsigned AddrSpace, AsmPrinter &AP) { // See if we can aggregate some values. Make sure it can be // represented as a series of bytes of the constant value. int Value = isRepeatedByteSequence(CA, AP.TM); if (Value != -1) { uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType()); AP.OutStreamer.EmitFill(Bytes, Value, AddrSpace); } else { for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i) emitGlobalConstantImpl(CA->getOperand(i), AddrSpace, AP); } } static void emitGlobalConstantVector(const ConstantVector *CV, unsigned AddrSpace, AsmPrinter &AP) { for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i) emitGlobalConstantImpl(CV->getOperand(i), AddrSpace, AP); const DataLayout &TD = *AP.TM.getDataLayout(); unsigned Size = TD.getTypeAllocSize(CV->getType()); unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) * CV->getType()->getNumElements(); if (unsigned Padding = Size - EmittedSize) AP.OutStreamer.EmitZeros(Padding, AddrSpace); } static void emitGlobalConstantStruct(const ConstantStruct *CS, unsigned AddrSpace, AsmPrinter &AP) { // Print the fields in successive locations. Pad to align if needed! const DataLayout *TD = AP.TM.getDataLayout(); unsigned Size = TD->getTypeAllocSize(CS->getType()); const StructLayout *Layout = TD->getStructLayout(CS->getType()); uint64_t SizeSoFar = 0; for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) { const Constant *Field = CS->getOperand(i); // Check if padding is needed and insert one or more 0s. uint64_t FieldSize = TD->getTypeAllocSize(Field->getType()); uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1)) - Layout->getElementOffset(i)) - FieldSize; SizeSoFar += FieldSize + PadSize; // Now print the actual field value. emitGlobalConstantImpl(Field, AddrSpace, AP); // Insert padding - this may include padding to increase the size of the // current field up to the ABI size (if the struct is not packed) as well // as padding to ensure that the next field starts at the right offset. AP.OutStreamer.EmitZeros(PadSize, AddrSpace); } assert(SizeSoFar == Layout->getSizeInBytes() && "Layout of constant struct may be incorrect!"); } static void emitGlobalConstantFP(const ConstantFP *CFP, unsigned AddrSpace, AsmPrinter &AP) { APInt API = CFP->getValueAPF().bitcastToAPInt(); // First print a comment with what we think the original floating-point value // should have been. if (AP.isVerbose()) { SmallString<8> StrVal; CFP->getValueAPF().toString(StrVal); CFP->getType()->print(AP.OutStreamer.GetCommentOS()); AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n'; } // Now iterate through the APInt chunks, emitting them in endian-correct // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit // floats). unsigned NumBytes = API.getBitWidth() / 8; unsigned TrailingBytes = NumBytes % sizeof(uint64_t); const uint64_t *p = API.getRawData(); // PPC's long double has odd notions of endianness compared to how LLVM // handles it: p[0] goes first for *big* endian on PPC. if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) { int Chunk = API.getNumWords() - 1; if (TrailingBytes) AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes, AddrSpace); for (; Chunk >= 0; --Chunk) AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace); } else { unsigned Chunk; for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk) AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t), AddrSpace); if (TrailingBytes) AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes, AddrSpace); } // Emit the tail padding for the long double. const DataLayout &TD = *AP.TM.getDataLayout(); AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) - TD.getTypeStoreSize(CFP->getType()), AddrSpace); } static void emitGlobalConstantLargeInt(const ConstantInt *CI, unsigned AddrSpace, AsmPrinter &AP) { const DataLayout *TD = AP.TM.getDataLayout(); unsigned BitWidth = CI->getBitWidth(); assert((BitWidth & 63) == 0 && "only support multiples of 64-bits"); // We don't expect assemblers to support integer data directives // for more than 64 bits, so we emit the data in at most 64-bit // quantities at a time. const uint64_t *RawData = CI->getValue().getRawData(); for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) { uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i]; AP.OutStreamer.EmitIntValue(Val, 8, AddrSpace); } } static void emitGlobalConstantImpl(const Constant *CV, unsigned AddrSpace, AsmPrinter &AP) { const DataLayout *TD = AP.TM.getDataLayout(); uint64_t Size = TD->getTypeAllocSize(CV->getType()); if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV)) return AP.OutStreamer.EmitZeros(Size, AddrSpace); if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) { switch (Size) { case 1: case 2: case 4: case 8: if (AP.isVerbose()) AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n", CI->getZExtValue()); AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size, AddrSpace); return; default: emitGlobalConstantLargeInt(CI, AddrSpace, AP); return; } } if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) return emitGlobalConstantFP(CFP, AddrSpace, AP); if (isa<ConstantPointerNull>(CV)) { AP.OutStreamer.EmitIntValue(0, Size, AddrSpace); return; } if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV)) return