//===-- RegisterScavenging.cpp - Machine register scavenging --------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the machine register scavenger. It can provide // information, such as unused registers, at any point in a machine basic block. // It also provides a mechanism to make registers available by evicting them to // spill slots. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "reg-scavenging" #include "llvm/CodeGen/RegisterScavenging.h" #include "llvm/CodeGen/MachineBasicBlock.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetInstrInfo.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetRegisterInfo.h" using namespace llvm; /// setUsed - Set the register and its sub-registers as being used. void RegScavenger::setUsed(unsigned Reg) { RegsAvailable.reset(Reg); for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) RegsAvailable.reset(*SubRegs); } bool RegScavenger::isAliasUsed(unsigned Reg) const { for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) if (isUsed(*AI, *AI == Reg)) return true; return false; } void RegScavenger::initRegState() { ScavengedReg = 0; ScavengedRC = NULL; ScavengeRestore = NULL; // All registers started out unused. RegsAvailable.set(); if (!MBB) return; // Live-in registers are in use. for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(), E = MBB->livein_end(); I != E; ++I) setUsed(*I); // Pristine CSRs are also unavailable. BitVector PR = MBB->getParent()->getFrameInfo()->getPristineRegs(MBB); for (int I = PR.find_first(); I>0; I = PR.find_next(I)) setUsed(I); } void RegScavenger::enterBasicBlock(MachineBasicBlock *mbb) { MachineFunction &MF = *mbb->getParent(); const TargetMachine &TM = MF.getTarget(); TII = TM.getInstrInfo(); TRI = TM.getRegisterInfo(); MRI = &MF.getRegInfo(); assert((NumPhysRegs == 0 || NumPhysRegs == TRI->getNumRegs()) && "Target changed?"); // It is not possible to use the register scavenger after late optimization // passes that don't preserve accurate liveness information. assert(MRI->tracksLiveness() && "Cannot use register scavenger with inaccurate liveness"); // Self-initialize. if (!MBB) { NumPhysRegs = TRI->getNumRegs(); RegsAvailable.resize(NumPhysRegs); KillRegs.resize(NumPhysRegs); DefRegs.resize(NumPhysRegs); // Create callee-saved registers bitvector. CalleeSavedRegs.resize(NumPhysRegs); const uint16_t *CSRegs = TRI->getCalleeSavedRegs(&MF); if (CSRegs != NULL) for (unsigned i = 0; CSRegs[i]; ++i) CalleeSavedRegs.set(CSRegs[i]); } MBB = mbb; initRegState(); Tracking = false; } void RegScavenger::addRegWithSubRegs(BitVector &BV, unsigned Reg) { BV.set(Reg); for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) BV.set(*SubRegs); } void RegScavenger::forward() { // Move ptr forward. if (!Tracking) { MBBI = MBB->begin(); Tracking = true; } else { assert(MBBI != MBB->end() && "Already past the end of the basic block!"); MBBI = llvm::next(MBBI); } assert(MBBI != MBB->end() && "Already at the end of the basic block!"); MachineInstr *MI = MBBI; if (MI == ScavengeRestore) { ScavengedReg = 0; ScavengedRC = NULL; ScavengeRestore = NULL; } if (MI->isDebugValue()) return; // Find out which registers are early clobbered, killed, defined, and marked // def-dead in this instruction. // FIXME: The scavenger is not predication aware. If the instruction is // predicated, conservatively assume "kill" markers do not actually kill the // register. Similarly ignores "dead" markers. bool isPred = TII->isPredicated(MI); KillRegs.reset(); DefRegs.reset(); for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isRegMask()) (isPred ? DefRegs : KillRegs).setBitsNotInMask(MO.getRegMask()); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg || isReserved(Reg)) continue; if (MO.isUse()) { // Ignore undef uses. if (MO.isUndef()) continue; if (!isPred && MO.isKill()) addRegWithSubRegs(KillRegs, Reg); } else { assert(MO.isDef()); if (!isPred && MO.isDead()) addRegWithSubRegs(KillRegs, Reg); else addRegWithSubRegs(DefRegs, Reg); } } // Verify uses and defs. #ifndef NDEBUG for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (!MO.isReg()) continue; unsigned Reg = MO.getReg(); if (!Reg || isReserved(Reg)) continue; if (MO.isUse()) { if (MO.isUndef()) continue; if (!isUsed(Reg)) { // Check if it's partial live: e.g. // D0 = insert_subreg D0<undef>, S0 // ... D0 // The problem is the insert_subreg could be eliminated. The use of // D0 is using a partially undef value. This is not *incorrect* since // S1 is can be freely clobbered. // Ideally we would like a way to model this, but leaving the // insert_subreg around causes both correctness and performance issues. bool SubUsed = false; for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) if (isUsed(*SubRegs)) { SubUsed = true; break; } if (!SubUsed) { MBB->getParent()->verify(NULL, "In Register Scavenger"); llvm_unreachable("Using an undefined register!"); } (void)SubUsed; } } else { assert(MO.isDef()); #if 0 // FIXME: Enable this once we've figured out how to correctly transfer // implicit kills during codegen passes like the coalescer. assert((KillRegs.test(Reg) || isUnused(Reg) || isLiveInButUnusedBefore(Reg, MI, MBB, TRI, MRI)) && "Re-defining a live register!"); #endif } } #endif // NDEBUG // Commit the changes. setUnused(KillRegs); setUsed(DefRegs); } void RegScavenger::getRegsUsed(BitVector &used, bool includeReserved) { used = RegsAvailable; used.flip(); if (includeReserved) used |= MRI->getReservedRegs(); else