//===-- Constants.cpp - Implement Constant nodes --------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Constant* classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Constants.h" #include "ConstantFold.h" #include "LLVMContextImpl.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/FoldingSet.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringMap.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalValue.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/Support/Compiler.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/MathExtras.h" #include "llvm/Support/raw_ostream.h" #include <algorithm> #include <cstdarg> using namespace llvm; //===----------------------------------------------------------------------===// // Constant Class //===----------------------------------------------------------------------===// void Constant::anchor() { } bool Constant::isNegativeZeroValue() const { // Floating point values have an explicit -0.0 value. if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) return CFP->isZero() && CFP->isNegative(); // Equivalent for a vector of -0.0's. if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) if (ConstantFP *SplatCFP = dyn_cast_or_null<ConstantFP>(CV->getSplatValue())) if (SplatCFP && SplatCFP->isZero() && SplatCFP->isNegative()) return true; // However, vectors of zeroes which are floating point represent +0.0's. if (const ConstantAggregateZero *CAZ = dyn_cast<ConstantAggregateZero>(this)) if (const VectorType *VT = dyn_cast<VectorType>(CAZ->getType())) if (VT->getElementType()->isFloatingPointTy()) // As it's a CAZ, we know it's the zero bit-pattern (ie, +0.0) in each element. return false; // Otherwise, just use +0.0. return isNullValue(); } // Return true iff this constant is positive zero (floating point), negative // zero (floating point), or a null value. bool Constant::isZeroValue() const { // Floating point values have an explicit -0.0 value. if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) return CFP->isZero(); // Otherwise, just use +0.0. return isNullValue(); } bool Constant::isNullValue() const { // 0 is null. if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) return CI->isZero(); // +0.0 is null. if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) return CFP->isZero() && !CFP->isNegative(); // constant zero is zero for aggregates and cpnull is null for pointers. return isa<ConstantAggregateZero>(this) || isa<ConstantPointerNull>(this); } bool Constant::isAllOnesValue() const { // Check for -1 integers if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) return CI->isMinusOne(); // Check for FP which are bitcasted from -1 integers if (const ConstantFP *CFP = dyn_cast<ConstantFP>(this)) return CFP->getValueAPF().bitcastToAPInt().isAllOnesValue(); // Check for constant vectors which are splats of -1 values. if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) if (Constant *Splat = CV->getSplatValue()) return Splat->isAllOnesValue(); // Check for constant vectors which are splats of -1 values. if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) if (Constant *Splat = CV->getSplatValue()) return Splat->isAllOnesValue(); return false; } // Constructor to create a '0' constant of arbitrary type... Constant *Constant::getNullValue(Type *Ty) { switch (Ty->getTypeID()) { case Type::IntegerTyID: return ConstantInt::get(Ty, 0); case Type::HalfTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEhalf)); case Type::FloatTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEsingle)); case Type::DoubleTyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEdouble)); case Type::X86_FP80TyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::x87DoubleExtended)); case Type::FP128TyID: return ConstantFP::get(Ty->getContext(), APFloat::getZero(APFloat::IEEEquad)); case Type::PPC_FP128TyID: return ConstantFP::get(Ty->getContext(), APFloat(APFloat::PPCDoubleDouble, APInt::getNullValue(128))); case Type::PointerTyID: return ConstantPointerNull::get(cast<PointerType>(Ty)); case Type::StructTyID: case Type::ArrayTyID: case Type::VectorTyID: return ConstantAggregateZero::get(Ty); default: // Function, Label, or Opaque type? llvm_unreachable("Cannot create a null constant of that type!"); } } Constant *Constant::getIntegerValue(Type *Ty, const APInt &V) { Type *ScalarTy = Ty->getScalarType(); // Create the base integer constant. Constant *C = ConstantInt::get(Ty->getContext(), V); // Convert an integer to a pointer, if necessary. if (PointerType *PTy = dyn_cast<PointerType>(ScalarTy)) C = ConstantExpr::getIntToPtr(C, PTy); // Broadcast a scalar to a vector, if necessary. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) C = ConstantVector::getSplat(VTy->getNumElements(), C); return C; } Constant *Constant::getAllOnesValue(Type *Ty) { if (IntegerType *ITy = dyn_cast<IntegerType>(Ty)) return ConstantInt::get(Ty->getContext(), APInt::getAllOnesValue(ITy->getBitWidth())); if (Ty->isFloatingPointTy()) { APFloat FL = APFloat::getAllOnesValue(Ty->getPrimitiveSizeInBits(), !Ty->isPPC_FP128Ty()); return ConstantFP::get(Ty->getContext(), FL); } VectorType *VTy = cast<VectorType>(Ty); return ConstantVector::getSplat(VTy->getNumElements(), getAllOnesValue(VTy->getElementType())); } /// getAggregateElement - For aggregates (struct/array/vector) return the /// constant that corresponds to the specified element if possible, or null if /// not. This can return null if the element index is a ConstantExpr, or if /// 'this' is a constant expr. Constant *Constant::getAggregateElement(unsigned Elt) const { if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(this)) return Elt < CS->getNumOperands() ? CS->getOperand(Elt) : 0; if (const ConstantArray *CA = dyn_cast<ConstantArray>(this)) return Elt < CA->getNumOperands() ? CA->getOperand(Elt) : 0; if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) return Elt < CV->getNumOperands() ? CV->getOperand(Elt) : 0; if (const ConstantAggregateZero *CAZ =dyn_cast<ConstantAggregateZero>(this)) return CAZ->getElementValue(Elt); if (const UndefValue *UV = dyn_cast<UndefValue>(this)) return UV->getElementValue(Elt); if (const ConstantDataSequential *CDS =dyn_cast<ConstantDataSequential>(this)) return Elt < CDS->getNumElements() ? CDS->getElementAsConstant(Elt) : 0; return 0; } Constant *Constant::getAggregateElement(Constant *Elt) const { assert(isa<IntegerType>(Elt->getType()) && "Index must be an integer"); if (ConstantInt *CI = dyn_cast<ConstantInt>(Elt)) return getAggregateElement(CI->getZExtValue()); return 0; } void Constant::destroyConstantImpl() { // When a Constant is destroyed, there may be lingering // references to the constant by other constants in the constant pool. These // constants are implicitly dependent on the module that is being deleted, // but they don't know that. Because we only find out when the CPV is // deleted, we must now notify all of our users (that should only be // Constants) that they are, in fact, invalid now and should be deleted. // while (!use_empty()) { Value *V = use_back(); #ifndef NDEBUG // Only in -g mode... if (!isa<Constant>(V)) { dbgs() << "While deleting: " << *this << "\n\nUse still stuck around after Def is destroyed: " << *V << "\n\n"; } #endif assert(isa<Constant>(V) && "References remain to Constant being destroyed"); cast<Constant>(V)->destroyConstant(); // The constant should remove itself from our use list... assert((use_empty() || use_back() != V) && "Constant not removed!"); } // Value has no outstanding references it is safe to delete it now... delete this; } /// canTrap - Return true if evaluation of this constant could trap. This is /// true for things like constant expressions that could divide by zero. bool Constant::canTrap() const { assert(getType()->isFirstClassType() && "Cannot evaluate aggregate vals!"); // The only thing that could possibly trap are constant exprs. const ConstantExpr *CE = dyn_cast<ConstantExpr>(this); if (!CE) return false; // ConstantExpr traps if any operands can trap. for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (CE->getOperand(i)->canTrap()) return true; // Otherwise, only specific operations can trap. switch (CE->getOpcode()) { default: return false; case Instruction::UDiv: case Instruction::SDiv: case Instruction::FDiv: case Instruction::URem: case Instruction::SRem: case Instruction::FRem: // Div and rem can trap if the RHS is not known to be non-zero. if (!isa<ConstantInt>(CE->getOperand(1)) ||CE->getOperand(1)->isNullValue()) return true; return false; } } /// isThreadDependent - Return true if the value can vary between threads. bool Constant::isThreadDependent() const { SmallPtrSet<const Constant*, 64> Visited; SmallVector<const Constant*, 64> WorkList; WorkList.push_back(this); Visited.insert(this); while (!WorkList.empty()) { const Constant *C = WorkList.pop_back_val(); if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C)) { if (GV->isThreadLocal()) return true; } for (unsigned I = 0, E = C->getNumOperands(); I != E; ++I) { const Constant *D = dyn_cast<Constant>(C->getOperand(I)); if (!D) continue; if (Visited.insert(D)) WorkList.push_back(D); } } return false; } /// isConstantUsed - Return true if the constant has users other than constant /// exprs and other dangling things. bool Constant::isConstantUsed() const { for (const_use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) { const Constant *UC = dyn_cast<Constant>(*UI); if (UC == 0 || isa<GlobalValue>(UC)) return true; if (UC->isConstantUsed()) return true; } return false; } /// getRelocationInfo - This method classifies the entry according to /// whether or not it may generate a relocation entry. This must be /// conservative, so if it might codegen to a relocatable entry, it should say /// so. The return values are: /// /// NoRelocation: This constant pool entry is guaranteed to never have a /// relocation applied to it (because it holds a simple constant like /// '4'). /// LocalRelocation: This entry has relocations, but the entries are /// guaranteed to be resolvable by the static linker, so the dynamic /// linker will never see them. /// GlobalRelocations: This entry may have arbitrary relocations. /// /// FIXME: This really should not be in IR. Constant::PossibleRelocationsTy Constant::getRelocationInfo() const { if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) { if (GV->hasLocalLinkage() || GV->hasHiddenVisibility()) return LocalRelocation; // Local to this file/library. return GlobalRelocations; // Global reference. } if (const BlockAddress *BA = dyn_cast<BlockAddress>(this)) return BA->getFunction()->getRelocationInfo(); // While raw uses of blockaddress need to be relocated, differences between // two of them don't when they are for labels in the same function. This is a // common idiom when creating a table for the indirect goto extension, so we // handle it efficiently here. if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(this)) if (CE->getOpcode() == Instruction::Sub) { ConstantExpr *LHS = dyn_cast<ConstantExpr>(CE->getOperand(0)); ConstantExpr *RHS = dyn_cast<ConstantExpr>(CE->getOperand(1)); if (LHS && RHS && LHS->getOpcode() == Instruction::PtrToInt && RHS->getOpcode() == Instruction::PtrToInt && isa<BlockAddress>(LHS->getOperand(0)) && isa<BlockAddress>(RHS->getOperand(0)) && cast<BlockAddress>(LHS->getOperand(0))->getFunction() == cast<BlockAddress>(RHS->getOperand(0))->getFunction()) return NoRelocation; } PossibleRelocationsTy Result = NoRelocation; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) Result = std::max(Result, cast<Constant>(getOperand(i))->getRelocationInfo()); return Result; } /// removeDeadUsersOfConstant - If the specified constantexpr is dead, remove /// it. This involves recursively eliminating any dead users of the /// constantexpr. static bool removeDeadUsersOfConstant(const Constant *C) { if (isa<GlobalValue>(C)) return false; // Cannot remove this while (!C->use_empty()) { const Constant *User = dyn_cast<Constant>(C->use_back()); if (!User) return false; // Non-constant usage; if (!removeDeadUsersOfConstant(User)) return false; // Constant wasn't dead } const_cast<Constant*>(C)->destroyConstant(); return true; } /// removeDeadConstantUsers - If there are any dead constant users dangling /// off of this constant, remove them. This method is useful for clients /// that want to check to see if a global is unused, but don't want to deal /// with potentially dead constants hanging off of the globals. void Constant::removeDeadConstantUsers() const { Value::const_use_iterator I = use_begin(), E = use_end(); Value::const_use_iterator LastNonDeadUser = E; while (I != E) { const Constant *User = dyn_cast<Constant>(*I); if (User == 0) { LastNonDeadUser = I; ++I; continue; } if (!removeDeadUsersOfConstant(User)) { // If the constant wasn't dead, remember that this was the last live use // and move on to the next constant. LastNonDeadUser = I; ++I; continue; } // If the constant was dead, then the iterator is invalidated. if (LastNonDeadUser == E) { I = use_begin(); if (I == E) break; } else { I = LastNonDeadUser; ++I; } } } //===----------------------------------------------------------------------===// // ConstantInt //===----------------------------------------------------------------------===// void ConstantInt::anchor() { } ConstantInt::ConstantInt(IntegerType *Ty, const APInt& V) : Constant(Ty, ConstantIntVal, 0, 0), Val(V) { assert(V.getBitWidth() == Ty->getBitWidth() && "Invalid constant for type"); } ConstantInt *ConstantInt::getTrue(LLVMContext &Context) { LLVMContextImpl *pImpl = Context.pImpl; if (!pImpl->TheTrueVal) pImpl->TheTrueVal = ConstantInt::get(Type::getInt1Ty(Context), 1); return pImpl->TheTrueVal; } ConstantInt *ConstantInt::getFalse(LLVMContext &Context) { LLVMContextImpl *pImpl = Context.pImpl; if (!pImpl->TheFalseVal) pImpl->TheFalseVal = ConstantInt::get(Type::getInt1Ty(Context), 0); return pImpl->TheFalseVal; } Constant *ConstantInt::getTrue(Type *Ty) { VectorType *VTy = dyn_cast<VectorType>(Ty); if (!VTy) { assert(Ty->isIntegerTy(1) && "True must be i1 or vector of i1."); return ConstantInt::getTrue(Ty->getContext()); } assert(VTy->getElementType()->isIntegerTy(1) && "True must be vector of i1 or i1."); return ConstantVector::getSplat(VTy->getNumElements(), ConstantInt::getTrue(Ty->getContext())); } Constant *ConstantInt::getFalse(Type *Ty) { VectorType *VTy = dyn_cast<VectorType>(Ty); if (!VTy) { assert(Ty->isIntegerTy(1) && "False must be i1 or vector of i1."); return ConstantInt::getFalse(Ty->getContext()); } assert(VTy->getElementType()->isIntegerTy(1) && "False must be vector of i1 or i1."); return ConstantVector::getSplat(VTy->getNumElements(), ConstantInt::getFalse(Ty->getContext())); } // Get a ConstantInt from an APInt. Note that the value stored in the DenseMap // as the key, is a DenseMapAPIntKeyInfo::KeyTy which has provided the // operator== and operator!= to ensure that the DenseMap doesn't attempt to // compare APInt's of different widths, which would violate an APInt class // invariant which generates an assertion. ConstantInt *ConstantInt::get(LLVMContext &Context, const APInt &V) { // Get the corresponding integer type for the bit width of the value. IntegerType *ITy = IntegerType::get(Context, V.getBitWidth()); // get an existing value or the insertion position DenseMapAPIntKeyInfo::KeyTy Key(V, ITy); ConstantInt *&Slot = Context.pImpl->IntConstants[Key]; if (!Slot) Slot = new ConstantInt(ITy, V); return Slot; } Constant *ConstantInt::get(Type *Ty, uint64_t V, bool isSigned) { Constant *C = get(cast<IntegerType>(Ty->getScalarType()), V, isSigned); // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) return ConstantVector::getSplat(VTy->getNumElements(), C); return C; } ConstantInt *ConstantInt::get(IntegerType *Ty, uint64_t V, bool isSigned) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), V, isSigned)); } ConstantInt *ConstantInt::getSigned(IntegerType *Ty, int64_t V) { return get(Ty, V, true); } Constant *ConstantInt::getSigned(Type *Ty, int64_t V) { return get(Ty, V, true); } Constant *ConstantInt::get(Type *Ty, const APInt& V) { ConstantInt *C = get(Ty->getContext(), V); assert(C->getType() == Ty->getScalarType() && "ConstantInt type doesn't match the type implied by its value!"); // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) return ConstantVector::getSplat(VTy->getNumElements(), C); return C; } ConstantInt *ConstantInt::get(IntegerType* Ty, StringRef Str, uint8_t radix) { return get(Ty->getContext(), APInt(Ty->getBitWidth(), Str, radix)); } //===----------------------------------------------------------------------===// // ConstantFP //===----------------------------------------------------------------------===// static const fltSemantics *TypeToFloatSemantics(Type *Ty) { if (Ty->isHalfTy()) return &APFloat::IEEEhalf; if (Ty->isFloatTy()) return &APFloat::IEEEsingle; if (Ty->isDoubleTy()) return &APFloat::IEEEdouble; if (Ty->isX86_FP80Ty()) return &APFloat::x87DoubleExtended; else if (Ty->isFP128Ty()) return &APFloat::IEEEquad; assert(Ty->isPPC_FP128Ty() && "Unknown FP format"); return &APFloat::PPCDoubleDouble; } void ConstantFP::anchor() { } /// get() - This returns a constant fp for the specified value in the /// specified type. This should only be used for simple constant values like /// 2.0/1.0 etc, that are known-valid both as double and as the target format. Constant *ConstantFP::get(Type *Ty, double V) { LLVMContext &Context = Ty->getContext(); APFloat FV(V); bool ignored; FV.convert(*TypeToFloatSemantics(Ty->getScalarType()), APFloat::rmNearestTiesToEven, &ignored); Constant *C = get(Context, FV); // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) return ConstantVector::getSplat(VTy->getNumElements(), C); return C; } Constant *ConstantFP::get(Type *Ty, StringRef Str) { LLVMContext &Context = Ty->getContext(); APFloat FV(*TypeToFloatSemantics(Ty->getScalarType()), Str); Constant *C = get(Context, FV); // For vectors, broadcast the value. if (VectorType *VTy = dyn_cast<VectorType>(Ty)) return ConstantVector::getSplat(VTy->getNumElements(), C); return C; } ConstantFP *ConstantFP::getNegativeZero(Type *Ty) { LLVMContext &Context = Ty->getContext(); APFloat apf = cast<ConstantFP>(Constant::getNullValue(Ty))->getValueAPF(); apf.changeSign(); return get(Context, apf); } Constant *ConstantFP::getZeroValueForNegation(Type *Ty) { Type *ScalarTy = Ty->getScalarType(); if (ScalarTy->isFloatingPointTy()) { Constant *C = getNegativeZero(ScalarTy); if (VectorType *VTy = dyn_cast<VectorType>(Ty)) return ConstantVector::getSplat(VTy->getNumElements(), C); return C; } return Constant::getNullValue(Ty); } // ConstantFP accessors. ConstantFP* ConstantFP::get(LLVMContext &Context, const APFloat& V) { DenseMapAPFloatKeyInfo::KeyTy Key(V); LLVMContextImpl* pImpl = Context.pImpl; ConstantFP *&Slot = pImpl->FPConstants[Key]; if (!Slot) { Type *Ty; if (&V.getSemantics() == &APFloat::IEEEhalf) Ty = Type::getHalfTy(Context); else if (&V.getSemantics() == &APFloat::IEEEsingle) Ty = Type::getFloatTy(Context); else if (&V.getSemantics() == &APFloat::IEEEdouble) Ty = Type::getDoubleTy(Context); else if (&V.getSemantics() == &APFloat::x87DoubleExtended) Ty = Type::getX86_FP80Ty(Context); else if (&V.getSemantics() == &APFloat::IEEEquad) Ty = Type::getFP128Ty(Context); else { assert(&V.getSemantics() == &APFloat::PPCDoubleDouble && "Unknown FP format"); Ty = Type::getPPC_FP128Ty(Context); } Slot = new ConstantFP(Ty, V); } return Slot; } ConstantFP *ConstantFP::getInfinity(Type *Ty, bool Negative) { const fltSemantics &Semantics = *TypeToFloatSemantics(Ty); return ConstantFP::get(Ty->getContext(), APFloat::getInf(Semantics, Negative)); } ConstantFP::ConstantFP(Type *Ty, const APFloat& V) : Constant(Ty, ConstantFPVal, 0, 0), Val(V) { assert(&V.getSemantics() == TypeToFloatSemantics(Ty) && "FP type Mismatch"); } bool ConstantFP::isExactlyValue(const APFloat &V) const { return Val.bitwiseIsEqual(V); } //===----------------------------------------------------------------------===// // ConstantAggregateZero Implementation //===----------------------------------------------------------------------===// /// getSequentialElement - If this CAZ has array or vector type, return a zero /// with the right element type. Constant *ConstantAggregateZero::getSequentialElement() const { return Constant::getNullValue(getType()->getSequentialElementType()); } /// getStructElement - If this CAZ has struct type, return a zero with the /// right element type for the specified element. Constant *ConstantAggregateZero::getStructElement(unsigned Elt) const { return Constant::getNullValue(getType()->getStructElementType(Elt)); } /// getElementValue - Return a zero of the right value for the specified GEP /// index if we can, otherwise return null (e.g. if C is a ConstantExpr). Constant *ConstantAggregateZero::getElementValue(Constant *C) const { if (isa<SequentialType>(getType())) return getSequentialElement(); return getStructElement(cast<ConstantInt>(C)->getZExtValue()); } /// getElementValue - Return a zero of the right value for the specified GEP /// index. Constant *ConstantAggregateZero::getElementValue(unsigned Idx) const { if (isa<SequentialType>(getType())) return getSequentialElement(); return getStructElement(Idx); } //===----------------------------------------------------------------------===// // UndefValue Implementation //===----------------------------------------------------------------------===// /// getSequentialElement - If this undef has array or vector type, return an /// undef with the right element type. UndefValue *UndefValue::getSequentialElement() const { return UndefValue::get(getType()->getSequentialElementType()); } /// getStructElement - If this undef has struct type, return a zero with the /// right element type for the specified element. UndefValue *UndefValue::getStructElement(unsigned