emitGlobalConstantDataSequential(CDS, AddrSpace, AP); if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) return emitGlobalConstantArray(CVA, AddrSpace, AP); if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) return emitGlobalConstantStruct(CVS, AddrSpace, AP); if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) { // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of // vectors). if (CE->getOpcode() == Instruction::BitCast) return emitGlobalConstantImpl(CE->getOperand(0), AddrSpace, AP); if (Size > 8) { // If the constant expression's size is greater than 64-bits, then we have // to emit the value in chunks. Try to constant fold the value and emit it // that way. Constant *New = ConstantFoldConstantExpression(CE, TD); if (New && New != CE) return emitGlobalConstantImpl(New, AddrSpace, AP); } } if (const ConstantVector *V = dyn_cast<ConstantVector>(CV)) return emitGlobalConstantVector(V, AddrSpace, AP); // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it // thread the streamer with EmitValue. AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size, AddrSpace); } /// EmitGlobalConstant - Print a general LLVM constant to the .s file. void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) { uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType()); if (Size) emitGlobalConstantImpl(CV, AddrSpace, *this); else if (MAI->hasSubsectionsViaSymbols()) { // If the global has zero size, emit a single byte so that two labels don't // look like they are at the same location. OutStreamer.EmitIntValue(0, 1, AddrSpace); } } void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) { // Target doesn't support this yet! llvm_unreachable("Target does not support EmitMachineConstantPoolValue"); } void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const { if (Offset > 0) OS << '+' << Offset; else if (Offset < 0) OS << Offset; } //===----------------------------------------------------------------------===// // Symbol Lowering Routines. //===----------------------------------------------------------------------===// /// GetTempSymbol - Return the MCSymbol corresponding to the assembler /// temporary label with the specified stem and unique ID. MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const { return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) + Name + Twine(ID)); } /// GetTempSymbol - Return an assembler temporary label with the specified /// stem. MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const { return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+ Name); } MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const { return MMI->getAddrLabelSymbol(BA->getBasicBlock()); } MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const { return MMI->getAddrLabelSymbol(BB); } /// GetCPISymbol - Return the symbol for the specified constant pool entry. MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const { return OutContext.GetOrCreateSymbol (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber()) + "_" + Twine(CPID)); } /// GetJTISymbol - Return the symbol for the specified jump table entry. MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const { return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate); } /// GetJTSetSymbol - Return the symbol for the specified jump table .set /// FIXME: privatize to AsmPrinter. MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const { return OutContext.GetOrCreateSymbol (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" + Twine(UID) + "_set_" + Twine(MBBID)); } /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with /// global value name as its base, with the specified suffix, and where the /// symbol is forced to have private linkage if ForcePrivate is true. MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV, StringRef Suffix, bool ForcePrivate) const { SmallString<60> NameStr; Mang->getNameWithPrefix(NameStr, GV, ForcePrivate); NameStr.append(Suffix.begin(), Suffix.end()); return OutContext.GetOrCreateSymbol(NameStr.str()); } /// GetExternalSymbolSymbol - Return the MCSymbol for the specified /// ExternalSymbol. MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const { SmallString<60> NameStr; Mang->getNameWithPrefix(NameStr, Sym); return OutContext.GetOrCreateSymbol(NameStr.str()); } /// PrintParentLoopComment - Print comments about parent loops of this one. static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop, unsigned FunctionNumber) { if (Loop == 0) return; PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber); OS.indent(Loop->getLoopDepth()*2) << "Parent Loop BB" << FunctionNumber << "_" << Loop->getHeader()->getNumber() << " Depth=" << Loop->getLoopDepth() << '\n'; } /// PrintChildLoopComment - Print comments about child loops within /// the loop for this basic block, with nesting. static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop, unsigned FunctionNumber) { // Add child loop information for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){ OS.indent((*CL)->getLoopDepth()*2) << "Child Loop BB" << FunctionNumber << "_" << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth() << '\n'; PrintChildLoopComment(OS, *CL, FunctionNumber); } } /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks. static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB, const MachineLoopInfo *LI, const AsmPrinter &AP) { // Add loop depth information const MachineLoop *Loop = LI->getLoopFor(&MBB); if (Loop == 0) return; MachineBasicBlock *Header = Loop->getHeader(); assert(Header && "No header for loop"); // If this block is not a loop header, just print out what is the loop header // and return. if (Header != &MBB) { AP.OutStreamer.AddComment(" in Loop: Header=BB" + Twine(AP.getFunctionNumber())+"_" + Twine(Loop->getHeader()->getNumber())+ " Depth="+Twine(Loop->getLoopDepth())); return; } // Otherwise, it is a loop header. Print out information about child and // parent loops. raw_ostream &OS = AP.OutStreamer.GetCommentOS(); PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber()); OS << "=>"; OS.indent(Loop->getLoopDepth()*2-2); OS << "This "; if (Loop->empty()) OS << "Inner "; OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n'; PrintChildLoopComment(OS, Loop, AP.getFunctionNumber()); } /// EmitBasicBlockStart - This method prints the label for the specified /// MachineBasicBlock, an alignment (if present) and a comment describing /// it if appropriate. void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const { // Emit an alignment directive for this block, if needed. if (unsigned Align = MBB->getAlignment()) EmitAlignment(Align); // If the block has its address taken, emit any labels that were used to // reference the block. It is possible that there is more than one label // here, because multiple LLVM BB's may have been RAUW'd to this block after // the references were generated. if (MBB->hasAddressTaken()) { const BasicBlock *BB = MBB->getBasicBlock(); if (isVerbose()) OutStreamer.AddComment("Block address taken"); std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB); for (unsigned i = 0, e = Syms.size(); i != e; ++i) OutStreamer.EmitLabel(Syms[i]); } // Print some verbose block comments. if (isVerbose()) { if (const BasicBlock *BB = MBB->getBasicBlock()) if (BB->hasName()) OutStreamer.AddComment("%" + BB->getName()); emitBasicBlockLoopComments(*MBB, LI, *this); } // Print the main label for the block. if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) { if (isVerbose() && OutStreamer.hasRawTextSupport()) { // NOTE: Want this comment at start of line, don't emit with AddComment. OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" + Twine(MBB->getNumber()) + ":"); } } else { OutStreamer.EmitLabel(MBB->getSymbol()); } } void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility, bool IsDefinition) const { MCSymbolAttr Attr = MCSA_Invalid; switch (Visibility) { default: break; case GlobalValue::HiddenVisibility: if (IsDefinition) Attr = MAI->getHiddenVisibilityAttr(); else Attr = MAI->getHiddenDeclarationVisibilityAttr(); break; case GlobalValue::ProtectedVisibility: Attr = MAI->getProtectedVisibilityAttr(); break; } if (Attr != MCSA_Invalid) OutStreamer.EmitSymbolAttribute(Sym, Attr); } /// isBlockOnlyReachableByFallthough - Return true if the basic block has /// exactly one predecessor and the control transfer mechanism between /// the predecessor and this block is a fall-through. bool AsmPrinter:: isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { // If this is a landing pad, it isn't a fall through. If it has no preds, // then nothing falls through to it. if (MBB->isLandingPad() || MBB->pred_empty()) return false; // If there isn't exactly one predecessor, it can't be a fall through. MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; ++PI2; if (PI2 != MBB->pred_end()) return false; // The predecessor has to be immediately before this block. MachineBasicBlock *Pred = *PI; if (!Pred->isLayoutSuccessor(MBB)) return false; // If the block is completely empty, then it definitely does fall through. if (Pred->empty()) return true; // Check the terminators in the previous blocks for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(), IE = Pred->end(); II != IE; ++II) { MachineInstr &MI = *II; // If it is not a simple branch, we are in a table somewhere. if (!MI.isBranch() || MI.isIndirectBranch()) return false; // If we are the operands of one of the branches, this is not // a fall through. for (MachineInstr::mop_iterator OI = MI.operands_begin(), OE = MI.operands_end(); OI != OE; ++OI) { const MachineOperand& OP = *OI; if (OP.isJTI()) return false; if (OP.isMBB() && OP.getMBB() == MBB) return false; } } return true; } GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) { if (!S->usesMetadata()) return 0; gcp_map_type &GCMap = getGCMap(GCMetadataPrinters); gcp_map_type::iterator GCPI = GCMap.find(S); if (GCPI != GCMap.end()) return GCPI->second; const char *Name = S->getName().c_str(); for (GCMetadataPrinterRegistry::iterator I = GCMetadataPrinterRegistry::begin(), E = GCMetadataPrinterRegistry::end(); I != E; ++I) if (strcmp(Name, I->getName()) == 0) { GCMetadataPrinter *GMP = I->instantiate(); GMP->S = S; GCMap.insert(std::make_pair(S, GMP)); return GMP; } report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name)); }