used.reset(MRI->getReservedRegs()); } unsigned RegScavenger::FindUnusedReg(const TargetRegisterClass *RC) const { for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); I != E; ++I) if (!isAliasUsed(*I)) { DEBUG(dbgs() << "Scavenger found unused reg: " << TRI->getName(*I) << "\n"); return *I; } return 0; } /// getRegsAvailable - Return all available registers in the register class /// in Mask. BitVector RegScavenger::getRegsAvailable(const TargetRegisterClass *RC) { BitVector Mask(TRI->getNumRegs()); for (TargetRegisterClass::iterator I = RC->begin(), E = RC->end(); I != E; ++I) if (!isAliasUsed(*I)) Mask.set(*I); return Mask; } /// findSurvivorReg - Return the candidate register that is unused for the /// longest after StargMII. UseMI is set to the instruction where the search /// stopped. /// /// No more than InstrLimit instructions are inspected. /// unsigned RegScavenger::findSurvivorReg(MachineBasicBlock::iterator StartMI, BitVector &Candidates, unsigned InstrLimit, MachineBasicBlock::iterator &UseMI) { int Survivor = Candidates.find_first(); assert(Survivor > 0 && "No candidates for scavenging"); MachineBasicBlock::iterator ME = MBB->getFirstTerminator(); assert(StartMI != ME && "MI already at terminator"); MachineBasicBlock::iterator RestorePointMI = StartMI; MachineBasicBlock::iterator MI = StartMI; bool inVirtLiveRange = false; for (++MI; InstrLimit > 0 && MI != ME; ++MI, --InstrLimit) { if (MI->isDebugValue()) { ++InstrLimit; // Don't count debug instructions continue; } bool isVirtKillInsn = false; bool isVirtDefInsn = false; // Remove any candidates touched by instruction. for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { const MachineOperand &MO = MI->getOperand(i); if (MO.isRegMask()) Candidates.clearBitsNotInMask(MO.getRegMask()); if (!MO.isReg() || MO.isUndef() || !MO.getReg()) continue; if (TargetRegisterInfo::isVirtualRegister(MO.getReg())) { if (MO.isDef()) isVirtDefInsn = true; else if (MO.isKill()) isVirtKillInsn = true; continue; } for (MCRegAliasIterator AI(MO.getReg(), TRI, true); AI.isValid(); ++AI) Candidates.reset(*AI); } // If we're not in a virtual reg's live range, this is a valid // restore point. if (!inVirtLiveRange) RestorePointMI = MI; // Update whether we're in the live range of a virtual register if (isVirtKillInsn) inVirtLiveRange = false; if (isVirtDefInsn) inVirtLiveRange = true; // Was our survivor untouched by this instruction? if (Candidates.test(Survivor)) continue; // All candidates gone? if (Candidates.none()) break; Survivor = Candidates.find_first(); } // If we ran off the end, that's where we want to restore. if (MI == ME) RestorePointMI = ME; assert (RestorePointMI != StartMI && "No available scavenger restore location!"); // We ran out of candidates, so stop the search. UseMI = RestorePointMI; return Survivor; } static unsigned getFrameIndexOperandNum(MachineInstr *MI) { unsigned i = 0; while (!MI->getOperand(i).isFI()) { ++i; assert(i < MI->getNumOperands() && "Instr doesn't have FrameIndex operand!"); } return i; } unsigned RegScavenger::scavengeRegister(const TargetRegisterClass *RC, MachineBasicBlock::iterator I, int SPAdj) { // Consider all allocatable registers in the register class initially BitVector Candidates = TRI->getAllocatableSet(*I->getParent()->getParent(), RC); // Exclude all the registers being used by the instruction. for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) { MachineOperand &MO = I->getOperand(i); if (MO.isReg() && MO.getReg() != 0 && !TargetRegisterInfo::isVirtualRegister(MO.getReg())) Candidates.reset(MO.getReg()); } // Try to find a register that's unused if there is one, as then we won't // have to spill. Search explicitly rather than masking out based on // RegsAvailable, as RegsAvailable does not take aliases into account. // That's what getRegsAvailable() is for. BitVector Available = getRegsAvailable(RC); Available &= Candidates; if (Available.any()) Candidates = Available; // Find the register whose use is furthest away. MachineBasicBlock::iterator UseMI; unsigned SReg = findSurvivorReg(I, Candidates, 25, UseMI); // If we found an unused register there is no reason to spill it. if (!isAliasUsed(SReg)) { DEBUG(dbgs() << "Scavenged register: " << TRI->getName(SReg) << "\n"); return SReg; } assert(ScavengedReg == 0 && "Scavenger slot is live, unable to scavenge another register!"); // Avoid infinite regress ScavengedReg = SReg; // If the target knows how to save/restore the register, let it do so; // otherwise, use the emergency stack spill slot. if (!TRI->saveScavengerRegister(*MBB, I, UseMI, RC, SReg)) { // Spill the scavenged register before I. assert(ScavengingFrameIndex >= 0 && "Cannot scavenge register without an emergency spill slot!"); TII->storeRegToStackSlot(*MBB, I, SReg, true, ScavengingFrameIndex, RC,TRI); MachineBasicBlock::iterator II = prior(I); unsigned FIOperandNum = getFrameIndexOperandNum(II); TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this); // Restore the scavenged register before its use (or first terminator). TII->loadRegFromStackSlot(*MBB, UseMI, SReg, ScavengingFrameIndex, RC, TRI); II = prior(UseMI); FIOperandNum = getFrameIndexOperandNum(II); TRI->eliminateFrameIndex(II, SPAdj, FIOperandNum, this); } ScavengeRestore = prior(UseMI); // Doing this here leads to infinite regress. // ScavengedReg = SReg; ScavengedRC = RC; DEBUG(dbgs() << "Scavenged register (with spill): " << TRI->getName(SReg) << "\n"); return SReg; }