Elt) const { return UndefValue::get(getType()->getStructElementType(Elt)); } /// getElementValue - Return an undef of the right value for the specified GEP /// index if we can, otherwise return null (e.g. if C is a ConstantExpr). UndefValue *UndefValue::getElementValue(Constant *C) const { if (isa<SequentialType>(getType())) return getSequentialElement(); return getStructElement(cast<ConstantInt>(C)->getZExtValue()); } /// getElementValue - Return an undef of the right value for the specified GEP /// index. UndefValue *UndefValue::getElementValue(unsigned Idx) const { if (isa<SequentialType>(getType())) return getSequentialElement(); return getStructElement(Idx); } //===----------------------------------------------------------------------===// // ConstantXXX Classes //===----------------------------------------------------------------------===// template <typename ItTy, typename EltTy> static bool rangeOnlyContains(ItTy Start, ItTy End, EltTy Elt) { for (; Start != End; ++Start) if (*Start != Elt) return false; return true; } ConstantArray::ConstantArray(ArrayType *T, ArrayRef<Constant *> V) : Constant(T, ConstantArrayVal, OperandTraits<ConstantArray>::op_end(this) - V.size(), V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant array"); for (unsigned i = 0, e = V.size(); i != e; ++i) assert(V[i]->getType() == T->getElementType() && "Initializer for array element doesn't match array element type!"); std::copy(V.begin(), V.end(), op_begin()); } Constant *ConstantArray::get(ArrayType *Ty, ArrayRef<Constant*> V) { // Empty arrays are canonicalized to ConstantAggregateZero. if (V.empty()) return ConstantAggregateZero::get(Ty); for (unsigned i = 0, e = V.size(); i != e; ++i) { assert(V[i]->getType() == Ty->getElementType() && "Wrong type in array element initializer"); } LLVMContextImpl *pImpl = Ty->getContext().pImpl; // If this is an all-zero array, return a ConstantAggregateZero object. If // all undef, return an UndefValue, if "all simple", then return a // ConstantDataArray. Constant *C = V[0]; if (isa<UndefValue>(C) && rangeOnlyContains(V.begin(), V.end(), C)) return UndefValue::get(Ty); if (C->isNullValue() && rangeOnlyContains(V.begin(), V.end(), C)) return ConstantAggregateZero::get(Ty); // Check to see if all of the elements are ConstantFP or ConstantInt and if // the element type is compatible with ConstantDataVector. If so, use it. if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { // We speculatively build the elements here even if it turns out that there // is a constantexpr or something else weird in the array, since it is so // uncommon for that to happen. if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { if (CI->getType()->isIntegerTy(8)) { SmallVector<uint8_t, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) Elts.push_back(CI->getZExtValue()); else break; if (Elts.size() == V.size()) return ConstantDataArray::get(C->getContext(), Elts); } else if (CI->getType()->isIntegerTy(16)) { SmallVector<uint16_t, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) Elts.push_back(CI->getZExtValue()); else break; if (Elts.size() == V.size()) return ConstantDataArray::get(C->getContext(), Elts); } else if (CI->getType()->isIntegerTy(32)) { SmallVector<uint32_t, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) Elts.push_back(CI->getZExtValue()); else break; if (Elts.size() == V.size()) return ConstantDataArray::get(C->getContext(), Elts); } else if (CI->getType()->isIntegerTy(64)) { SmallVector<uint64_t, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) Elts.push_back(CI->getZExtValue()); else break; if (Elts.size() == V.size()) return ConstantDataArray::get(C->getContext(), Elts); } } if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { if (CFP->getType()->isFloatTy()) { SmallVector<float, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) Elts.push_back(CFP->getValueAPF().convertToFloat()); else break; if (Elts.size() == V.size()) return ConstantDataArray::get(C->getContext(), Elts); } else if (CFP->getType()->isDoubleTy()) { SmallVector<double, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) Elts.push_back(CFP->getValueAPF().convertToDouble()); else break; if (Elts.size() == V.size()) return ConstantDataArray::get(C->getContext(), Elts); } } } // Otherwise, we really do want to create a ConstantArray. return pImpl->ArrayConstants.getOrCreate(Ty, V); } /// getTypeForElements - Return an anonymous struct type to use for a constant /// with the specified set of elements. The list must not be empty. StructType *ConstantStruct::getTypeForElements(LLVMContext &Context, ArrayRef<Constant*> V, bool Packed) { unsigned VecSize = V.size(); SmallVector<Type*, 16> EltTypes(VecSize); for (unsigned i = 0; i != VecSize; ++i) EltTypes[i] = V[i]->getType(); return StructType::get(Context, EltTypes, Packed); } StructType *ConstantStruct::getTypeForElements(ArrayRef<Constant*> V, bool Packed) { assert(!V.empty() && "ConstantStruct::getTypeForElements cannot be called on empty list"); return getTypeForElements(V[0]->getContext(), V, Packed); } ConstantStruct::ConstantStruct(StructType *T, ArrayRef<Constant *> V) : Constant(T, ConstantStructVal, OperandTraits<ConstantStruct>::op_end(this) - V.size(), V.size()) { assert(V.size() == T->getNumElements() && "Invalid initializer vector for constant structure"); for (unsigned i = 0, e = V.size(); i != e; ++i) assert((T->isOpaque() || V[i]->getType() == T->getElementType(i)) && "Initializer for struct element doesn't match struct element type!"); std::copy(V.begin(), V.end(), op_begin()); } // ConstantStruct accessors. Constant *ConstantStruct::get(StructType *ST, ArrayRef<Constant*> V) { assert((ST->isOpaque() || ST->getNumElements() == V.size()) && "Incorrect # elements specified to ConstantStruct::get"); // Create a ConstantAggregateZero value if all elements are zeros. bool isZero = true; bool isUndef = false; if (!V.empty()) { isUndef = isa<UndefValue>(V[0]); isZero = V[0]->isNullValue(); if (isUndef || isZero) { for (unsigned i = 0, e = V.size(); i != e; ++i) { if (!V[i]->isNullValue()) isZero = false; if (!isa<UndefValue>(V[i])) isUndef = false; } } } if (isZero) return ConstantAggregateZero::get(ST); if (isUndef) return UndefValue::get(ST); return ST->getContext().pImpl->StructConstants.getOrCreate(ST, V); } Constant *ConstantStruct::get(StructType *T, ...) { va_list ap; SmallVector<Constant*, 8> Values; va_start(ap, T); while (Constant *Val = va_arg(ap, llvm::Constant*)) Values.push_back(Val); va_end(ap); return get(T, Values); } ConstantVector::ConstantVector(VectorType *T, ArrayRef<Constant *> V) : Constant(T, ConstantVectorVal, OperandTraits<ConstantVector>::op_end(this) - V.size(), V.size()) { for (size_t i = 0, e = V.size(); i != e; i++) assert(V[i]->getType() == T->getElementType() && "Initializer for vector element doesn't match vector element type!"); std::copy(V.begin(), V.end(), op_begin()); } // ConstantVector accessors. Constant *ConstantVector::get(ArrayRef<Constant*> V) { assert(!V.empty() && "Vectors can't be empty"); VectorType *T = VectorType::get(V.front()->getType(), V.size()); LLVMContextImpl *pImpl = T->getContext().pImpl; // If this is an all-undef or all-zero vector, return a // ConstantAggregateZero or UndefValue. Constant *C = V[0]; bool isZero = C->isNullValue(); bool isUndef = isa<UndefValue>(C); if (isZero || isUndef) { for (unsigned i = 1, e = V.size(); i != e; ++i) if (V[i] != C) { isZero = isUndef = false; break; } } if (isZero) return ConstantAggregateZero::get(T); if (isUndef) return UndefValue::get(T); // Check to see if all of the elements are ConstantFP or ConstantInt and if // the element type is compatible with ConstantDataVector. If so, use it. if (ConstantDataSequential::isElementTypeCompatible(C->getType())) { // We speculatively build the elements here even if it turns out that there // is a constantexpr or something else weird in the array, since it is so // uncommon for that to happen. if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { if (CI->getType()->isIntegerTy(8)) { SmallVector<uint8_t, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) Elts.push_back(CI->getZExtValue()); else break; if (Elts.size() == V.size()) return ConstantDataVector::get(C->getContext(), Elts); } else if (CI->getType()->isIntegerTy(16)) { SmallVector<uint16_t, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) Elts.push_back(CI->getZExtValue()); else break; if (Elts.size() == V.size()) return ConstantDataVector::get(C->getContext(), Elts); } else if (CI->getType()->isIntegerTy(32)) { SmallVector<uint32_t, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) Elts.push_back(CI->getZExtValue()); else break; if (Elts.size() == V.size()) return ConstantDataVector::get(C->getContext(), Elts); } else if (CI->getType()->isIntegerTy(64)) { SmallVector<uint64_t, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantInt *CI = dyn_cast<ConstantInt>(V[i])) Elts.push_back(CI->getZExtValue()); else break; if (Elts.size() == V.size()) return ConstantDataVector::get(C->getContext(), Elts); } } if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { if (CFP->getType()->isFloatTy()) { SmallVector<float, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) Elts.push_back(CFP->getValueAPF().convertToFloat()); else break; if (Elts.size() == V.size()) return ConstantDataVector::get(C->getContext(), Elts); } else if (CFP->getType()->isDoubleTy()) { SmallVector<double, 16> Elts; for (unsigned i = 0, e = V.size(); i != e; ++i) if (ConstantFP *CFP = dyn_cast<ConstantFP>(V[i])) Elts.push_back(CFP->getValueAPF().convertToDouble()); else break; if (Elts.size() == V.size()) return ConstantDataVector::get(C->getContext(), Elts); } } } // Otherwise, the element type isn't compatible with ConstantDataVector, or // the operand list constants a ConstantExpr or something else strange. return pImpl->VectorConstants.getOrCreate(T, V); } Constant *ConstantVector::getSplat(unsigned NumElts, Constant *V) { // If this splat is compatible with ConstantDataVector, use it instead of // ConstantVector. if ((isa<ConstantFP>(V) || isa<ConstantInt>(V)) && ConstantDataSequential::isElementTypeCompatible(V->getType())) return ConstantDataVector::getSplat(NumElts, V); SmallVector<Constant*, 32> Elts(NumElts, V); return get(Elts); } // Utility function for determining if a ConstantExpr is a CastOp or not. This // can't be inline because we don't want to #include Instruction.h into // Constant.h bool ConstantExpr::isCast() const { return Instruction::isCast(getOpcode()); } bool ConstantExpr::isCompare() const { return getOpcode() == Instruction::ICmp || getOpcode() == Instruction::FCmp; } bool ConstantExpr::isGEPWithNoNotionalOverIndexing() const { if (getOpcode() != Instruction::GetElementPtr) return false; gep_type_iterator GEPI = gep_type_begin(this), E = gep_type_end(this); User::const_op_iterator OI = llvm::next(this->op_begin()); // Skip the first index, as it has no