//===----- SchedulePostRAList.cpp - list scheduler ------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This implements a top-down list scheduler, using standard algorithms. // The basic approach uses a priority queue of available nodes to schedule. // One at a time, nodes are taken from the priority queue (thus in priority // order), checked for legality to schedule, and emitted if legal. // // Nodes may not be legal to schedule either due to structural hazards (e.g. // pipeline or resource constraints) or because an input to the instruction has // not completed execution. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "post-RA-sched" #include "llvm/CodeGen/Passes.h" #include "AggressiveAntiDepBreaker.h" #include "AntiDepBreaker.h" #include "CriticalAntiDepBreaker.h" #include "llvm/ADT/BitVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/AliasAnalysis.h" #include "llvm/CodeGen/LatencyPriorityQueue.h" #include "llvm/CodeGen/MachineDominators.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineLoopInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/RegisterClassInfo.h" #include "llvm/CodeGen/ScheduleDAGInstrs.h" #include "llvm/CodeGen/ScheduleHazardRecognizer.h" #include "llvm/CodeGen/SchedulerRegistry.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" #include "llvm/Target/TargetSubtargetInfo.h" using namespace llvm; STATISTIC(NumNoops, "Number of noops inserted"); STATISTIC(NumStalls, "Number of pipeline stalls"); STATISTIC(NumFixedAnti, "Number of fixed anti-dependencies"); // Post-RA scheduling is enabled with // TargetSubtargetInfo.enablePostRAScheduler(). This flag can be used to // override the target. static cl::opt<bool> EnablePostRAScheduler("post-RA-scheduler", cl::desc("Enable scheduling after register allocation"), cl::init(false), cl::Hidden); static cl::opt<std::string> EnableAntiDepBreaking("break-anti-dependencies", cl::desc("Break post-RA scheduling anti-dependencies: " "\"critical\", \"all\", or \"none\""), cl::init("none"), cl::Hidden); // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod static cl::opt<int> DebugDiv("postra-sched-debugdiv", cl::desc("Debug control MBBs that are scheduled"), cl::init(0), cl::Hidden); static cl::opt<int> DebugMod("postra-sched-debugmod", cl::desc("Debug control MBBs that are scheduled"), cl::init(0), cl::Hidden); AntiDepBreaker::~AntiDepBreaker() { } namespace { class PostRAScheduler : public MachineFunctionPass { const TargetInstrInfo *TII; RegisterClassInfo RegClassInfo; public: static char ID; PostRAScheduler() : MachineFunctionPass(ID) {} void getAnalysisUsage(AnalysisUsage &AU) const { AU.setPreservesCFG(); AU.addRequired<AliasAnalysis>(); AU.addRequired<TargetPassConfig>(); AU.addRequired<MachineDominatorTree>(); AU.addPreserved<MachineDominatorTree>(); AU.addRequired<MachineLoopInfo>(); AU.addPreserved<MachineLoopInfo>(); MachineFunctionPass::getAnalysisUsage(AU); } bool runOnMachineFunction(MachineFunction &Fn); }; char PostRAScheduler::ID = 0; class SchedulePostRATDList : public ScheduleDAGInstrs { /// AvailableQueue - The priority queue to use for the available SUnits. /// LatencyPriorityQueue AvailableQueue; /// PendingQueue - This contains all of the instructions whose operands have /// been issued, but their results are not ready yet (due to the latency of /// the operation). Once the operands becomes available, the instruction is /// added to the AvailableQueue. std::vector<SUnit*> PendingQueue; /// HazardRec - The hazard recognizer to use. ScheduleHazardRecognizer *HazardRec; /// AntiDepBreak - Anti-dependence breaking object, or NULL if none AntiDepBreaker *AntiDepBreak; /// AA - AliasAnalysis for making memory reference queries. AliasAnalysis *AA; /// LiveRegs - true if the register is live. BitVector LiveRegs; /// The schedule. Null SUnit*'s represent noop instructions. std::vector<SUnit*> Sequence; public: SchedulePostRATDList( MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT, AliasAnalysis *AA, const RegisterClassInfo&, TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs); ~SchedulePostRATDList(); /// startBlock - Initialize register live-range state for scheduling in /// this block. /// void startBlock(MachineBasicBlock *BB); /// Initialize the scheduler state for the next scheduling region. virtual void enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount); /// Notify that the scheduler has finished scheduling the current region. virtual void exitRegion(); /// Schedule - Schedule the instruction range using list scheduling. /// void schedule(); void EmitSchedule(); /// Observe - Update liveness information to account for the current /// instruction, which will not be scheduled. /// void Observe(MachineInstr *MI, unsigned Count); /// finishBlock - Clean up register live-range state. /// void finishBlock(); /// FixupKills - Fix register kill flags that have been made /// invalid due to scheduling /// void FixupKills(MachineBasicBlock *MBB); private: void ReleaseSucc(SUnit *SU, SDep *SuccEdge); void ReleaseSuccessors(SUnit *SU); void ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle); void ListScheduleTopDown(); void StartBlockForKills(MachineBasicBlock *BB); // ToggleKillFlag - Toggle a register operand kill flag. Other // adjustments may be made to the instruction if necessary. Return // true if the operand has been deleted, false if not. bool ToggleKillFlag(MachineInstr *MI, MachineOperand &MO); void dumpSchedule() const; }; } char &llvm::PostRASchedulerID = PostRAScheduler::ID; INITIALIZE_PASS(PostRAScheduler, "post-RA-sched", "Post RA top-down list latency scheduler", false, false) SchedulePostRATDList::SchedulePostRATDList( MachineFunction &MF, MachineLoopInfo &MLI, MachineDominatorTree &MDT, AliasAnalysis *AA, const RegisterClassInfo &RCI, TargetSubtargetInfo::AntiDepBreakMode AntiDepMode, SmallVectorImpl<const TargetRegisterClass*> &CriticalPathRCs) : ScheduleDAGInstrs(MF, MLI, MDT, /*IsPostRA=*/true), AA(AA), LiveRegs(TRI->getNumRegs()) { const TargetMachine &TM = MF.getTarget(); const InstrItineraryData *InstrItins = TM.getInstrItineraryData(); HazardRec = TM.getInstrInfo()->CreateTargetPostRAHazardRecognizer(InstrItins, this); assert((AntiDepMode == TargetSubtargetInfo::ANTIDEP_NONE || MRI.tracksLiveness()) && "Live-ins must be accurate for anti-dependency breaking"); AntiDepBreak = ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_ALL) ? (AntiDepBreaker *)new AggressiveAntiDepBreaker(MF, RCI, CriticalPathRCs) : ((AntiDepMode == TargetSubtargetInfo::ANTIDEP_CRITICAL) ? (AntiDepBreaker *)new CriticalAntiDepBreaker(MF, RCI) : NULL)); } SchedulePostRATDList::~SchedulePostRATDList() { delete HazardRec; delete AntiDepBreak; } /// Initialize state associated with the next scheduling region. void SchedulePostRATDList::enterRegion(MachineBasicBlock *bb, MachineBasicBlock::iterator begin, MachineBasicBlock::iterator end, unsigned endcount) { ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount); Sequence.clear(); } /// Print the schedule before exiting the region. void SchedulePostRATDList::exitRegion() { DEBUG({ dbgs() << "*** Final schedule ***\n"; dumpSchedule(); dbgs() << '\n'; }); ScheduleDAGInstrs::exitRegion(); } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) /// dumpSchedule - dump the scheduled Sequence. void SchedulePostRATDList::dumpSchedule() const { for (unsigned i = 0, e = Sequence.size(); i != e; i++) { if (SUnit *SU = Sequence[i]) SU->dump(this); else dbgs() << "**** NOOP ****\n"; } } #endif bool PostRAScheduler::runOnMachineFunction(MachineFunction &Fn) { TII = Fn.getTarget().getInstrInfo(); MachineLoopInfo &MLI = getAnalysis<MachineLoopInfo>(); MachineDominatorTree &MDT = getAnalysis<MachineDominatorTree>(); AliasAnalysis *AA = &getAnalysis<AliasAnalysis>(); TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); RegClassInfo.runOnMachineFunction(Fn); // Check for explicit enable/disable of post-ra scheduling. TargetSubtargetInfo::AntiDepBreakMode AntiDepMode = TargetSubtargetInfo::ANTIDEP_NONE; SmallVector<const TargetRegisterClass*, 4> CriticalPathRCs; if (EnablePostRAScheduler.getPosition() > 0) { if (!EnablePostRAScheduler) return false; } else { // Check that post-RA scheduling is enabled for this target. // This may upgrade the AntiDepMode. const TargetSubtargetInfo &ST = Fn.getTarget().getSubtarget<TargetSubtargetInfo>(); if (!ST.enablePostRAScheduler(PassConfig->getOptLevel(), AntiDepMode, CriticalPathRCs)) return false; } // Check for antidep breaking override... if (EnableAntiDepBreaking.getPosition() > 0) { AntiDepMode = (EnableAntiDepBreaking == "all") ? TargetSubtargetInfo::ANTIDEP_ALL : ((EnableAntiDepBreaking == "critical") ? TargetSubtargetInfo::ANTIDEP_CRITICAL : TargetSubtargetInfo::ANTIDEP_NONE); } DEBUG(dbgs() << "PostRAScheduler\n"); SchedulePostRATDList Scheduler(Fn, MLI, MDT, AA, RegClassInfo, AntiDepMode, CriticalPathRCs); // Loop over all of the basic blocks for (MachineFunction::iterator MBB = Fn.begin(), MBBe = Fn.end(); MBB != MBBe; ++MBB) { #ifndef NDEBUG // If DebugDiv > 0 then only schedule MBB with (ID % DebugDiv) == DebugMod if (DebugDiv > 0) { static int bbcnt = 0; if (bbcnt++ % DebugDiv != DebugMod) continue; dbgs() << "*** DEBUG scheduling " << Fn.getName() << ":BB#" << MBB->getNumber() << " ***\n"; } #endif // Initialize register live-range state for scheduling in this block. Scheduler.startBlock(MBB); // Schedule each sequence of instructions not interrupted by a label // or anything else that effectively needs to shut down scheduling. MachineBasicBlock::iterator Current = MBB->end(); unsigned Count = MBB->size(), CurrentCount = Count; for (MachineBasicBlock::iterator I = Current; I != MBB->begin(); ) { MachineInstr *MI = llvm::prior(I); // Calls are not scheduling boundaries before register allocation, but // post-ra we don't gain anything by scheduling across calls since we // don't need to worry about register pressure. if (MI->isCall() || TII->isSchedulingBoundary(MI, MBB, Fn)) { Scheduler.enterRegion(MBB, I, Current, CurrentCount); Scheduler.schedule(); Scheduler.exitRegion(); Scheduler.EmitSchedule(); Current = MI; CurrentCount = Count - 1; Scheduler.Observe(MI, CurrentCount); } I = MI; --Count; if (MI->isBundle()) Count -= MI->getBundleSize(); } assert(Count == 0 && "Instruction count mismatch!"); assert((MBB->begin() == Current || CurrentCount != 0) && "Instruction count mismatch!"); Scheduler.enterRegion(MBB, MBB->begin(), Current, CurrentCount); Scheduler.schedule(); Scheduler.exitRegion(); Scheduler.EmitSchedule(); // Clean up register live-range state. Scheduler.finishBlock(); // Update register kills Scheduler.FixupKills(MBB); } return true; } /// StartBlock - Initialize register live-range state for scheduling in /// this block. /// void SchedulePostRATDList::startBlock(MachineBasicBlock *BB) { // Call the superclass. ScheduleDAGInstrs::startBlock(BB); // Reset the hazard recognizer and anti-dep breaker. HazardRec->Reset(); if (AntiDepBreak != NULL) AntiDepBreak->StartBlock(BB); } /// Schedule - Schedule the instruction range using list scheduling. /// void SchedulePostRATDList::schedule() { // Build the scheduling graph. buildSchedGraph(AA); if (AntiDepBreak != NULL) { unsigned Broken = AntiDepBreak->BreakAntiDependencies(SUnits, RegionBegin, RegionEnd, EndIndex, DbgValues); if (Broken != 0) { // We made changes. Update the dependency graph. // Theoretically we could update the graph in place: // When a live range is changed to use a different register, remove // the def's anti-dependence *and* output-dependence edges due to // that