//===-- StackProtector.cpp - Stack Protector Insertion --------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass inserts stack protectors into functions which need them. A variable // with a random value in it is stored onto the stack before the local variables // are allocated. Upon exiting the block, the stored value is checked. If it's // changed, then there was some sort of violation and the program aborts. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "stack-protector" #include "llvm/CodeGen/Passes.h" #include "llvm/ADT/SmallPtrSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/ADT/Triple.h" #include "llvm/Analysis/Dominators.h" #include "llvm/IR/Attributes.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetLowering.h" using namespace llvm; STATISTIC(NumFunProtected, "Number of functions protected"); STATISTIC(NumAddrTaken, "Number of local variables that have their address" " taken."); namespace { class StackProtector : public FunctionPass { /// TLI - Keep a pointer of a TargetLowering to consult for determining /// target type sizes. const TargetLoweringBase *TLI; Function *F; Module *M; DominatorTree *DT; /// VisitedPHIs - The set of PHI nodes visited when determining /// if a variable's reference has been taken. This set /// is maintained to ensure we don't visit the same PHI node multiple /// times. SmallPtrSet<const PHINode*, 16> VisitedPHIs; /// InsertStackProtectors - Insert code into the prologue and epilogue of /// the function. /// /// - The prologue code loads and stores the stack guard onto the stack. /// - The epilogue checks the value stored in the prologue against the /// original value. It calls __stack_chk_fail if they differ. bool InsertStackProtectors(); /// CreateFailBB - Create a basic block to jump to when the stack protector /// check fails. BasicBlock *CreateFailBB(); /// ContainsProtectableArray - Check whether the type either is an array or /// contains an array of sufficient size so that we need stack protectors /// for it. bool ContainsProtectableArray(Type *Ty, bool Strong = false, bool InStruct = false) const; /// \brief Check whether a stack allocation has its address taken. bool HasAddressTaken(const Instruction *AI); /// RequiresStackProtector - Check whether or not this function needs a /// stack protector based upon the stack protector level. bool RequiresStackProtector(); public: static char ID; // Pass identification, replacement for typeid. StackProtector() : FunctionPass(ID), TLI(0) { initializeStackProtectorPass(*PassRegistry::getPassRegistry()); } StackProtector(const TargetLoweringBase *tli) : FunctionPass(ID), TLI(tli) { initializeStackProtectorPass(*PassRegistry::getPassRegistry()); } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved<DominatorTree>(); } virtual bool runOnFunction(Function &Fn); }; } // end anonymous namespace char StackProtector::ID = 0; INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors", false, false) FunctionPass *llvm::createStackProtectorPass(const TargetLoweringBase *tli) { return new StackProtector(tli); } bool StackProtector::runOnFunction(Function &Fn) { F = &Fn; M = F->getParent(); DT = getAnalysisIfAvailable<DominatorTree>(); if (!RequiresStackProtector()) return false; ++NumFunProtected; return InsertStackProtectors(); } /// ContainsProtectableArray - Check whether the type either is an array or /// contains a char array of sufficient size so that we need stack protectors /// for it. bool StackProtector::ContainsProtectableArray(Type *Ty, bool Strong, bool InStruct) const { if (!Ty) return false; if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { // In strong mode any array, regardless of type and size, triggers a // protector if (Strong) return true; const TargetMachine &TM = TLI->getTargetMachine(); if (!AT->getElementType()->isIntegerTy(8)) { Triple Trip(TM.getTargetTriple()); // If we're on a non-Darwin platform or we're inside of a structure, don't // add stack protectors unless the array is a character array. if (InStruct || !Trip.isOSDarwin()) return false; } // If an array has more than SSPBufferSize bytes of allocated space, then we // emit stack protectors. if (TM.Options.SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) return true; } const StructType *ST = dyn_cast<StructType>(Ty); if (!ST) return false; for (StructType::element_iterator I = ST->element_begin(), E = ST->element_end(); I != E; ++I) if (ContainsProtectableArray(*I, Strong, true)) return true; return false; } bool StackProtector::HasAddressTaken(const Instruction *AI) { for (Value::const_use_iterator UI = AI->use_begin(), UE = AI->use_end(); UI != UE; ++UI) { const User *U = *UI; if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { if (AI == SI->getValueOperand()) return true; } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { if (AI == SI->getOperand(0)) return true; } else if (isa<CallInst>(U)) { return true; } else if (isa<InvokeInst>(U)) { return true; } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { if (HasAddressTaken(SI)) return true; } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { // Keep track of what PHI nodes we have already visited to ensure // they are only visited once. if (VisitedPHIs.insert(PN)) if (HasAddressTaken(PN)) return true; } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { if (HasAddressTaken(GEP)) return true; } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { if (HasAddressTaken(BI)) return true; } } return false; } /// \brief Check whether or not this function needs a stack protector