static limit. ++GEPI; ++OI; // The remaining indices must be compile-time known integers within the // bounds of the corresponding notional static array types. for (; GEPI != E; ++GEPI, ++OI) { ConstantInt *CI = dyn_cast<ConstantInt>(*OI); if (!CI) return false; if (ArrayType *ATy = dyn_cast<ArrayType>(*GEPI)) if (CI->getValue().getActiveBits() > 64 || CI->getZExtValue() >= ATy->getNumElements()) return false; } // All the indices checked out. return true; } bool ConstantExpr::hasIndices() const { return getOpcode() == Instruction::ExtractValue || getOpcode() == Instruction::InsertValue; } ArrayRef<unsigned> ConstantExpr::getIndices() const { if (const ExtractValueConstantExpr *EVCE = dyn_cast<ExtractValueConstantExpr>(this)) return EVCE->Indices; return cast<InsertValueConstantExpr>(this)->Indices; } unsigned ConstantExpr::getPredicate() const { assert(isCompare()); return ((const CompareConstantExpr*)this)->predicate; } /// getWithOperandReplaced - Return a constant expression identical to this /// one, but with the specified operand set to the specified value. Constant * ConstantExpr::getWithOperandReplaced(unsigned OpNo, Constant *Op) const { assert(Op->getType() == getOperand(OpNo)->getType() && "Replacing operand with value of different type!"); if (getOperand(OpNo) == Op) return const_cast<ConstantExpr*>(this); SmallVector<Constant*, 8> NewOps; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) NewOps.push_back(i == OpNo ? Op : getOperand(i)); return getWithOperands(NewOps); } /// getWithOperands - This returns the current constant expression with the /// operands replaced with the specified values. The specified array must /// have the same number of operands as our current one. Constant *ConstantExpr:: getWithOperands(ArrayRef<Constant*> Ops, Type *Ty) const { assert(Ops.size() == getNumOperands() && "Operand count mismatch!"); bool AnyChange = Ty != getType(); for (unsigned i = 0; i != Ops.size(); ++i) AnyChange |= Ops[i] != getOperand(i); if (!AnyChange) // No operands changed, return self. return const_cast<ConstantExpr*>(this); switch (getOpcode()) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: return ConstantExpr::getCast(getOpcode(), Ops[0], Ty); case Instruction::Select: return ConstantExpr::getSelect(Ops[0], Ops[1], Ops[2]); case Instruction::InsertElement: return ConstantExpr::getInsertElement(Ops[0], Ops[1], Ops[2]); case Instruction::ExtractElement: return ConstantExpr::getExtractElement(Ops[0], Ops[1]); case Instruction::InsertValue: return ConstantExpr::getInsertValue(Ops[0], Ops[1], getIndices()); case Instruction::ExtractValue: return ConstantExpr::getExtractValue(Ops[0], getIndices()); case Instruction::ShuffleVector: return ConstantExpr::getShuffleVector(Ops[0], Ops[1], Ops[2]); case Instruction::GetElementPtr: return ConstantExpr::getGetElementPtr(Ops[0], Ops.slice(1), cast<GEPOperator>(this)->isInBounds()); case Instruction::ICmp: case Instruction::FCmp: return ConstantExpr::getCompare(getPredicate(), Ops[0], Ops[1]); default: assert(getNumOperands() == 2 && "Must be binary operator?"); return ConstantExpr::get(getOpcode(), Ops[0], Ops[1], SubclassOptionalData); } } //===----------------------------------------------------------------------===// // isValueValidForType implementations bool ConstantInt::isValueValidForType(Type *Ty, uint64_t Val) { unsigned NumBits = Ty->getIntegerBitWidth(); // assert okay if (Ty->isIntegerTy(1)) return Val == 0 || Val == 1; if (NumBits >= 64) return true; // always true, has to fit in largest type uint64_t Max = (1ll << NumBits) - 1; return Val <= Max; } bool ConstantInt::isValueValidForType(Type *Ty, int64_t Val) { unsigned NumBits = Ty->getIntegerBitWidth(); if (Ty->isIntegerTy(1)) return Val == 0 || Val == 1 || Val == -1; if (NumBits >= 64) return true; // always true, has to fit in largest type int64_t Min = -(1ll << (NumBits-1)); int64_t Max = (1ll << (NumBits-1)) - 1; return (Val >= Min && Val <= Max); } bool ConstantFP::isValueValidForType(Type *Ty, const APFloat& Val) { // convert modifies in place, so make a copy. APFloat Val2 = APFloat(Val); bool losesInfo; switch (Ty->getTypeID()) { default: return false; // These can't be represented as floating point! // FIXME rounding mode needs to be more flexible case Type::HalfTyID: { if (&Val2.getSemantics() == &APFloat::IEEEhalf) return true; Val2.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::FloatTyID: { if (&Val2.getSemantics() == &APFloat::IEEEsingle) return true; Val2.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::DoubleTyID: { if (&Val2.getSemantics() == &APFloat::IEEEhalf || &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble) return true; Val2.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven, &losesInfo); return !losesInfo; } case Type::X86_FP80TyID: return &Val2.getSemantics() == &APFloat::IEEEhalf || &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble || &Val2.getSemantics() == &APFloat::x87DoubleExtended; case Type::FP128TyID: return &Val2.getSemantics() == &APFloat::IEEEhalf || &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble || &Val2.getSemantics() == &APFloat::IEEEquad; case Type::PPC_FP128TyID: return &Val2.getSemantics() == &APFloat::IEEEhalf || &Val2.getSemantics() == &APFloat::IEEEsingle || &Val2.getSemantics() == &APFloat::IEEEdouble || &Val2.getSemantics() == &APFloat::PPCDoubleDouble; } } //===----------------------------------------------------------------------===// // Factory Function Implementation ConstantAggregateZero *ConstantAggregateZero::get(Type *Ty) { assert((Ty->isStructTy() || Ty->isArrayTy() || Ty->isVectorTy()) && "Cannot create an aggregate zero of non-aggregate type!"); ConstantAggregateZero *&Entry = Ty->getContext().pImpl->CAZConstants[Ty]; if (Entry == 0) Entry = new ConstantAggregateZero(Ty); return Entry; } /// destroyConstant - Remove the constant from the constant table. /// void ConstantAggregateZero::destroyConstant() { getContext().pImpl->CAZConstants.erase(getType()); destroyConstantImpl(); } /// destroyConstant - Remove the constant from the constant table... /// void ConstantArray::destroyConstant() { getType()->getContext().pImpl->ArrayConstants.remove(this); destroyConstantImpl(); } //---- ConstantStruct::get() implementation... // // destroyConstant - Remove the constant from the constant table... // void ConstantStruct::destroyConstant() { getType()->getContext().pImpl->StructConstants.remove(this); destroyConstantImpl(); } // destroyConstant - Remove the constant from the constant table... // void ConstantVector::destroyConstant() { getType()->getContext().pImpl->VectorConstants.remove(this); destroyConstantImpl(); } /// getSplatValue - If this is a splat vector constant, meaning that all of /// the elements have the same value, return that value. Otherwise return 0. Constant *Constant::getSplatValue() const { assert(this->getType()->isVectorTy() && "Only valid for vectors!"); if (isa<ConstantAggregateZero>(this)) return getNullValue(this->getType()->getVectorElementType()); if (const ConstantDataVector *CV = dyn_cast<ConstantDataVector>(this)) return CV->getSplatValue(); if (const ConstantVector *CV = dyn_cast<ConstantVector>(this)) return CV->getSplatValue(); return 0; } /// getSplatValue - If this is a splat constant, where all of the /// elements have the same value, return that value. Otherwise return null. Constant *ConstantVector::getSplatValue() const { // Check out first element. Constant *Elt = getOperand(0); // Then make sure all remaining elements point to the same value. for (unsigned I = 1, E = getNumOperands(); I < E; ++I) if (getOperand(I) != Elt) return 0; return Elt; } /// If C is a constant integer then return its value, otherwise C must be a /// vector of constant integers, all equal, and the common value is returned. const APInt &Constant::getUniqueInteger() const { if (const ConstantInt *CI = dyn_cast<ConstantInt>(this)) return CI->getValue(); assert(this->getSplatValue() && "Doesn't contain a unique integer!"); const Constant *C = this->getAggregateElement(0U); assert(C && isa<ConstantInt>(C) && "Not a vector of numbers!"); return cast<ConstantInt>(C)->getValue(); } //---- ConstantPointerNull::get() implementation. // ConstantPointerNull *ConstantPointerNull::get(PointerType *Ty) { ConstantPointerNull *&Entry = Ty->getContext().pImpl->CPNConstants[Ty]; if (Entry == 0) Entry = new ConstantPointerNull(Ty); return Entry; } // destroyConstant - Remove the constant from the constant table... // void ConstantPointerNull::destroyConstant() { getContext().pImpl->CPNConstants.erase(getType()); // Free the constant and any dangling references to it. destroyConstantImpl(); } //---- UndefValue::get() implementation. // UndefValue *UndefValue::get(Type *Ty) { UndefValue *&Entry = Ty->getContext().pImpl->UVConstants[Ty]; if (Entry == 0) Entry = new UndefValue(Ty); return Entry; } // destroyConstant - Remove the constant from the constant table. // void UndefValue::destroyConstant() { // Free the constant and any dangling references to it. getContext().pImpl->UVConstants.erase(getType()); destroyConstantImpl(); } //---- BlockAddress::get() implementation. // BlockAddress *BlockAddress::get(BasicBlock *BB) { assert(BB->getParent() != 0 && "Block must have a parent"); return get(BB->getParent(), BB); } BlockAddress *BlockAddress::get(Function *F, BasicBlock *BB) { BlockAddress *&BA = F->getContext().pImpl->BlockAddresses[std::make_pair(F, BB)]; if (BA == 0) BA = new BlockAddress(F, BB); assert(BA->getFunction() == F && "Basic block moved between functions"); return BA; } BlockAddress::BlockAddress(Function *F, BasicBlock *BB) : Constant(Type::getInt8PtrTy(F->getContext()), Value::BlockAddressVal, &Op<0>(), 2) { setOperand(0, F); setOperand(1, BB); BB->AdjustBlockAddressRefCount(1); } // destroyConstant - Remove the constant from the constant table. // void BlockAddress::destroyConstant() { getFunction()->getType()->getContext().pImpl ->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); getBasicBlock()->AdjustBlockAddressRefCount(-1); destroyConstantImpl(); } void BlockAddress::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { // This could be replacing either the Basic Block or the Function. In either // case, we have to remove the map entry. Function *NewF = getFunction(); BasicBlock *NewBB = getBasicBlock(); if (U == &Op<0>()) NewF = cast<Function>(To); else NewBB = cast<BasicBlock>(To); // See if the 'new' entry already exists, if not, just update this in place // and return early. BlockAddress *&NewBA = getContext().pImpl->BlockAddresses[std::make_pair(NewF, NewBB)]; if (NewBA == 0) { getBasicBlock()->AdjustBlockAddressRefCount(-1); // Remove the old entry, this can't cause the map to rehash (just a // tombstone will get added). getContext().pImpl->BlockAddresses.erase(std::make_pair(getFunction(), getBasicBlock())); NewBA = this; setOperand(0, NewF); setOperand(1, NewBB); getBasicBlock()->AdjustBlockAddressRefCount(1); return; } // Otherwise, I