register, and add new anti-dependence and output-dependence // edges based on the next live range of the register. ScheduleDAG::clearDAG(); buildSchedGraph(AA); NumFixedAnti += Broken; } } DEBUG(dbgs() << "********** List Scheduling **********\n"); DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su) SUnits[su].dumpAll(this)); AvailableQueue.initNodes(SUnits); ListScheduleTopDown(); AvailableQueue.releaseState(); } /// Observe - Update liveness information to account for the current /// instruction, which will not be scheduled. /// void SchedulePostRATDList::Observe(MachineInstr *MI, unsigned Count) { if (AntiDepBreak != NULL) AntiDepBreak->Observe(MI, Count, EndIndex); } /// FinishBlock - Clean up register live-range state. /// void SchedulePostRATDList::finishBlock() { if (AntiDepBreak != NULL) AntiDepBreak->FinishBlock(); // Call the superclass. ScheduleDAGInstrs::finishBlock(); } /// StartBlockForKills - Initialize register live-range state for updating kills /// void SchedulePostRATDList::StartBlockForKills(MachineBasicBlock *BB) { // Start with no live registers. LiveRegs.reset(); // Examine the live-in regs of all successors. for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(), SE = BB->succ_end(); SI != SE; ++SI) { for (MachineBasicBlock::livein_iterator I = (*SI)->livein_begin(), E = (*SI)->livein_end(); I != E; ++I) { unsigned Reg = *I; LiveRegs.set(Reg); // Repeat, for all subregs. for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) LiveRegs.set(*SubRegs); } } } bool SchedulePostRATDList::ToggleKillFlag(MachineInstr *MI, MachineOperand &MO) { // Setting kill flag... if (!MO.isKill()) { MO.setIsKill(true); return false; } // If MO itself is live, clear the kill flag... if (LiveRegs.test(MO.getReg())) { MO.setIsKill(false); return false; } // If any subreg of MO is live, then create an imp-def for that // subreg and keep MO marked as killed. MO.setIsKill(false); bool AllDead = true; const unsigned SuperReg = MO.getReg(); MachineInstrBuilder MIB(MF, MI); for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) { if (LiveRegs.test(*SubRegs)) { MIB.addReg(*SubRegs, RegState::ImplicitDefine); AllDead = false; } } if(AllDead) MO.setIsKill(true); return false; } /// FixupKills - Fix the register kill flags, they may have been made /// incorrect by instruction reordering. /// void SchedulePostRATDList::FixupKills(MachineBasicBlock *MBB) { DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n'); BitVector killedRegs(TRI->getNumRegs()); StartBlockForKills(MBB); // Examine block from end to start... unsigned Count = MBB->size(); for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin(); I != E; --Count) { MachineInstr *MI = --I; if (MI->isDebugValue()) continue; // Update liveness. Registers that are defed but not used in this // instruction are now dead. Mark register and all subregs as they // are completely defined. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (MO.isRegMask()) LiveRegs.clearBitsNotInMask(MO.getRegMask()); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (Reg == 0) continue; if (!MO.isDef()) continue; // Ignore two-addr defs. if (MI->isRegTiedToUseOperand(i)) continue; LiveRegs.reset(Reg); // Repeat for all subregs. for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) LiveRegs.reset(*SubRegs); } // Examine all used registers and set/clear kill flag. When a // register is used multiple times we only set the kill flag on // the first use. killedRegs.reset(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse()) continue; unsigned Reg = MO.getReg(); if ((Reg == 0) || MRI.isReserved(Reg)) continue; bool kill = false; if (!killedRegs.test(Reg)) { kill = true; // A register is not killed if any subregs are live... for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) { if (LiveRegs.test(*SubRegs)) { kill = false; break; } } // If subreg