//===-- lib/CodeGen/MachineInstrBundle.cpp --------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// #include "llvm/CodeGen/MachineInstrBundle.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/SmallVector.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/Passes.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; namespace { class UnpackMachineBundles : public MachineFunctionPass { public: static char ID; // Pass identification UnpackMachineBundles() : MachineFunctionPass(ID) { initializeUnpackMachineBundlesPass(*PassRegistry::getPassRegistry()); } virtual bool runOnMachineFunction(MachineFunction &MF); }; } // end anonymous namespace char UnpackMachineBundles::ID = 0; char &llvm::UnpackMachineBundlesID = UnpackMachineBundles::ID; INITIALIZE_PASS(UnpackMachineBundles, "unpack-mi-bundles", "Unpack machine instruction bundles", false, false) bool UnpackMachineBundles::runOnMachineFunction(MachineFunction &MF) { bool Changed = false; for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock *MBB = &*I; for (MachineBasicBlock::instr_iterator MII = MBB->instr_begin(), MIE = MBB->instr_end(); MII != MIE; ) { MachineInstr *MI = &*MII; // Remove BUNDLE instruction and the InsideBundle flags from bundled // instructions. if (MI->isBundle()) { while (++MII != MIE && MII->isBundledWithPred()) { MII->unbundleFromPred(); for (unsigned i = 0, e = MII->getNumOperands(); i != e; ++i) { MachineOperand &MO = MII->getOperand(i); if (MO.isReg() && MO.isInternalRead()) MO.setIsInternalRead(false); } } MI->eraseFromParent(); Changed = true; continue; } ++MII; } } return Changed; } namespace { class FinalizeMachineBundles : public MachineFunctionPass { public: static char ID; // Pass identification FinalizeMachineBundles() : MachineFunctionPass(ID) { initializeFinalizeMachineBundlesPass(*PassRegistry::getPassRegistry()); } virtual bool runOnMachineFunction(MachineFunction &MF); }; } // end anonymous namespace char FinalizeMachineBundles::ID = 0; char &llvm::FinalizeMachineBundlesID = FinalizeMachineBundles::ID; INITIALIZE_PASS(FinalizeMachineBundles, "finalize-mi-bundles", "Finalize machine instruction bundles", false, false) bool FinalizeMachineBundles::runOnMachineFunction(MachineFunction &MF) { return llvm::finalizeBundles(MF); } /// finalizeBundle - Finalize a machine instruction bundle which includes /// a sequence of instructions starting from FirstMI to LastMI (exclusive). /// This routine adds a BUNDLE instruction to represent the bundle, it adds /// IsInternalRead markers to MachineOperands which are defined inside the /// bundle, and it copies externally visible defs and uses to the BUNDLE /// instruction. void llvm::finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI, MachineBasicBlock::instr_iterator LastMI) { assert(FirstMI != LastMI && "Empty bundle?"); MIBundleBuilder Bundle(MBB, FirstMI, LastMI); const TargetMachine &TM = MBB.getParent()->getTarget(); const TargetInstrInfo *TII = TM.getInstrInfo(); const TargetRegisterInfo *TRI = TM.getRegisterInfo(); MachineInstrBuilder MIB = BuildMI(*MBB.getParent(), FirstMI->getDebugLoc(), TII->get(TargetOpcode::BUNDLE)); Bundle.prepend(MIB); SmallVector<unsigned, 32> LocalDefs; SmallSet<unsigned, 32> LocalDefSet; SmallSet<unsigned, 8> DeadDefSet; SmallSet<unsigned, 16> KilledDefSet; SmallVector<unsigned, 8> ExternUses; SmallSet<unsigned, 8> ExternUseSet; SmallSet<unsigned, 8> KilledUseSet; SmallSet<unsigned, 8> UndefUseSet; SmallVector<MachineOperand*, 4> Defs; for (; FirstMI != LastMI; ++FirstMI) { for (unsigned i = 0, e = FirstMI->getNumOperands(); i != e; ++i) { MachineOperand &MO = FirstMI->getOperand(i); if (!MO.isReg()) continue; if (MO.isDef()) { Defs.push_back(&MO); continue; } unsigned Reg = MO.getReg(); if (!Reg) continue; assert(TargetRegisterInfo::isPhysicalRegister(Reg)); if (LocalDefSet.count(Reg)) { MO.setIsInternalRead(); if (MO.isKill()) // Internal def is now killed. KilledDefSet.insert(Reg); } else { if (ExternUseSet.insert(Reg)) { ExternUses.push_back(Reg); if (MO.isUndef()) UndefUseSet.insert(Reg); } if (MO.isKill()) // External def is now killed. KilledUseSet.insert(Reg); } } for (unsigned i = 0, e = Defs.size(); i != e; ++i) { MachineOperand &MO = *Defs[i]; unsigned Reg = MO.getReg(); if (!Reg) continue; if (LocalDefSet.insert(Reg)) { LocalDefs.push_back(Reg); if (MO.isDead()) { DeadDefSet.insert(Reg); } } else { // Re-defined inside the bundle, it's no longer killed. KilledDefSet.erase(Reg); if (!MO.isDead()) // Previously defined