do need to replace this with an existing value. assert(NewBA != this && "I didn't contain From!"); // Everyone using this now uses the replacement. replaceAllUsesWith(NewBA); destroyConstant(); } //---- ConstantExpr::get() implementations. // /// This is a utility function to handle folding of casts and lookup of the /// cast in the ExprConstants map. It is used by the various get* methods below. static inline Constant *getFoldedCast( Instruction::CastOps opc, Constant *C, Type *Ty) { assert(Ty->isFirstClassType() && "Cannot cast to an aggregate type!"); // Fold a few common cases if (Constant *FC = ConstantFoldCastInstruction(opc, C, Ty)) return FC; LLVMContextImpl *pImpl = Ty->getContext().pImpl; // Look up the constant in the table first to ensure uniqueness. ExprMapKeyType Key(opc, C); return pImpl->ExprConstants.getOrCreate(Ty, Key); } Constant *ConstantExpr::getCast(unsigned oc, Constant *C, Type *Ty) { Instruction::CastOps opc = Instruction::CastOps(oc); assert(Instruction::isCast(opc) && "opcode out of range"); assert(C && Ty && "Null arguments to getCast"); assert(CastInst::castIsValid(opc, C, Ty) && "Invalid constantexpr cast!"); switch (opc) { default: llvm_unreachable("Invalid cast opcode"); case Instruction::Trunc: return getTrunc(C, Ty); case Instruction::ZExt: return getZExt(C, Ty); case Instruction::SExt: return getSExt(C, Ty); case Instruction::FPTrunc: return getFPTrunc(C, Ty); case Instruction::FPExt: return getFPExtend(C, Ty); case Instruction::UIToFP: return getUIToFP(C, Ty); case Instruction::SIToFP: return getSIToFP(C, Ty); case Instruction::FPToUI: return getFPToUI(C, Ty); case Instruction::FPToSI: return getFPToSI(C, Ty); case Instruction::PtrToInt: return getPtrToInt(C, Ty); case Instruction::IntToPtr: return getIntToPtr(C, Ty); case Instruction::BitCast: return getBitCast(C, Ty); } } Constant *ConstantExpr::getZExtOrBitCast(Constant *C, Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getZExt(C, Ty); } Constant *ConstantExpr::getSExtOrBitCast(Constant *C, Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getSExt(C, Ty); } Constant *ConstantExpr::getTruncOrBitCast(Constant *C, Type *Ty) { if (C->getType()->getScalarSizeInBits() == Ty->getScalarSizeInBits()) return getBitCast(C, Ty); return getTrunc(C, Ty); } Constant *ConstantExpr::getPointerCast(Constant *S, Type *Ty) { assert(S->getType()->isPtrOrPtrVectorTy() && "Invalid cast"); assert((Ty->isIntOrIntVectorTy() || Ty->isPtrOrPtrVectorTy()) && "Invalid cast"); if (Ty->isIntOrIntVectorTy()) return getPtrToInt(S, Ty); return getBitCast(S, Ty); } Constant *ConstantExpr::getIntegerCast(Constant *C, Type *Ty, bool isSigned) { assert(C->getType()->isIntOrIntVectorTy() && Ty->isIntOrIntVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); Instruction::CastOps opcode = (SrcBits == DstBits ? Instruction::BitCast : (SrcBits > DstBits ? Instruction::Trunc : (isSigned ? Instruction::SExt : Instruction::ZExt))); return getCast(opcode, C, Ty); } Constant *ConstantExpr::getFPCast(Constant *C, Type *Ty) { assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && "Invalid cast"); unsigned SrcBits = C->getType()->getScalarSizeInBits(); unsigned DstBits = Ty->getScalarSizeInBits(); if (SrcBits == DstBits) return C; // Avoid a useless cast Instruction::CastOps opcode = (SrcBits > DstBits ? Instruction::FPTrunc : Instruction::FPExt); return getCast(opcode, C, Ty); } Constant *ConstantExpr::getTrunc(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && "Trunc operand must be integer"); assert(Ty->isIntOrIntVectorTy() && "Trunc produces only integral"); assert(C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& "SrcTy must be larger than DestTy for Trunc!"); return getFoldedCast(Instruction::Trunc, C, Ty); } Constant *ConstantExpr::getSExt(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && "SExt operand must be integral"); assert(Ty->isIntOrIntVectorTy() && "SExt produces only integer"); assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "SrcTy must be smaller than DestTy for SExt!"); return getFoldedCast(Instruction::SExt, C, Ty); } Constant *ConstantExpr::getZExt(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && "ZEXt operand must be integral"); assert(Ty->isIntOrIntVectorTy() && "ZExt produces only integer"); assert(C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "SrcTy must be smaller than DestTy for ZExt!"); return getFoldedCast(Instruction::ZExt, C, Ty); } Constant *ConstantExpr::getFPTrunc(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && C->getType()->getScalarSizeInBits() > Ty->getScalarSizeInBits()&& "This is an illegal floating point truncation!"); return getFoldedCast(Instruction::FPTrunc, C, Ty); } Constant *ConstantExpr::getFPExtend(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isFPOrFPVectorTy() && C->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits()&& "This is an illegal floating point extension!"); return getFoldedCast(Instruction::FPExt, C, Ty); } Constant *ConstantExpr::getUIToFP(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && "This is an illegal uint to floating point cast!"); return getFoldedCast(Instruction::UIToFP, C, Ty); } Constant *ConstantExpr::getSIToFP(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isIntOrIntVectorTy() && Ty->isFPOrFPVectorTy() && "This is an illegal sint to floating point cast!"); return getFoldedCast(Instruction::SIToFP, C, Ty); } Constant *ConstantExpr::getFPToUI(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && "This is an illegal floating point to uint cast!"); return getFoldedCast(Instruction::FPToUI, C, Ty); } Constant *ConstantExpr::getFPToSI(Constant *C, Type *Ty) { #ifndef NDEBUG bool fromVec = C->getType()->getTypeID() == Type::VectorTyID; bool toVec = Ty->getTypeID() == Type::VectorTyID; #endif assert((fromVec == toVec) && "Cannot convert from scalar to/from vector"); assert(C->getType()->isFPOrFPVectorTy() && Ty->isIntOrIntVectorTy() && "This is an illegal floating point to sint cast!"); return getFoldedCast(Instruction::FPToSI, C, Ty); } Constant *ConstantExpr::getPtrToInt(Constant *C, Type *DstTy) { assert(C->getType()->getScalarType()->isPointerTy() && "PtrToInt source must be pointer or pointer vector"); assert(DstTy->getScalarType()->isIntegerTy() && "PtrToInt destination must be integer or integer vector"); assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); if (isa<VectorType>(C->getType())) assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& "Invalid cast between a different number of vector elements"); return getFoldedCast(Instruction::PtrToInt, C, DstTy); } Constant *ConstantExpr::getIntToPtr(Constant *C, Type *DstTy) { assert(C->getType()->getScalarType()->isIntegerTy() && "IntToPtr source must be integer or integer vector"); assert(DstTy->getScalarType()->isPointerTy() && "IntToPtr destination must be a pointer or pointer vector"); assert(isa<VectorType>(C->getType()) == isa<VectorType>(DstTy)); if (isa<VectorType>(C->getType())) assert(C->getType()->getVectorNumElements()==DstTy->getVectorNumElements()&& "Invalid cast between a different number of vector elements"); return getFoldedCast(Instruction::IntToPtr, C, DstTy); } Constant *ConstantExpr::getBitCast(Constant *C, Type *DstTy) { assert(CastInst::castIsValid(Instruction::BitCast, C, DstTy) && "Invalid constantexpr bitcast!"); // It is common to ask for a bitcast of a value to its own type, handle this // speedily. if (C->getType() == DstTy) return C; return getFoldedCast(Instruction::BitCast, C, DstTy); } Constant *ConstantExpr::get(unsigned Opcode, Constant *C1, Constant *C2, unsigned Flags) { // Check the operands for consistency first. assert(Opcode >= Instruction::BinaryOpsBegin && Opcode < Instruction::BinaryOpsEnd && "Invalid opcode in binary constant expression"); assert(C1->getType() == C2->getType() && "Operand types in binary constant expression should match"); #ifndef NDEBUG switch (Opcode) { case Instruction::Add: case Instruction::Sub: case Instruction::Mul: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an integer operation on a non-integer type!"); break; case Instruction::FAdd: case Instruction::FSub: case Instruction::FMul: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create a floating-point operation on a " "non-floating-point type!"); break; case Instruction::UDiv: case Instruction::SDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FDiv: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::URem: case Instruction::SRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::FRem: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isFPOrFPVectorTy() && "Tried to create an arithmetic operation on a non-arithmetic type!"); break; case Instruction::And: case Instruction::Or: case Instruction::Xor: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create a logical operation on a non-integral type!"); break; case Instruction::Shl: case Instruction::LShr: case Instruction::AShr: assert(C1->getType() == C2->getType() && "Op types should be identical!"); assert(C1->getType()->isIntOrIntVectorTy() && "Tried to create a shift operation on a non-integer type!"); break; default: break; } #endif if (Constant *FC = ConstantFoldBinaryInstruction(Opcode, C1, C2)) return FC; // Fold a few common cases. Constant *ArgVec[] = { C1, C2 }; ExprMapKeyType Key(Opcode, ArgVec, 0, Flags); LLVMContextImpl *pImpl = C1->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(C1->getType(), Key); } Constant *ConstantExpr::getSizeOf(Type* Ty) { // sizeof is implemented as: (i64) gep (Ty*)null, 1 // Note that a non-inbounds gep is used, as null isn't within any object. Constant *GEPIdx = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); Constant *GEP = getGetElementPtr( Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getAlignOf(Type* Ty) { // alignof is implemented as: (i64) gep ({i1,Ty}*)null, 0, 1 // Note that a non-inbounds gep is used, as null isn't within any object. Type *AligningTy = StructType::get(Type::getInt1Ty(Ty->getContext()), Ty, NULL); Constant *NullPtr = Constant::getNullValue(AligningTy->getPointerTo()); Constant *Zero = ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0); Constant *One = ConstantInt::get(Type::getInt32Ty(Ty->getContext()), 1); Constant *Indices[2] = { Zero, One }; Constant *GEP = getGetElementPtr(NullPtr, Indices); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getOffsetOf(StructType* STy, unsigned FieldNo) { return getOffsetOf(STy, ConstantInt::get(Type::getInt32Ty(STy->getContext()), FieldNo)); } Constant *ConstantExpr::getOffsetOf(Type* Ty, Constant *FieldNo) { // offsetof is implemented as: (i64) gep (Ty*)null, 0, FieldNo // Note that a non-inbounds gep is used, as null isn't within any object. Constant *GEPIdx[] = { ConstantInt::get(Type::getInt64Ty(Ty->getContext()), 0), FieldNo }; Constant *GEP = getGetElementPtr( Constant::getNullValue(PointerType::getUnqual(Ty)), GEPIdx); return