//===-- RuntimeDyldImpl.h - Run-time dynamic linker for MC-JIT --*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Interface for the implementations of runtime dynamic linker facilities. // //===----------------------------------------------------------------------===// #ifndef LLVM_RUNTIME_DYLD_IMPL_H #define LLVM_RUNTIME_DYLD_IMPL_H #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringMap.h" #include "llvm/ADT/Triple.h" #include "llvm/ExecutionEngine/ObjectImage.h" #include "llvm/ExecutionEngine/RuntimeDyld.h" #include "llvm/Object/ObjectFile.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/Format.h" #include "llvm/Support/Host.h" #include "llvm/Support/SwapByteOrder.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Support/system_error.h" #include <map> using namespace llvm; using namespace llvm::object; namespace llvm { class ObjectBuffer; class Twine; /// SectionEntry - represents a section emitted into memory by the dynamic /// linker. class SectionEntry { public: /// Name - section name. StringRef Name; /// Address - address in the linker's memory where the section resides. uint8_t *Address; /// Size - section size. size_t Size; /// LoadAddress - the address of the section in the target process's memory. /// Used for situations in which JIT-ed code is being executed in the address /// space of a separate process. If the code executes in the same address /// space where it was JIT-ed, this just equals Address. uint64_t LoadAddress; /// StubOffset - used for architectures with stub functions for far /// relocations (like ARM). uintptr_t StubOffset; /// ObjAddress - address of the section in the in-memory object file. Used /// for calculating relocations in some object formats (like MachO). uintptr_t ObjAddress; SectionEntry(StringRef name, uint8_t *address, size_t size, uintptr_t stubOffset, uintptr_t objAddress) : Name(name), Address(address), Size(size), LoadAddress((uintptr_t)address), StubOffset(stubOffset), ObjAddress(objAddress) {} }; /// RelocationEntry - used to represent relocations internally in the dynamic /// linker. class RelocationEntry { public: /// SectionID - the section this relocation points to. unsigned SectionID; /// Offset - offset into the section. uintptr_t Offset; /// RelType - relocation type. uint32_t RelType; /// Addend - the relocation addend encoded in the instruction itself. Also /// used to make a relocation section relative instead of symbol relative. intptr_t Addend; RelocationEntry(unsigned id, uint64_t offset, uint32_t type, int64_t addend) : SectionID(id), Offset(offset), RelType(type), Addend(addend) {} }; /// ObjRelocationInfo - relocation information as read from the object file. /// Used to pass around data taken from object::RelocationRef, together with /// the section to which the relocation points (represented by a SectionID). class ObjRelocationInfo { public: unsigned SectionID; uint64_t Offset; SymbolRef Symbol; uint64_t Type; int64_t AdditionalInfo; }; class RelocationValueRef { public: unsigned SectionID; intptr_t Addend; const char *SymbolName; RelocationValueRef(): SectionID(0), Addend(0), SymbolName(0) {} inline bool operator==(const RelocationValueRef &Other) const { return std::memcmp(this, &Other, sizeof(RelocationValueRef)) == 0; } inline bool operator <(const RelocationValueRef &Other) const { return std::memcmp(this, &Other, sizeof(RelocationValueRef)) < 0; } }; class RuntimeDyldImpl { protected: // The MemoryManager to load objects into. RTDyldMemoryManager *MemMgr; // A list of all sections emitted by the dynamic linker. These sections are // referenced in the code by means of their index in this list - SectionID. typedef SmallVector<SectionEntry, 64> SectionList; SectionList Sections; // Keep a map of sections from object file to the SectionID which // references it. typedef std::map<SectionRef, unsigned> ObjSectionToIDMap; // A global symbol table for symbols from all loaded modules. Maps the // symbol name to a (SectionID, offset in section) pair. typedef std::pair<unsigned, uintptr_t> SymbolLoc; typedef StringMap<SymbolLoc> SymbolTableMap; SymbolTableMap GlobalSymbolTable; // Pair representing the size and alignment requirement for a common symbol. typedef std::pair<unsigned, unsigned> CommonSymbolInfo; // Keep a map of common symbols to their info pairs typedef std::map<SymbolRef, CommonSymbolInfo> CommonSymbolMap; // For each symbol, keep a list of relocations based on it. Anytime // its address is reassigned (the JIT re-compiled the function, e.g.), // the relocations get re-resolved. // The symbol (or section) the relocation is sourced from is the Key // in the relocation list where it's stored. typedef SmallVector<RelocationEntry, 64> RelocationList; // Relocations to sections already loaded. Indexed by SectionID which is the // source of the address. The target where the address will be written is // SectionID/Offset in the relocation itself. DenseMap<unsigned, RelocationList> Relocations; // Relocations to external symbols that are not yet resolved. Symbols are // external when they aren't found in the global symbol table of all loaded // modules. This map is indexed by symbol name. StringMap<RelocationList> ExternalSymbolRelocations; typedef std::map<RelocationValueRef, uintptr_t> StubMap; Triple::ArchType Arch; inline unsigned getMaxStubSize() { if (Arch == Triple::arm || Arch == Triple::thumb) return 8; // 32-bit instruction and 32-bit address else if (Arch == Triple::mipsel || Arch == Triple::mips) return 16; else if (Arch == Triple::ppc64) return 44; else return 0; } bool HasError; std::string ErrorStr; // Set the error state and record an error string. bool Error(const Twine &Msg) { ErrorStr = Msg.str(); HasError = true; return true; } uint64_t getSectionLoadAddress(unsigned SectionID) { return Sections[SectionID].LoadAddress; } uint8_t *getSectionAddress(unsigned SectionID) { return (uint8_t*)Sections[SectionID].Address; } // Subclasses can override this method to get the alignment requirement of // a common symbol. Returns no alignment requirement if not implemented. virtual unsigned getCommonSymbolAlignment(const SymbolRef &Sym) { return 0; } void writeInt16BE(uint8_t *Addr, uint16_t Value) { if (sys::isLittleEndianHost()) Value = sys::SwapByteOrder(Value); *Addr = (Value >> 8) & 0xFF; *(Addr+1) = Value & 0xFF; } void writeInt32BE(uint8_t *Addr, uint32_t Value) { if (sys::isLittleEndianHost()) Value = sys::SwapByteOrder(Value); *Addr = (Value >> 24) & 0xFF; *(Addr+1) = (Value >> 16) & 0xFF; *(Addr+2) = (Value >> 8) & 0xFF; *(Addr+3) = Value & 0xFF; } void writeInt64BE(uint8_t *Addr, uint64_t Value) { if (sys::isLittleEndianHost()) Value = sys::SwapByteOrder(Value); *Addr = (Value >> 56) & 0xFF; *(Addr+1) = (Value >> 48) & 0xFF; *(Addr+2) = (Value >> 40) & 0xFF; *(Addr+3) = (Value >> 32) & 0xFF; *(Addr+4) = (Value >> 24) & 0xFF; *(Addr+5) = (Value >> 16) & 0xFF; *(Addr+6) = (Value >> 8) & 0xFF; *(Addr+7) = Value & 0xFF; } /// \brief Given the common symbols discovered in the object file, emit a /// new section for them and update the symbol mappings in the object and /// symbol table. void emitCommonSymbols(ObjectImage &Obj, const CommonSymbolMap &CommonSymbols, uint64_t TotalSize, SymbolTableMap &SymbolTable); /// \brief Emits section data from the object file to the MemoryManager. /// \param IsCode if it's true then allocateCodeSection() will be /// used for emits, else allocateDataSection() will be used. /// \return SectionID. unsigned emitSection(ObjectImage &Obj, const SectionRef &Section, bool IsCode); /// \brief Find Section in LocalSections. If the secton is not found - emit /// it and store in LocalSections. /// \param IsCode if it's true then allocateCodeSection() will be /// used for emmits, else allocateDataSection() will be used. /// \return SectionID. unsigned findOrEmitSection(ObjectImage &Obj, const SectionRef &Section, bool IsCode, ObjSectionToIDMap &LocalSections); // \brief Add a relocation entry that uses the given section. void addRelocationForSection(const RelocationEntry &RE, unsigned SectionID); // \brief Add a relocation entry that uses the given symbol. This symbol may // be found in the global symbol table, or it may be external. void addRelocationForSymbol(const RelocationEntry &RE, StringRef SymbolName); /// \brief Emits long jump instruction to Addr. /// \return Pointer to the memory area for emitting target address. uint8_t* createStubFunction(uint8_t *Addr); /// \brief Resolves relocations from Relocs list with address from Value. void resolveRelocationList(const RelocationList &Relocs, uint64_t Value); void resolveRelocationEntry(const RelocationEntry &RE, uint64_t Value); /// \brief A object file specific relocation resolver /// \param Section The section where the relocation is being applied /// \param Offset The offset into the section for this relocation /// \param Value Target symbol address to apply the relocation action /// \param Type object file specific relocation type /// \param Addend A constant addend used to compute the value to be stored /// into the relocatable field virtual void resolveRelocation(const SectionEntry &Section, uint64_t Offset, uint64_t Value, uint32_t Type, int64_t Addend) = 0; /// \brief Parses the object file relocation and stores it to Relocations /// or SymbolRelocations (this depends on the object file type). virtual void processRelocationRef(const ObjRelocationInfo &Rel, ObjectImage &Obj, ObjSectionToIDMap &ObjSectionToID, const SymbolTableMap &Symbols, StubMap &Stubs) = 0; /// \brief Resolve relocations to external symbols. void resolveExternalSymbols(); virtual ObjectImage *createObjectImage(ObjectBuffer *InputBuffer); public: RuntimeDyldImpl(RTDyldMemoryManager *mm) : MemMgr(mm), HasError(false) {} virtual ~RuntimeDyldImpl(); ObjectImage *loadObject(ObjectBuffer *InputBuffer); void *getSymbolAddress(StringRef Name) { // FIXME: Just look up as a function for now. Overly simple of course. // Work in progress. if (GlobalSymbolTable.find(Name) == GlobalSymbolTable.end()) return 0; SymbolLoc Loc = GlobalSymbolTable.lookup(Name); return getSectionAddress(Loc.first) + Loc.second; } uint64_t getSymbolLoadAddress(StringRef Name) { // FIXME: Just look up as a function for now. Overly simple of course. // Work in progress. if (GlobalSymbolTable.find(Name) == GlobalSymbolTable.end()) return 0; SymbolLoc Loc = GlobalSymbolTable.lookup(Name); return getSectionLoadAddress(Loc.first) + Loc.second; } void resolveRelocations(); void reassignSectionAddress(unsigned SectionID, uint64_t Addr); void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress); // Is the linker in an error state? bool hasError() { return HasError; } // Mark the error condition as handled and continue. void clearError() { HasError = false; } // Get the error message. StringRef getErrorString() { return ErrorStr; } virtual bool isCompatibleFormat(const ObjectBuffer *Buffer) const = 0; }; } // end namespace llvm #endif