is not live, then register is killed if it became // live in this instruction if (kill) kill = !LiveRegs.test(Reg); } if (MO.isKill() != kill) { DEBUG(dbgs() << "Fixing " << MO << " in "); // Warning: ToggleKillFlag may invalidate MO. ToggleKillFlag(MI, MO); DEBUG(MI->dump()); } killedRegs.set(Reg); } // Mark any used register (that is not using undef) and subregs as // now live... for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { MachineOperand &MO = MI->getOperand(i); if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue; unsigned Reg = MO.getReg(); if ((Reg == 0) || MRI.isReserved(Reg)) continue; LiveRegs.set(Reg); for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) LiveRegs.set(*SubRegs); } } } //===----------------------------------------------------------------------===// // Top-Down Scheduling //===----------------------------------------------------------------------===// /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. Add it to /// the PendingQueue if the count reaches zero. void SchedulePostRATDList::ReleaseSucc(SUnit *SU, SDep *SuccEdge) { SUnit *SuccSU = SuccEdge->getSUnit(); if (SuccEdge->isWeak()) { --SuccSU->WeakPredsLeft; return; } #ifndef NDEBUG if (SuccSU->NumPredsLeft == 0) { dbgs() << "*** Scheduling failed! ***\n"; SuccSU->dump(this); dbgs() << " has been released too many times!\n"; llvm_unreachable(0); } #endif --SuccSU->NumPredsLeft; // Standard scheduler algorithms will recompute the depth of the successor // here as such: // SuccSU->setDepthToAtLeast(SU->getDepth() + SuccEdge->getLatency()); // // However, we lazily compute node depth instead. Note that // ScheduleNodeTopDown has already updated the depth of this node which causes // all descendents to be marked dirty. Setting the successor depth explicitly // here would cause depth to be recomputed for all its ancestors. If the // successor is not yet ready (because of a transitively redundant edge) then // this causes depth computation to be quadratic in the size of the DAG. // If all the node's predecessors are scheduled, this node is ready // to be scheduled. Ignore the special ExitSU node. if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU) PendingQueue.push_back(SuccSU); } /// ReleaseSuccessors - Call ReleaseSucc on each of SU's successors. void SchedulePostRATDList::ReleaseSuccessors(SUnit *SU) { for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end(); I != E; ++I) { ReleaseSucc(SU, &*I); } } /// ScheduleNodeTopDown - Add the node to the schedule. Decrement the pending /// count of its successors. If a successor pending count is zero, add it to /// the Available queue. void SchedulePostRATDList::ScheduleNodeTopDown(SUnit *SU, unsigned CurCycle) { DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: "); DEBUG(SU->dump(this)); Sequence.push_back(SU); assert(CurCycle >= SU->getDepth() && "Node scheduled above its depth!"); SU->setDepthToAtLeast(CurCycle); ReleaseSuccessors(SU); SU->isScheduled = true; AvailableQueue.scheduledNode(SU); } /// ListScheduleTopDown - The main loop of list scheduling for top-down /// schedulers. void SchedulePostRATDList::ListScheduleTopDown() { unsigned CurCycle = 0; // We're scheduling top-down but we're visiting the regions in // bottom-up order, so we don't know the hazards at the start of a // region. So assume no hazards (this should usually be ok as most // blocks are a single region). HazardRec->Reset(); // Release any successors of the special Entry node. ReleaseSuccessors(&EntrySU); // Add all leaves to Available queue. for (unsigned i = 0, e = SUnits.size(); i != e; ++i) { // It is available if it has no predecessors. if (!SUnits[i].NumPredsLeft && !SUnits[i].isAvailable) { AvailableQueue.push(&SUnits[i]); SUnits[i].isAvailable = true; } } // In any cycle where we can't schedule any instructions, we must // stall or emit a