getPtrToInt(GEP, Type::getInt64Ty(Ty->getContext())); } Constant *ConstantExpr::getCompare(unsigned short Predicate, Constant *C1, Constant *C2) { assert(C1->getType() == C2->getType() && "Op types should be identical!"); switch (Predicate) { default: llvm_unreachable("Invalid CmpInst predicate"); case CmpInst::FCMP_FALSE: case CmpInst::FCMP_OEQ: case CmpInst::FCMP_OGT: case CmpInst::FCMP_OGE: case CmpInst::FCMP_OLT: case CmpInst::FCMP_OLE: case CmpInst::FCMP_ONE: case CmpInst::FCMP_ORD: case CmpInst::FCMP_UNO: case CmpInst::FCMP_UEQ: case CmpInst::FCMP_UGT: case CmpInst::FCMP_UGE: case CmpInst::FCMP_ULT: case CmpInst::FCMP_ULE: case CmpInst::FCMP_UNE: case CmpInst::FCMP_TRUE: return getFCmp(Predicate, C1, C2); case CmpInst::ICMP_EQ: case CmpInst::ICMP_NE: case CmpInst::ICMP_UGT: case CmpInst::ICMP_UGE: case CmpInst::ICMP_ULT: case CmpInst::ICMP_ULE: case CmpInst::ICMP_SGT: case CmpInst::ICMP_SGE: case CmpInst::ICMP_SLT: case CmpInst::ICMP_SLE: return getICmp(Predicate, C1, C2); } } Constant *ConstantExpr::getSelect(Constant *C, Constant *V1, Constant *V2) { assert(!SelectInst::areInvalidOperands(C, V1, V2)&&"Invalid select operands"); if (Constant *SC = ConstantFoldSelectInstruction(C, V1, V2)) return SC; // Fold common cases Constant *ArgVec[] = { C, V1, V2 }; ExprMapKeyType Key(Instruction::Select, ArgVec); LLVMContextImpl *pImpl = C->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(V1->getType(), Key); } Constant *ConstantExpr::getGetElementPtr(Constant *C, ArrayRef<Value *> Idxs, bool InBounds) { assert(C->getType()->isPtrOrPtrVectorTy() && "Non-pointer type for constant GetElementPtr expression"); if (Constant *FC = ConstantFoldGetElementPtr(C, InBounds, Idxs)) return FC; // Fold a few common cases. // Get the result type of the getelementptr! Type *Ty = GetElementPtrInst::getIndexedType(C->getType(), Idxs); assert(Ty && "GEP indices invalid!"); unsigned AS = C->getType()->getPointerAddressSpace(); Type *ReqTy = Ty->getPointerTo(AS); if (VectorType *VecTy = dyn_cast<VectorType>(C->getType())) ReqTy = VectorType::get(ReqTy, VecTy->getNumElements()); // Look up the constant in the table first to ensure uniqueness std::vector<Constant*> ArgVec; ArgVec.reserve(1 + Idxs.size()); ArgVec.push_back(C); for (unsigned i = 0, e = Idxs.size(); i != e; ++i) { assert(Idxs[i]->getType()->isVectorTy() == ReqTy->isVectorTy() && "getelementptr index type missmatch"); assert((!Idxs[i]->getType()->isVectorTy() || ReqTy->getVectorNumElements() == Idxs[i]->getType()->getVectorNumElements()) && "getelementptr index type missmatch"); ArgVec.push_back(cast<Constant>(Idxs[i])); } const ExprMapKeyType Key(Instruction::GetElementPtr, ArgVec, 0, InBounds ? GEPOperator::IsInBounds : 0); LLVMContextImpl *pImpl = C->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant * ConstantExpr::getICmp(unsigned short pred, Constant *LHS, Constant *RHS) { assert(LHS->getType() == RHS->getType()); assert(pred >= ICmpInst::FIRST_ICMP_PREDICATE && pred <= ICmpInst::LAST_ICMP_PREDICATE && "Invalid ICmp Predicate"); if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = { LHS, RHS }; // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::ICmp, ArgVec, pred); Type *ResultTy = Type::getInt1Ty(LHS->getContext()); if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) ResultTy = VectorType::get(ResultTy, VT->getNumElements()); LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ResultTy, Key); } Constant * ConstantExpr::getFCmp(unsigned short pred, Constant *LHS, Constant *RHS) { assert(LHS->getType() == RHS->getType()); assert(pred <= FCmpInst::LAST_FCMP_PREDICATE && "Invalid FCmp Predicate"); if (Constant *FC = ConstantFoldCompareInstruction(pred, LHS, RHS)) return FC; // Fold a few common cases... // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = { LHS, RHS }; // Get the key type with both the opcode and predicate const ExprMapKeyType Key(Instruction::FCmp, ArgVec, pred); Type *ResultTy = Type::getInt1Ty(LHS->getContext()); if (VectorType *VT = dyn_cast<VectorType>(LHS->getType())) ResultTy = VectorType::get(ResultTy, VT->getNumElements()); LLVMContextImpl *pImpl = LHS->getType()->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ResultTy, Key); } Constant *ConstantExpr::getExtractElement(Constant *Val, Constant *Idx) { assert(Val->getType()->isVectorTy() && "Tried to create extractelement operation on non-vector type!"); assert(Idx->getType()->isIntegerTy(32) && "Extractelement index must be i32 type!"); if (Constant *FC = ConstantFoldExtractElementInstruction(Val, Idx)) return FC; // Fold a few common cases. // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = { Val, Idx }; const ExprMapKeyType Key(Instruction::ExtractElement, ArgVec); LLVMContextImpl *pImpl = Val->getContext().pImpl; Type *ReqTy = Val->getType()->getVectorElementType(); return pImpl->ExprConstants.getOrCreate(ReqTy, Key); } Constant *ConstantExpr::getInsertElement(Constant *Val, Constant *Elt, Constant *Idx) { assert(Val->getType()->isVectorTy() && "Tried to create insertelement operation on non-vector type!"); assert(Elt->getType() == Val->getType()->getVectorElementType() && "Insertelement types must match!"); assert(Idx->getType()->isIntegerTy(32) && "Insertelement index must be i32 type!"); if (Constant *FC = ConstantFoldInsertElementInstruction(Val, Elt, Idx)) return FC; // Fold a few common cases. // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = { Val, Elt, Idx }; const ExprMapKeyType Key(Instruction::InsertElement, ArgVec); LLVMContextImpl *pImpl = Val->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(Val->getType(), Key); } Constant *ConstantExpr::getShuffleVector(Constant *V1, Constant *V2, Constant *Mask) { assert(ShuffleVectorInst::isValidOperands(V1, V2, Mask) && "Invalid shuffle vector constant expr operands!"); if (Constant *FC = ConstantFoldShuffleVectorInstruction(V1, V2, Mask)) return FC; // Fold a few common cases. unsigned NElts = Mask->getType()->getVectorNumElements(); Type *EltTy = V1->getType()->getVectorElementType(); Type *ShufTy = VectorType::get(EltTy, NElts); // Look up the constant in the table first to ensure uniqueness Constant *ArgVec[] = { V1, V2, Mask }; const ExprMapKeyType Key(Instruction::ShuffleVector, ArgVec); LLVMContextImpl *pImpl = ShufTy->getContext().pImpl; return pImpl->ExprConstants.getOrCreate(ShufTy, Key); } Constant *ConstantExpr::getInsertValue(Constant *Agg, Constant *Val, ArrayRef<unsigned> Idxs) { assert(ExtractValueInst::getIndexedType(Agg->getType(), Idxs) == Val->getType() && "insertvalue indices invalid!"); assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant insertvalue expression"); Constant *FC = ConstantFoldInsertValueInstruction(Agg, Val, Idxs); assert(FC && "insertvalue constant expr couldn't be folded!"); return FC; } Constant *ConstantExpr::getExtractValue(Constant *Agg, ArrayRef<unsigned> Idxs) { assert(Agg->getType()->isFirstClassType() && "Tried to create extractelement operation on non-first-class type!"); Type *ReqTy = ExtractValueInst::getIndexedType(Agg->getType(), Idxs); (void)ReqTy; assert(ReqTy && "extractvalue indices invalid!"); assert(Agg->getType()->isFirstClassType() && "Non-first-class type for constant extractvalue expression"); Constant *FC = ConstantFoldExtractValueInstruction(Agg, Idxs); assert(FC && "ExtractValue constant expr couldn't be folded!"); return FC; } Constant *ConstantExpr::getNeg(Constant *C, bool HasNUW, bool HasNSW) { assert(C->getType()->isIntOrIntVectorTy() && "Cannot NEG a nonintegral value!"); return getSub(ConstantFP::getZeroValueForNegation(C->getType()), C, HasNUW, HasNSW); } Constant *ConstantExpr::getFNeg(Constant *C) { assert(C->getType()->isFPOrFPVectorTy() && "Cannot FNEG a non-floating-point value!"); return getFSub(ConstantFP::getZeroValueForNegation(C->getType()), C); } Constant *ConstantExpr::getNot(Constant *C) { assert(C->getType()->isIntOrIntVectorTy() && "Cannot NOT a nonintegral value!"); return get(Instruction::Xor, C, Constant::getAllOnesValue(C->getType())); } Constant *ConstantExpr::getAdd(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Add, C1, C2, Flags); } Constant *ConstantExpr::getFAdd(Constant *C1, Constant *C2) { return get(Instruction::FAdd, C1, C2); } Constant *ConstantExpr::getSub(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Sub, C1, C2, Flags); } Constant *ConstantExpr::getFSub(Constant *C1, Constant *C2) { return get(Instruction::FSub, C1, C2); } Constant *ConstantExpr::getMul(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Mul, C1, C2, Flags); } Constant *ConstantExpr::getFMul(Constant *C1, Constant *C2) { return get(Instruction::FMul, C1, C2); } Constant *ConstantExpr::getUDiv(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::UDiv, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getSDiv(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::SDiv, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getFDiv(Constant *C1, Constant *C2) { return get(Instruction::FDiv, C1, C2); } Constant *ConstantExpr::getURem(Constant *C1, Constant *C2) { return get(Instruction::URem, C1, C2); } Constant *ConstantExpr::getSRem(Constant *C1, Constant *C2) { return get(Instruction::SRem, C1, C2); } Constant *ConstantExpr::getFRem(Constant *C1, Constant *C2) { return get(Instruction::FRem, C1, C2); } Constant *ConstantExpr::getAnd(Constant *C1, Constant *C2) { return get(Instruction::And, C1, C2); } Constant *ConstantExpr::getOr(Constant *C1, Constant *C2) { return get(Instruction::Or, C1, C2); } Constant *ConstantExpr::getXor(Constant *C1, Constant *C2) { return get(Instruction::Xor, C1, C2); } Constant *ConstantExpr::getShl(Constant *C1, Constant *C2, bool HasNUW, bool HasNSW) { unsigned Flags = (HasNUW ? OverflowingBinaryOperator::NoUnsignedWrap : 0) | (HasNSW ? OverflowingBinaryOperator::NoSignedWrap : 0); return get(Instruction::Shl, C1, C2, Flags); } Constant *ConstantExpr::getLShr(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::LShr, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } Constant *ConstantExpr::getAShr(Constant *C1, Constant *C2, bool isExact) { return get(Instruction::AShr, C1, C2, isExact ? PossiblyExactOperator::IsExact : 0); } /// getBinOpIdentity - Return the identity for the given binary operation, /// i.e. a constant C such that X op C = X and C op X = X for every X. It /// returns null if the operator doesn't have an identity. Constant *ConstantExpr::getBinOpIdentity(unsigned Opcode, Type *Ty) { switch (Opcode) { default: // Doesn't have an identity. return 0; case Instruction::Add: case Instruction::Or: case Instruction::Xor: return Constant::getNullValue(Ty); case Instruction::Mul: return ConstantInt::get(Ty, 1); case Instruction::And: return Constant::getAllOnesValue(Ty); } } /// getBinOpAbsorber - Return the absorbing element for the given binary /// operation, i.e. a constant C such that X op C = C and C op X = C for /// every X. For example, this returns zero