but dead. DeadDefSet.erase(Reg); } if (!MO.isDead()) { for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { unsigned SubReg = *SubRegs; if (LocalDefSet.insert(SubReg)) LocalDefs.push_back(SubReg); } } } Defs.clear(); } SmallSet<unsigned, 32> Added; for (unsigned i = 0, e = LocalDefs.size(); i != e; ++i) { unsigned Reg = LocalDefs[i]; if (Added.insert(Reg)) { // If it's not live beyond end of the bundle, mark it dead. bool isDead = DeadDefSet.count(Reg) || KilledDefSet.count(Reg); MIB.addReg(Reg, getDefRegState(true) | getDeadRegState(isDead) | getImplRegState(true)); } } for (unsigned i = 0, e = ExternUses.size(); i != e; ++i) { unsigned Reg = ExternUses[i]; bool isKill = KilledUseSet.count(Reg); bool isUndef = UndefUseSet.count(Reg); MIB.addReg(Reg, getKillRegState(isKill) | getUndefRegState(isUndef) | getImplRegState(true)); } } /// finalizeBundle - Same functionality as the previous finalizeBundle except /// the last instruction in the bundle is not provided as an input. This is /// used in cases where bundles are pre-determined by marking instructions /// with 'InsideBundle' marker. It returns the MBB instruction iterator that /// points to the end of the bundle. MachineBasicBlock::instr_iterator llvm::finalizeBundle(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator FirstMI) { MachineBasicBlock::instr_iterator E = MBB.instr_end(); MachineBasicBlock::instr_iterator LastMI = llvm::next(FirstMI); while (LastMI != E && LastMI->isInsideBundle()) ++LastMI; finalizeBundle(MBB, FirstMI, LastMI); return LastMI; } /// finalizeBundles - Finalize instruction bundles in the specified /// MachineFunction. Return true if any bundles are finalized. bool llvm::finalizeBundles(MachineFunction &MF) { bool Changed = false; for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) { MachineBasicBlock &MBB = *I; MachineBasicBlock::instr_iterator MII = MBB.instr_begin(); MachineBasicBlock::instr_iterator MIE = MBB.instr_end(); if (MII == MIE) continue; assert(!MII->isInsideBundle() && "First instr cannot be inside bundle before finalization!"); for (++MII; MII != MIE; ) { if (!MII->isInsideBundle()) ++MII; else { MII = finalizeBundle(MBB, llvm::prior(MII)); Changed = true; } } } return Changed; } //===----------------------------------------------------------------------===// // MachineOperand iterator //===----------------------------------------------------------------------===// MachineOperandIteratorBase::VirtRegInfo MachineOperandIteratorBase::analyzeVirtReg(unsigned Reg, SmallVectorImpl<std::pair<MachineInstr*, unsigned> > *Ops) { VirtRegInfo RI = { false, false, false }; for(; isValid(); ++*this) { MachineOperand &MO = deref(); if (!MO.isReg() || MO.getReg() != Reg) continue; // Remember each (MI, OpNo) that refers to Reg. if (Ops) Ops->push_back(std::make_pair(MO.getParent(), getOperandNo())); // Both defs and uses can read virtual registers. if (MO.readsReg()) { RI.Reads = true; if (MO.isDef()) RI.Tied = true; } // Only defs can write. if (MO.isDef()) RI.Writes = true; else if (!RI.Tied && MO.getParent()->isRegTiedToDefOperand(getOperandNo())) RI.Tied = true; } return RI; } MachineOperandIteratorBase::PhysRegInfo MachineOperandIteratorBase::analyzePhysReg(unsigned Reg, const TargetRegisterInfo *TRI) { bool AllDefsDead = true; PhysRegInfo PRI = {false, false, false, false, false, false}; assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "analyzePhysReg not given a physical register!"); for (; isValid(); ++*this) { MachineOperand &MO = deref(); if (MO.isRegMask() && MO.clobbersPhysReg(Reg)) PRI.Clobbers = true; // Regmask clobbers Reg. if (!MO.isReg()) continue; unsigned MOReg = MO.getReg(); if (!MOReg || !TargetRegisterInfo::isPhysicalRegister(MOReg)) continue; bool IsRegOrSuperReg = MOReg == Reg || TRI->isSubRegister(MOReg, Reg); bool IsRegOrOverlapping = MOReg == Reg || TRI->regsOverlap(MOReg, Reg); if (IsRegOrSuperReg && MO.readsReg()) { // Reg or a super-reg is read, and perhaps killed also. PRI.Reads = true; PRI.Kills = MO.isKill(); } if (IsRegOrOverlapping && MO.readsReg()) { PRI.ReadsOverlap = true;// Reg or an overlapping register is read. } if (!MO.isDef()) continue; if (IsRegOrSuperReg) { PRI.Defines = true; // Reg or a super-register is defined. if (!MO.isDead()) AllDefsDead = false; } if (IsRegOrOverlapping) PRI.Clobbers = true; // Reg or an overlapping reg is defined. } if (AllDefsDead && PRI.Defines) PRI.DefinesDead = true; // Reg or super-register was defined and was dead. return PRI; }