based /// upon the stack protector level. /// /// We use two heuristics: a standard (ssp) and strong (sspstrong). /// The standard heuristic which will add a guard variable to functions that /// call alloca with a either a variable size or a size >= SSPBufferSize, /// functions with character buffers larger than SSPBufferSize, and functions /// with aggregates containing character buffers larger than SSPBufferSize. The /// strong heuristic will add a guard variables to functions that call alloca /// regardless of size, functions with any buffer regardless of type and size, /// functions with aggregates that contain any buffer regardless of type and /// size, and functions that contain stack-based variables that have had their /// address taken. bool StackProtector::RequiresStackProtector() { bool Strong = false; if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::StackProtectReq)) return true; else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::StackProtectStrong)) Strong = true; else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::StackProtect)) return false; for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { BasicBlock *BB = I; for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) { if (AI->isArrayAllocation()) { // SSP-Strong: Enable protectors for any call to alloca, regardless // of size. if (Strong) return true; if (const ConstantInt *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { unsigned BufferSize = TLI->getTargetMachine().Options.SSPBufferSize; if (CI->getLimitedValue(BufferSize) >= BufferSize) // A call to alloca with size >= SSPBufferSize requires // stack protectors. return true; } else // A call to alloca with a variable size requires protectors. return true; } if (ContainsProtectableArray(AI->getAllocatedType(), Strong)) return true; if (Strong && HasAddressTaken(AI)) { ++NumAddrTaken; return true; } } } } return false; } /// InsertStackProtectors - Insert code into the prologue and epilogue of the /// function. /// /// - The prologue code loads and stores the stack guard onto the stack. /// - The epilogue checks the value stored in the prologue against the original /// value. It calls __stack_chk_fail if they differ. bool StackProtector::InsertStackProtectors() { BasicBlock *FailBB = 0; // The basic block to jump to if check fails. BasicBlock *FailBBDom = 0; // FailBB's dominator. AllocaInst *AI = 0; // Place on stack that stores the stack guard. Value *StackGuardVar = 0; // The stack guard variable. for (Function::iterator I = F->begin(), E = F->end(); I != E; ) { BasicBlock *BB = I++; ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); if (!RI) continue; if (!FailBB) { // Insert code into the entry block that stores the __stack_chk_guard // variable onto the stack: // // entry: // StackGuardSlot = alloca i8* // StackGuard = load __stack_chk_guard // call void @llvm.stackprotect.create(StackGuard, StackGuardSlot) // PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); unsigned AddressSpace, Offset; if (TLI->getStackCookieLocation(AddressSpace, Offset)) { Constant *OffsetVal = ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset); StackGuardVar = ConstantExpr::getIntToPtr(OffsetVal, PointerType::get(PtrTy, AddressSpace)); } else { StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy); } BasicBlock &Entry = F->getEntryBlock(); Instruction *InsPt = &Entry.front(); AI = new AllocaInst(PtrTy, "StackGuardSlot", InsPt); LoadInst *LI = new LoadInst(StackGuardVar, "StackGuard", false, InsPt); Value *Args[] = { LI, AI }; CallInst:: Create(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), Args, "", InsPt); // Create the basic block to jump to when the guard check fails. FailBB = CreateFailBB(); } // For each block with a return instruction, convert this: // // return: // ... // ret ... // // into this: // // return: // ... // %1 = load __stack_chk_guard // %2 = load StackGuardSlot // %3 = cmp i1 %1, %2 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk // // SP_return: // ret ... // // CallStackCheckFailBlk: // call void @__stack_chk_fail() // unreachable // Split the basic block before the return instruction. BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return"); if (DT && DT->isReachableFromEntry(BB)) { DT->addNewBlock(NewBB, BB); FailBBDom = FailBBDom ? DT->findNearestCommonDominator(FailBBDom, BB) :BB; } // Remove default branch instruction to the new BB. BB->getTerminator()->eraseFromParent(); // Move the newly created basic block to the point right after the old basic // block so that it's in the "fall through" position. NewBB->moveAfter(BB); // Generate the stack protector instructions in the old basic block. LoadInst *LI1 = new LoadInst(StackGuardVar, "", false, BB); LoadInst *LI2 = new LoadInst(AI, "", true, BB); ICmpInst *Cmp = new ICmpInst(*BB, CmpInst::ICMP_EQ, LI1, LI2, ""); BranchInst::Create(NewBB, FailBB, Cmp, BB); } // Return if we didn't modify any basic blocks. I.e., there are no return // statements in the function. if (!FailBB) return false; if (DT && FailBBDom) DT->addNewBlock(FailBB, FailBBDom); return true; } /// CreateFailBB - Create a basic block to jump to when the stack protector /// check fails. BasicBlock *StackProtector::CreateFailBB() { BasicBlock *FailBB = BasicBlock::Create(F->getContext(), "CallStackCheckFailBlk", F); Constant *StackChkFail = M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(F->getContext()), NULL); CallInst::Create(StackChkFail, "", FailBB); new UnreachableInst(F->getContext(), FailBB); return FailBB; }