for integer multiplication. /// It returns null if the operator doesn't have an absorbing element. Constant *ConstantExpr::getBinOpAbsorber(unsigned Opcode, Type *Ty) { switch (Opcode) { default: // Doesn't have an absorber. return 0; case Instruction::Or: return Constant::getAllOnesValue(Ty); case Instruction::And: case Instruction::Mul: return Constant::getNullValue(Ty); } } // destroyConstant - Remove the constant from the constant table... // void ConstantExpr::destroyConstant() { getType()->getContext().pImpl->ExprConstants.remove(this); destroyConstantImpl(); } const char *ConstantExpr::getOpcodeName() const { return Instruction::getOpcodeName(getOpcode()); } GetElementPtrConstantExpr:: GetElementPtrConstantExpr(Constant *C, ArrayRef<Constant*> IdxList, Type *DestTy) : ConstantExpr(DestTy, Instruction::GetElementPtr, OperandTraits<GetElementPtrConstantExpr>::op_end(this) - (IdxList.size()+1), IdxList.size()+1) { OperandList[0] = C; for (unsigned i = 0, E = IdxList.size(); i != E; ++i) OperandList[i+1] = IdxList[i]; } //===----------------------------------------------------------------------===// // ConstantData* implementations void ConstantDataArray::anchor() {} void ConstantDataVector::anchor() {} /// getElementType - Return the element type of the array/vector. Type *ConstantDataSequential::getElementType() const { return getType()->getElementType(); } StringRef ConstantDataSequential::getRawDataValues() const { return StringRef(DataElements, getNumElements()*getElementByteSize()); } /// isElementTypeCompatible - Return true if a ConstantDataSequential can be /// formed with a vector or array of the specified element type. /// ConstantDataArray only works with normal float and int types that are /// stored densely in memory, not with things like i42 or x86_f80. bool ConstantDataSequential::isElementTypeCompatible(const Type *Ty) { if (Ty->isFloatTy() || Ty->isDoubleTy()) return true; if (const IntegerType *IT = dyn_cast<IntegerType>(Ty)) { switch (IT->getBitWidth()) { case 8: case 16: case 32: case 64: return true; default: break; } } return false; } /// getNumElements - Return the number of elements in the array or vector. unsigned ConstantDataSequential::getNumElements() const { if (ArrayType *AT = dyn_cast<ArrayType>(getType())) return AT->getNumElements(); return getType()->getVectorNumElements(); } /// getElementByteSize - Return the size in bytes of the elements in the data. uint64_t ConstantDataSequential::getElementByteSize() const { return getElementType()->getPrimitiveSizeInBits()/8; } /// getElementPointer - Return the start of the specified element. const char *ConstantDataSequential::getElementPointer(unsigned Elt) const { assert(Elt < getNumElements() && "Invalid Elt"); return DataElements+Elt*getElementByteSize(); } /// isAllZeros - return true if the array is empty or all zeros. static bool isAllZeros(StringRef Arr) { for (StringRef::iterator I = Arr.begin(), E = Arr.end(); I != E; ++I) if (*I != 0) return false; return true; } /// getImpl - This is the underlying implementation of all of the /// ConstantDataSequential::get methods. They all thunk down to here, providing /// the correct element type. We take the bytes in as a StringRef because /// we *want* an underlying "char*" to avoid TBAA type punning violations. Constant *ConstantDataSequential::getImpl(StringRef Elements, Type *Ty) { assert(isElementTypeCompatible(Ty->getSequentialElementType())); // If the elements are all zero or there are no elements, return a CAZ, which // is more dense and canonical. if (isAllZeros(Elements)) return ConstantAggregateZero::get(Ty); // Do a lookup to see if we have already formed one of these. StringMap<ConstantDataSequential*>::MapEntryTy &Slot = Ty->getContext().pImpl->CDSConstants.GetOrCreateValue(Elements); // The bucket can point to a linked list of different CDS's that have the same // body but different types. For example, 0,0,0,1 could be a 4 element array // of i8, or a 1-element array of i32. They'll both end up in the same /// StringMap bucket, linked up by their Next pointers. Walk the list. ConstantDataSequential **Entry = &Slot.getValue(); for (ConstantDataSequential *Node = *Entry; Node != 0; Entry = &Node->Next, Node = *Entry) if (Node->getType() == Ty) return Node; // Okay, we didn't get a hit. Create a node of the right class, link it in, // and return it. if (isa<ArrayType>(Ty)) return *Entry = new ConstantDataArray(Ty, Slot.getKeyData()); assert(isa<VectorType>(Ty)); return *Entry = new ConstantDataVector(Ty, Slot.getKeyData()); } void ConstantDataSequential::destroyConstant() { // Remove the constant from the StringMap. StringMap<ConstantDataSequential*> &CDSConstants = getType()->getContext().pImpl->CDSConstants; StringMap<ConstantDataSequential*>::iterator Slot = CDSConstants.find(getRawDataValues()); assert(Slot != CDSConstants.end() && "CDS not found in uniquing table"); ConstantDataSequential **Entry = &Slot->getValue(); // Remove the entry from the hash table. if ((*Entry)->Next == 0) { // If there is only one value in the bucket (common case) it must be this // entry, and removing the entry should remove the bucket completely. assert((*Entry) == this && "Hash mismatch in ConstantDataSequential"); getContext().pImpl->CDSConstants.erase(Slot); } else { // Otherwise, there are multiple entries linked off the bucket, unlink the // node we care about but keep the bucket around. for (ConstantDataSequential *Node = *Entry; ; Entry = &Node->Next, Node = *Entry) { assert(Node && "Didn't find entry in its uniquing hash table!"); // If we found our entry, unlink it from the list and we're done. if (Node == this) { *Entry = Node->Next; break; } } } // If we were part of a list, make sure that we don't delete the list that is // still owned by the uniquing map. Next = 0; // Finally, actually delete it. destroyConstantImpl(); } /// get() constructors - Return a constant with array type with an element /// count and element type matching the ArrayRef passed in. Note that this /// can return a ConstantAggregateZero object. Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint8_t> Elts) { Type *Ty = ArrayType::get(Type::getInt8Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ Type *Ty = ArrayType::get(Type::getInt16Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ Type *Ty = ArrayType::get(Type::getInt32Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ Type *Ty = ArrayType::get(Type::getInt64Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<float> Elts) { Type *Ty = ArrayType::get(Type::getFloatTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); } Constant *ConstantDataArray::get(LLVMContext &Context, ArrayRef<double> Elts) { Type *Ty = ArrayType::get(Type::getDoubleTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); } /// getString - This method constructs a CDS and initializes it with a text /// string. The default behavior (AddNull==true) causes a null terminator to /// be placed at the end of the array (increasing the length of the string by /// one more than the StringRef would normally indicate. Pass AddNull=false /// to disable this behavior. Constant *ConstantDataArray::getString(LLVMContext &Context, StringRef Str, bool AddNull) { if (!AddNull) { const uint8_t *Data = reinterpret_cast<const uint8_t *>(Str.data()); return get(Context, ArrayRef<uint8_t>(const_cast<uint8_t *>(Data), Str.size())); } SmallVector<uint8_t, 64> ElementVals; ElementVals.append(Str.begin(), Str.end()); ElementVals.push_back(0); return get(Context, ElementVals); } /// get() constructors - Return a constant with vector type with an element /// count and element type matching the ArrayRef passed in. Note that this /// can return a ConstantAggregateZero object. Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint8_t> Elts){ Type *Ty = VectorType::get(Type::getInt8Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*1), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint16_t> Elts){ Type *Ty = VectorType::get(Type::getInt16Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*2), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint32_t> Elts){ Type *Ty = VectorType::get(Type::getInt32Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<uint64_t> Elts){ Type *Ty = VectorType::get(Type::getInt64Ty(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<float> Elts) { Type *Ty = VectorType::get(Type::getFloatTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*4), Ty); } Constant *ConstantDataVector::get(LLVMContext &Context, ArrayRef<double> Elts) { Type *Ty = VectorType::get(Type::getDoubleTy(Context), Elts.size()); const char *Data = reinterpret_cast<const char *>(Elts.data()); return getImpl(StringRef(const_cast<char *>(Data), Elts.size()*8), Ty); } Constant *ConstantDataVector::getSplat(unsigned NumElts, Constant *V) { assert(isElementTypeCompatible(V->getType()) && "Element type not compatible with ConstantData"); if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { if (CI->getType()->isIntegerTy(8)) { SmallVector<uint8_t, 16> Elts(NumElts, CI->getZExtValue()); return get(V->getContext(), Elts); } if (CI->getType()->isIntegerTy(16)) { SmallVector<uint16_t, 16> Elts(NumElts, CI->getZExtValue()); return get(V->getContext(), Elts); } if (CI->getType()->isIntegerTy(32)) { SmallVector<uint32_t, 16> Elts(NumElts, CI->getZExtValue()); return get(V->getContext(), Elts); } assert(CI->getType()->isIntegerTy(64) && "Unsupported ConstantData type"); SmallVector<uint64_t, 16> Elts(NumElts, CI->getZExtValue()); return get(V->getContext(), Elts); } if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) { if (CFP->getType()->isFloatTy()) { SmallVector<float, 16> Elts(NumElts, CFP->getValueAPF().convertToFloat()); return get(V->getContext(), Elts); } if (CFP->getType()->isDoubleTy()) { SmallVector<double, 16> Elts(NumElts, CFP->getValueAPF().convertToDouble()); return get(V->getContext(), Elts); } } return ConstantVector::getSplat(NumElts, V); } /// getElementAsInteger - If this is a sequential container of integers (of /// any size), return the specified element in the low bits of a uint64_t. uint64_t ConstantDataSequential::getElementAsInteger(unsigned Elt) const { assert(isa<IntegerType>(getElementType()) && "Accessor can only be used when element is an integer"); const char *EltPtr = getElementPointer(Elt); // The data is stored in host byte order, make sure to cast back to the right // type to load with the right endianness. switch (getElementType()->getIntegerBitWidth()) { default: llvm_unreachable("Invalid bitwidth for CDS"); case 8: return *const_cast<uint8_t *>(reinterpret_cast<const uint8_t *>(EltPtr)); case 16: return *const_cast<uint16_t *>(reinterpret_cast<const uint16_t *>(EltPtr)); case 32: return *const_cast<uint32_t *>(reinterpret_cast<const uint32_t *>(EltPtr)); case 64: return *const_cast<uint64_t *>(reinterpret_cast<const uint64_t *>(EltPtr)); } } /// getElementAsAPFloat - If this is