noop, depending on the target. bool CycleHasInsts = false; // While Available queue is not empty, grab the node with the highest // priority. If it is not ready put it back. Schedule the node. std::vector<SUnit*> NotReady; Sequence.reserve(SUnits.size()); while (!AvailableQueue.empty() || !PendingQueue.empty()) { // Check to see if any of the pending instructions are ready to issue. If // so, add them to the available queue. unsigned MinDepth = ~0u; for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) { if (PendingQueue[i]->getDepth() <= CurCycle) { AvailableQueue.push(PendingQueue[i]); PendingQueue[i]->isAvailable = true; PendingQueue[i] = PendingQueue.back(); PendingQueue.pop_back(); --i; --e; } else if (PendingQueue[i]->getDepth() < MinDepth) MinDepth = PendingQueue[i]->getDepth(); } DEBUG(dbgs() << "\n*** Examining Available\n"; AvailableQueue.dump(this)); SUnit *FoundSUnit = 0; bool HasNoopHazards = false; while (!AvailableQueue.empty()) { SUnit *CurSUnit = AvailableQueue.pop(); ScheduleHazardRecognizer::HazardType HT = HazardRec->getHazardType(CurSUnit, 0/*no stalls*/); if (HT == ScheduleHazardRecognizer::NoHazard) { FoundSUnit = CurSUnit; break; } // Remember if this is a noop hazard. HasNoopHazards |= HT == ScheduleHazardRecognizer::NoopHazard; NotReady.push_back(CurSUnit); } // Add the nodes that aren't ready back onto the available list. if (!NotReady.empty()) { AvailableQueue.push_all(NotReady); NotReady.clear(); } // If we found a node to schedule... if (FoundSUnit) { // ... schedule the node... ScheduleNodeTopDown(FoundSUnit, CurCycle); HazardRec->EmitInstruction(FoundSUnit); CycleHasInsts = true; if (HazardRec->atIssueLimit()) { DEBUG(dbgs() << "*** Max instructions per cycle " << CurCycle << '\n'); HazardRec->AdvanceCycle(); ++CurCycle; CycleHasInsts = false; } } else { if (CycleHasInsts) { DEBUG(dbgs() << "*** Finished cycle " << CurCycle << '\n'); HazardRec->AdvanceCycle(); } else if (!HasNoopHazards) { // Otherwise, we have a pipeline stall, but no other problem, // just advance the current cycle and try again. DEBUG(dbgs() << "*** Stall in cycle " << CurCycle << '\n'); HazardRec->AdvanceCycle(); ++NumStalls; } else { // Otherwise, we have no instructions to issue and we have instructions // that will fault if we don't do this right. This is the case for // processors without pipeline interlocks and other cases. DEBUG(dbgs() << "*** Emitting noop in cycle " << CurCycle << '\n'); HazardRec->EmitNoop(); Sequence.push_back(0); // NULL here means noop ++NumNoops; } ++CurCycle; CycleHasInsts = false; } } #ifndef NDEBUG unsigned ScheduledNodes = VerifyScheduledDAG(/*isBottomUp=*/false); unsigned Noops = 0; for (unsigned i = 0, e = Sequence.size(); i != e; ++i) if (!Sequence[i]) ++Noops; assert(Sequence.size() - Noops == ScheduledNodes && "The number of nodes scheduled doesn't match the expected number!"); #endif // NDEBUG } // EmitSchedule - Emit the machine code in scheduled order. void SchedulePostRATDList::EmitSchedule() { RegionBegin = RegionEnd; // If first instruction was a DBG_VALUE then put it back. if (FirstDbgValue) BB->splice(RegionEnd, BB, FirstDbgValue); // Then re-insert them according to the given schedule. for (unsigned i = 0, e = Sequence.size(); i != e; i++) { if (SUnit *SU = Sequence[i]) BB->splice(RegionEnd, BB, SU->getInstr()); else // Null SUnit* is a noop. TII->insertNoop(*BB, RegionEnd); // Update the Begin iterator, as the first instruction in the block // may have been scheduled later. if (i == 0) RegionBegin = prior(RegionEnd); } // Reinsert any remaining debug_values. for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) { std::pair<MachineInstr *, MachineInstr *> P = *prior(DI); MachineInstr *DbgValue = P.first; MachineBasicBlock::iterator OrigPrivMI = P.second; BB->splice(++OrigPrivMI, BB, DbgValue); } DbgValues.clear(); FirstDbgValue = NULL; }