a sequential container of floating point /// type, return the specified element as an APFloat. APFloat ConstantDataSequential::getElementAsAPFloat(unsigned Elt) const { const char *EltPtr = getElementPointer(Elt); switch (getElementType()->getTypeID()) { default: llvm_unreachable("Accessor can only be used when element is float/double!"); case Type::FloatTyID: { const float *FloatPrt = reinterpret_cast<const float *>(EltPtr); return APFloat(*const_cast<float *>(FloatPrt)); } case Type::DoubleTyID: { const double *DoublePtr = reinterpret_cast<const double *>(EltPtr); return APFloat(*const_cast<double *>(DoublePtr)); } } } /// getElementAsFloat - If this is an sequential container of floats, return /// the specified element as a float. float ConstantDataSequential::getElementAsFloat(unsigned Elt) const { assert(getElementType()->isFloatTy() && "Accessor can only be used when element is a 'float'"); const float *EltPtr = reinterpret_cast<const float *>(getElementPointer(Elt)); return *const_cast<float *>(EltPtr); } /// getElementAsDouble - If this is an sequential container of doubles, return /// the specified element as a float. double ConstantDataSequential::getElementAsDouble(unsigned Elt) const { assert(getElementType()->isDoubleTy() && "Accessor can only be used when element is a 'float'"); const double *EltPtr = reinterpret_cast<const double *>(getElementPointer(Elt)); return *const_cast<double *>(EltPtr); } /// getElementAsConstant - Return a Constant for a specified index's element. /// Note that this has to compute a new constant to return, so it isn't as /// efficient as getElementAsInteger/Float/Double. Constant *ConstantDataSequential::getElementAsConstant(unsigned Elt) const { if (getElementType()->isFloatTy() || getElementType()->isDoubleTy()) return ConstantFP::get(getContext(), getElementAsAPFloat(Elt)); return ConstantInt::get(getElementType(), getElementAsInteger(Elt)); } /// isString - This method returns true if this is an array of i8. bool ConstantDataSequential::isString() const { return isa<ArrayType>(getType()) && getElementType()->isIntegerTy(8); } /// isCString - This method returns true if the array "isString", ends with a /// nul byte, and does not contains any other nul bytes. bool ConstantDataSequential::isCString() const { if (!isString()) return false; StringRef Str = getAsString(); // The last value must be nul. if (Str.back() != 0) return false; // Other elements must be non-nul. return Str.drop_back().find(0) == StringRef::npos; } /// getSplatValue - If this is a splat constant, meaning that all of the /// elements have the same value, return that value. Otherwise return NULL. Constant *ConstantDataVector::getSplatValue() const { const char *Base = getRawDataValues().data(); // Compare elements 1+ to the 0'th element. unsigned EltSize = getElementByteSize(); for (unsigned i = 1, e = getNumElements(); i != e; ++i) if (memcmp(Base, Base+i*EltSize, EltSize)) return 0; // If they're all the same, return the 0th one as a representative. return getElementAsConstant(0); } //===----------------------------------------------------------------------===// // replaceUsesOfWithOnConstant implementations /// replaceUsesOfWithOnConstant - Update this constant array to change uses of /// 'From' to be uses of 'To'. This must update the uniquing data structures /// etc. /// /// Note that we intentionally replace all uses of From with To here. Consider /// a large array that uses 'From' 1000 times. By handling this case all here, /// ConstantArray::replaceUsesOfWithOnConstant is only invoked once, and that /// single invocation handles all 1000 uses. Handling them one at a time would /// work, but would be really slow because it would have to unique each updated /// array instance. /// void ConstantArray::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast<Constant>(To); LLVMContextImpl *pImpl = getType()->getContext().pImpl; SmallVector<Constant*, 8> Values; LLVMContextImpl::ArrayConstantsTy::LookupKey Lookup; Lookup.first = cast<ArrayType>(getType()); Values.reserve(getNumOperands()); // Build replacement array. // Fill values with the modified operands of the constant array. Also, // compute whether this turns into an all-zeros array. unsigned NumUpdated = 0; // Keep track of whether all the values in the array are "ToC". bool AllSame = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast<Constant>(O->get()); if (Val == From) { Val = ToC; ++NumUpdated; } Values.push_back(Val); AllSame &= Val == ToC; } Constant *Replacement = 0; if (AllSame && ToC->isNullValue()) { Replacement = ConstantAggregateZero::get(getType()); } else if (AllSame && isa<UndefValue>(ToC)) { Replacement = UndefValue::get(getType()); } else { // Check to see if we have this array type already. Lookup.second = makeArrayRef(Values); LLVMContextImpl::ArrayConstantsTy::MapTy::iterator I = pImpl->ArrayConstants.find(Lookup); if (I != pImpl->ArrayConstants.map_end()) { Replacement = I->first; } else { // Okay, the new shape doesn't exist in the system yet. Instead of // creating a new constant array, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! pImpl->ArrayConstants.remove(this); // Update to the new value. Optimize for the case when we have a single // operand that we're changing, but handle bulk updates efficiently. if (NumUpdated == 1) { unsigned OperandToUpdate = U - OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); setOperand(OperandToUpdate, ToC); } else { for (unsigned i = 0, e = getNumOperands(); i != e; ++i) if (getOperand(i) == From) setOperand(i, ToC); } pImpl->ArrayConstants.insert(this); return; } } // Otherwise, I do need to replace this with an existing value. assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantStruct::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); Constant *ToC = cast<Constant>(To); unsigned OperandToUpdate = U-OperandList; assert(getOperand(OperandToUpdate) == From && "ReplaceAllUsesWith broken!"); SmallVector<Constant*, 8> Values; LLVMContextImpl::StructConstantsTy::LookupKey Lookup; Lookup.first = cast<StructType>(getType()); Values.reserve(getNumOperands()); // Build replacement struct. // Fill values with the modified operands of the constant struct. Also, // compute whether this turns into an all-zeros struct. bool isAllZeros = false; bool isAllUndef = false; if (ToC->isNullValue()) { isAllZeros = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast<Constant>(O->get()); Values.push_back(Val); if (isAllZeros) isAllZeros = Val->isNullValue(); } } else if (isa<UndefValue>(ToC)) { isAllUndef = true; for (Use *O = OperandList, *E = OperandList+getNumOperands(); O != E; ++O) { Constant *Val = cast<Constant>(O->get()); Values.push_back(Val); if (isAllUndef) isAllUndef = isa<UndefValue>(Val); } } else { for (Use *O = OperandList, *E = OperandList + getNumOperands(); O != E; ++O) Values.push_back(cast<Constant>(O->get())); } Values[OperandToUpdate] = ToC; LLVMContextImpl *pImpl = getContext().pImpl; Constant *Replacement = 0; if (isAllZeros) { Replacement = ConstantAggregateZero::get(getType()); } else if (isAllUndef) { Replacement = UndefValue::get(getType()); } else { // Check to see if we have this struct type already. Lookup.second = makeArrayRef(Values); LLVMContextImpl::StructConstantsTy::MapTy::iterator I = pImpl->StructConstants.find(Lookup); if (I != pImpl->StructConstants.map_end()) { Replacement = I->first; } else { // Okay, the new shape doesn't exist in the system yet. Instead of // creating a new constant struct, inserting it, replaceallusesof'ing the // old with the new, then deleting the old... just update the current one // in place! pImpl->StructConstants.remove(this); // Update to the new value. setOperand(OperandToUpdate, ToC); pImpl->StructConstants.insert(this); return; } } assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantVector::replaceUsesOfWithOnConstant(Value *From, Value *To, Use *U) { assert(isa<Constant>(To) && "Cannot make Constant refer to non-constant!"); SmallVector<Constant*, 8> Values; Values.reserve(getNumOperands()); // Build replacement array... for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Constant *Val = getOperand(i); if (Val == From) Val = cast<Constant>(To); Values.push_back(Val); } Constant *Replacement = get(Values); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } void ConstantExpr::replaceUsesOfWithOnConstant(Value *From, Value *ToV, Use *U) { assert(isa<Constant>(ToV) && "Cannot make Constant refer to non-constant!"); Constant *To = cast<Constant>(ToV); SmallVector<Constant*, 8> NewOps; for (unsigned i = 0, e = getNumOperands(); i != e; ++i) { Constant *Op = getOperand(i); NewOps.push_back(Op == From ? To : Op); } Constant *Replacement = getWithOperands(NewOps); assert(Replacement != this && "I didn't contain From!"); // Everyone using this now uses the replacement. replaceAllUsesWith(Replacement); // Delete the old constant! destroyConstant(); } Instruction *ConstantExpr::getAsInstruction() { SmallVector<Value*,4> ValueOperands; for (op_iterator I = op_begin(), E = op_end(); I != E; ++I) ValueOperands.push_back(cast<Value>(I)); ArrayRef<Value*> Ops(ValueOperands); switch (getOpcode()) { case Instruction::Trunc: case Instruction::ZExt: case Instruction::SExt: case Instruction::FPTrunc: case Instruction::FPExt: case Instruction::UIToFP: case Instruction::SIToFP: case Instruction::FPToUI: case Instruction::FPToSI: case Instruction::PtrToInt: case Instruction::IntToPtr: case Instruction::BitCast: return CastInst::Create((Instruction::CastOps)getOpcode(), Ops[0], getType()); case Instruction::Select: return SelectInst::Create(Ops[0], Ops[1], Ops[2]); case Instruction::InsertElement: return InsertElementInst::Create(Ops[0], Ops[1], Ops[2]); case Instruction::ExtractElement: return ExtractElementInst::Create(Ops[0], Ops[1]); case Instruction::InsertValue: return InsertValueInst::Create(Ops[0], Ops[1], getIndices()); case Instruction::ExtractValue: return ExtractValueInst::Create(Ops[0], getIndices()); case Instruction::ShuffleVector: return new ShuffleVectorInst(Ops[0], Ops[1], Ops[2]); case Instruction::GetElementPtr: if (cast<GEPOperator>(this)->isInBounds()) return GetElementPtrInst::CreateInBounds(Ops[0], Ops.slice(1)); else return GetElementPtrInst::Create(Ops[0], Ops.slice(1)); case Instruction::ICmp: case Instruction::FCmp: return CmpInst::Create((Instruction::OtherOps)getOpcode(), getPredicate(), Ops[0], Ops[1]); default: assert(getNumOperands() == 2 && "Must be binary operator?"); BinaryOperator *BO = BinaryOperator::Create((Instruction::BinaryOps)getOpcode(), Ops[0], Ops[1]); if (isa<OverflowingBinaryOperator>(BO)) { BO->setHasNoUnsignedWrap(SubclassOptionalData & OverflowingBinaryOperator::NoUnsignedWrap); BO->setHasNoSignedWrap(SubclassOptionalData & OverflowingBinaryOperator::NoSignedWrap); } if (isa<PossiblyExactOperator>(BO)) BO->setIsExact(SubclassOptionalData & PossiblyExactOperator::IsExact); return BO; } }