//===-- Value.cpp - Implement the Value class -----------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the Value, ValueHandle, and User classes. // //===----------------------------------------------------------------------===// #include "llvm/IR/Value.h" #include "LLVMContextImpl.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallString.h" #include "llvm/IR/Constant.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/InstrTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Module.h" #include "llvm/IR/Operator.h" #include "llvm/IR/ValueSymbolTable.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/LeakDetector.h" #include "llvm/Support/ManagedStatic.h" #include "llvm/Support/ValueHandle.h" #include <algorithm> using namespace llvm; //===----------------------------------------------------------------------===// // Value Class //===----------------------------------------------------------------------===// static inline Type *checkType(Type *Ty) { assert(Ty && "Value defined with a null type: Error!"); return const_cast<Type*>(Ty); } Value::Value(Type *ty, unsigned scid) : SubclassID(scid), HasValueHandle(0), SubclassOptionalData(0), SubclassData(0), VTy((Type*)checkType(ty)), UseList(0), Name(0) { // FIXME: Why isn't this in the subclass gunk?? // Note, we cannot call isa<CallInst> before the CallInst has been // constructed. if (SubclassID == Instruction::Call || SubclassID == Instruction::Invoke) assert((VTy->isFirstClassType() || VTy->isVoidTy() || VTy->isStructTy()) && "invalid CallInst type!"); else if (SubclassID != BasicBlockVal && (SubclassID < ConstantFirstVal || SubclassID > ConstantLastVal)) assert((VTy->isFirstClassType() || VTy->isVoidTy()) && "Cannot create non-first-class values except for constants!"); } Value::~Value() { // Notify all ValueHandles (if present) that this value is going away. if (HasValueHandle) ValueHandleBase::ValueIsDeleted(this); #ifndef NDEBUG // Only in -g mode... // Check to make sure that there are no uses of this value that are still // around when the value is destroyed. If there are, then we have a dangling // reference and something is wrong. This code is here to print out what is // still being referenced. The value in question should be printed as // a <badref> // if (!use_empty()) { dbgs() << "While deleting: " << *VTy << " %" << getName() << "\n"; for (use_iterator I = use_begin(), E = use_end(); I != E; ++I) dbgs() << "Use still stuck around after Def is destroyed:" << **I << "\n"; } #endif assert(use_empty() && "Uses remain when a value is destroyed!"); // If this value is named, destroy the name. This should not be in a symtab // at this point. if (Name && SubclassID != MDStringVal) Name->Destroy(); // There should be no uses of this object anymore, remove it. LeakDetector::removeGarbageObject(this); } /// hasNUses - Return true if this Value has exactly N users. /// bool Value::hasNUses(unsigned N) const { const_use_iterator UI = use_begin(), E = use_end(); for (; N; --N, ++UI) if (UI == E) return false; // Too few. return UI == E; } /// hasNUsesOrMore - Return true if this value has N users or more. This is /// logically equivalent to getNumUses() >= N. /// bool Value::hasNUsesOrMore(unsigned N) const { const_use_iterator UI = use_begin(), E = use_end(); for (; N; --N, ++UI) if (UI == E) return false; // Too few. return true; } /// isUsedInBasicBlock - Return true if this value is used in the specified /// basic block. bool Value::isUsedInBasicBlock(const BasicBlock *BB) const { // Start by scanning over the instructions looking for a use before we start // the expensive use iteration. unsigned MaxBlockSize = 3; for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) { if (std::find(I->op_begin(), I->op_end(), this) != I->op_end()) return true; if (MaxBlockSize-- == 0) // If the block is larger fall back to use_iterator break; } if (MaxBlockSize != 0) // We scanned the entire block and found no use. return false; for (const_use_iterator I = use_begin(), E = use_end(); I != E; ++I) { const Instruction *User = dyn_cast<Instruction>(*I); if (User && User->getParent() == BB) return true; } return false; } /// getNumUses - This method computes the number of uses of this Value. This /// is a linear time operation. Use hasOneUse or hasNUses to check for specific /// values. unsigned Value::getNumUses() const { return (unsigned)std::distance(use_begin(), use_end()); } static bool getSymTab(Value *V, ValueSymbolTable *&ST) { ST = 0; if (Instruction *I = dyn_cast<Instruction>(V)) { if (BasicBlock *P = I->getParent()) if (Function *PP = P->getParent()) ST = &PP->getValueSymbolTable(); } else if (BasicBlock *BB = dyn_cast<BasicBlock>(V)) { if (Function *P = BB->getParent()) ST = &P->getValueSymbolTable(); } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) { if (Module *P = GV->getParent()) ST = &P->getValueSymbolTable(); } else if (Argument *A = dyn_cast<Argument>(V)) { if (Function *P = A->getParent()) ST = &P->getValueSymbolTable(); } else if (isa<MDString>(V)) return true; else { assert(isa<Constant>(V) && "Unknown value type!"); return true; // no name is setable for this. } return false; } StringRef Value::getName() const { // Make sure the empty string is still a C string. For historical reasons, // some clients want to call .data() on the result and expect it to be null // terminated. if (!Name) return StringRef("", 0); return Name->getKey(); } void Value::setName(const Twine &NewName) { assert(SubclassID != MDStringVal && "Cannot set the name of MDString with this method!"); // Fast path for common IRBuilder case of setName("") when there is no name. if (NewName.isTriviallyEmpty() && !hasName()) return; SmallString<256> NameData; StringRef NameRef = NewName.toStringRef(NameData); // Name isn't changing? if (getName() == NameRef) return; assert(!getType()->isVoidTy() && "Cannot assign a name to void values!"); // Get the symbol table to update for this object. ValueSymbolTable *ST; if (getSymTab(this, ST)) return; // Cannot set a name on this value (e.g. constant). if (Function *F = dyn_cast<Function>(this)) getContext().pImpl->IntrinsicIDCache.erase(F); if (!ST) { // No symbol table to update? Just do the change. if (NameRef.empty()) { // Free the name for this value. Name->Destroy(); Name = 0; return; } if (Name) Name->Destroy(); // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. // Create the new name. Name = ValueName::Create(NameRef.begin(), NameRef.end()); Name->setValue(this); return; } // NOTE: Could optimize for the case the name is shrinking to not deallocate // then reallocated. if (hasName()) { // Remove old name. ST->removeValueName(Name); Name->Destroy(); Name = 0; if (NameRef.empty()) return; } // Name is changing to something new. Name = ST->createValueName(NameRef, this); } /// takeName - transfer the name from V to this value, setting V's name to /// empty. It is an error to call V->takeName(V). void Value::takeName(Value *V) { assert(SubclassID != MDStringVal && "Cannot take the name of an MDString!"); ValueSymbolTable *ST = 0; // If this value has a name, drop it. if (hasName()) { // Get the symtab this is in. if (getSymTab(this, ST)) { // We can't set a name on this value, but we need to clear V's name if // it has one. if (V->hasName()) V->setName(""); return; // Cannot set a name on this value (e.g. constant). } // Remove old name. if (ST) ST->removeValueName(Name); Name->Destroy(); Name = 0; } // Now we know that this has no name. // If V has no name either, we're done. if (!V->hasName()) return; // Get this's symtab if we didn't before. if (!ST) { if (getSymTab(this, ST)) { // Clear V's name. V->setName(""); return; // Cannot set a name on this value (e.g. constant). } } // Get V's ST, this should always succed, because V has a name. ValueSymbolTable *VST; bool Failure = getSymTab(V, VST); assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure; // If these values are both in the same symtab, we can do this very fast. // This works even if both values have no symtab yet. if (ST == VST) { // Take the name! Name = V->Name; V->Name = 0; Name->setValue(this); return; } // Otherwise, things are slightly more complex. Remove V's name from VST and // then reinsert it into ST. if (VST) VST->removeValueName(V->Name); Name = V->Name; V->Name = 0; Name->setValue(this); if (ST) ST->reinsertValue(this); } void Value::replaceAllUsesWith(Value *New) { assert(New && "Value::replaceAllUsesWith(<null>) is invalid!"); assert(New != this && "this->replaceAllUsesWith(this) is NOT valid!"); assert(New->getType() == getType() && "replaceAllUses of value with new value of different type!"); // Notify all ValueHandles (if present) that this value is going away. if (HasValueHandle) ValueHandleBase::ValueIsRAUWd(this, New); while (!use_empty()) { Use &U = *UseList; // Must handle Constants specially, we cannot call replaceUsesOfWith on a // constant because they are uniqued. if (Constant *C = dyn_cast<Constant>(U.getUser())) { if (!isa<GlobalValue>(C)) { C->replaceUsesOfWithOnConstant(this, New, &U); continue; } } U.set(New); } if (BasicBlock *BB = dyn_cast<BasicBlock>(this)) BB->replaceSuccessorsPhiUsesWith(cast<BasicBlock>(New)); } namespace { // Various metrics for how much to strip off of pointers. enum PointerStripKind { PSK_ZeroIndices, PSK_InBoundsConstantIndices, PSK_InBounds }; template <PointerStripKind StripKind> static Value *stripPointerCastsAndOffsets(Value *V) { if (!V->getType()->isPointerTy()) return V; // Even though we don't look through PHI nodes, we could be called on an // instruction in an unreachable block, which may be on a cycle. SmallPtrSet<Value *, 4> Visited; Visited.insert(V); do { if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { switch (StripKind) { case PSK_ZeroIndices: if (!GEP->hasAllZeroIndices()) return V; break; case PSK_InBoundsConstantIndices: if (!GEP->hasAllConstantIndices()) return V; // fallthrough case PSK_InBounds: if (!GEP->isInBounds()) return V; break; } V = GEP->getPointerOperand(); } else if (Operator::getOpcode(V) == Instruction::BitCast) { V = cast<Operator>(V)->getOperand(0); } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) { if (GA->mayBeOverridden()) return V; V = GA->getAliasee(); } else { return V; } assert(V->getType()->isPointerTy() && "Unexpected operand type!"); } while (Visited.insert(V)); return V; } } // namespace Value *Value::stripPointerCasts() { return stripPointerCastsAndOffsets<PSK_ZeroIndices>(this); } Value *Value::stripInBoundsConstantOffsets() { return stripPointerCastsAndOffsets<PSK_InBoundsConstantIndices>(this); } Value *Value::stripInBoundsOffsets() { return stripPointerCastsAndOffsets<PSK_InBounds>(this); } /// isDereferenceablePointer - Test if this value is always a pointer to /// allocated and suitably aligned memory for a simple load or store. static bool isDereferenceablePointer(const Value *V, SmallPtrSet<const Value *, 32> &Visited) { // Note that it is not safe to speculate into a malloc'd region because // malloc may return null. // It's also not always safe to follow a bitcast, for example: // bitcast i8* (alloca i8) to i32* // would result in a 4-byte load from a 1-byte alloca. Some cases could // be handled using DataLayout to check sizes and alignments though. // These are obviously ok. if (isa<AllocaInst>(V)) return true; // Global variables which can't collapse to null are ok. if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) return !GV->hasExternalWeakLinkage(); // byval arguments are ok. if (const Argument *A = dyn_cast<Argument>(V)) return A->hasByValAttr(); // For GEPs, determine if the indexing lands within the allocated object. if (const GEPOperator *GEP = dyn_cast<GEPOperator>(V)) { // Conservatively require that the base pointer be fully dereferenceable. if (!Visited.insert(GEP->getOperand(0))) return false; if (!isDereferenceablePointer(GEP->getOperand(0), Visited)) return false; // Check the indices. gep_type_iterator GTI = gep_type_begin(GEP); for (User::const_op_iterator I = GEP->op_begin()+1, E = GEP->op_end(); I != E; ++I) { Value *Index = *I; Type *Ty = *GTI++; // Struct indices can't be out of bounds. if (isa<StructType>(Ty)) continue; ConstantInt *CI = dyn_cast<ConstantInt>(Index); if (!CI) return false; // Zero is always ok. if (CI->isZero()) continue; // Check to see that it's within the bounds of an array. ArrayType *ATy = dyn_cast<ArrayType>(Ty); if (!ATy) return false; if (CI->getValue().getActiveBits() > 64) return false; if (CI->getZExtValue() >= ATy->getNumElements()) return false; } // Indices check out; this is dereferenceable. return true; } // If we don't know, assume the worst. return false; } /// isDereferenceablePointer - Test if this value is always a pointer to /// allocated and suitably aligned memory for a simple load or store. bool Value::isDereferenceablePointer() const { SmallPtrSet<const Value *, 32> Visited; return ::isDereferenceablePointer(this, Visited); } /// DoPHITranslation - If this value is a PHI node with CurBB as its parent, /// return the value in the PHI node corresponding to PredBB. If not, return /// ourself. This is useful if you want to know the value something has in a /// predecessor block. Value *Value::DoPHITranslation(const BasicBlock *CurBB, const BasicBlock *PredBB) { PHINode *PN = dyn_cast<PHINode>(this); if (PN && PN->getParent() == CurBB) return PN->getIncomingValueForBlock(PredBB); return this; } LLVMContext &Value::getContext() const { return VTy->getContext(); } //===----------------------------------------------------------------------===// // ValueHandleBase Class //===----------------------------------------------------------------------===// /// AddToExistingUseList - Add this ValueHandle to the use list for VP, where /// List is known to point into the existing use list. void ValueHandleBase::AddToExistingUseList(ValueHandleBase **List) { assert(List && "Handle list is null?"); // Splice ourselves into the list. Next = *List; *List = this; setPrevPtr(List); if (Next) { Next->setPrevPtr(&Next); assert(VP.getPointer() == Next->VP.getPointer() && "Added to wrong list?"); } } void ValueHandleBase::AddToExistingUseListAfter(ValueHandleBase *List) { assert(List && "Must insert after existing node"); Next = List->Next; setPrevPtr(&List->Next); List->Next = this; if (Next) Next->setPrevPtr(&Next); } /// AddToUseList - Add this ValueHandle to the use list for VP. void ValueHandleBase::AddToUseList() { assert(VP.getPointer() && "Null pointer doesn't have a use list!"); LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl; if (VP.getPointer()->HasValueHandle) { // If this value already has a ValueHandle, then it must be in the // ValueHandles map already. ValueHandleBase *&Entry = pImpl->ValueHandles[VP.getPointer()]; assert(Entry != 0 && "Value doesn't have any handles?"); AddToExistingUseList(&Entry); return; } // Ok, it doesn't have any handles yet, so we must insert it into the // DenseMap. However, doing this insertion could cause the DenseMap to // reallocate itself, which would invalidate all of the PrevP pointers that // point into the old table. Handle this by checking for reallocation and // updating the stale pointers only if needed. DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; const void *OldBucketPtr = Handles.getPointerIntoBucketsArray(); ValueHandleBase *&Entry = Handles[VP.getPointer()]; assert(Entry == 0 && "Value really did already have handles?"); AddToExistingUseList(&Entry); VP.getPointer()->HasValueHandle = true; // If reallocation didn't happen or if this was the first insertion, don't // walk the table. if (Handles.isPointerIntoBucketsArray(OldBucketPtr) || Handles.size() == 1) { return; } // Okay, reallocation did happen. Fix the Prev Pointers. for (DenseMap<Value*, ValueHandleBase*>::iterator I = Handles.begin(), E = Handles.end(); I != E; ++I) { assert(I->second && I->first == I->second->VP.getPointer() && "List invariant broken!"); I->second->setPrevPtr(&I->second); } } /// RemoveFromUseList - Remove this ValueHandle from its current use list. void ValueHandleBase::RemoveFromUseList() { assert(VP.getPointer() && VP.getPointer()->HasValueHandle && "Pointer doesn't have a use list!"); // Unlink this from its use list. ValueHandleBase **PrevPtr = getPrevPtr(); assert(*PrevPtr == this && "List invariant broken"); *PrevPtr = Next; if (Next) { assert(Next->getPrevPtr() == &Next && "List invariant broken"); Next->setPrevPtr(PrevPtr); return; } // If the Next pointer was null, then it is possible that this was the last // ValueHandle watching VP. If so, delete its entry from the ValueHandles // map. LLVMContextImpl *pImpl = VP.getPointer()->getContext().pImpl; DenseMap<Value*, ValueHandleBase*> &Handles = pImpl->ValueHandles; if (Handles.isPointerIntoBucketsArray(PrevPtr)) { Handles.erase(VP.getPointer()); VP.getPointer()->HasValueHandle = false; } } void ValueHandleBase::ValueIsDeleted(Value *V) { assert(V->HasValueHandle && "Should only be called if ValueHandles present"); // Get the linked list base, which is guaranteed to exist since the // HasValueHandle flag is set. LLVMContextImpl *pImpl = V->getContext().pImpl; ValueHandleBase *Entry = pImpl->ValueHandles[V]; assert(Entry && "Value bit set but no entries exist"); // We use a local ValueHandleBase as an iterator so that ValueHandles can add // and remove themselves from the list without breaking our iteration. This // is not really an AssertingVH; we just have to give ValueHandleBase a kind. // Note that we deliberately do not the support the case when dropping a value // handle results in a new value handle being permanently added to the list // (as might occur in theory for CallbackVH's): the new value handle will not // be processed and the checking code will mete out righteous punishment if // the handle is still present once we have finished processing all the other // value handles (it is fine to momentarily add then remove a value handle). for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { Iterator.RemoveFromUseList(); Iterator.AddToExistingUseListAfter(Entry); assert(Entry->Next == &Iterator && "Loop invariant broken."); switch (Entry->getKind()) { case Assert: break; case Tracking: // Mark that this value has been deleted by setting it to an invalid Value // pointer. Entry->operator=(DenseMapInfo<Value *>::getTombstoneKey()); break; case Weak: // Weak just goes to null, which will unlink it from the list. Entry->operator=(0); break; case Callback: // Forward to the subclass's implementation. static_cast<CallbackVH*>(Entry)->deleted(); break; } } // All callbacks, weak references, and assertingVHs should be dropped by now. if (V->HasValueHandle) { #ifndef NDEBUG // Only in +Asserts mode... dbgs() << "While deleting: " << *V->getType() << " %" << V->getName() << "\n"; if (pImpl->ValueHandles[V]->getKind() == Assert) llvm_unreachable("An asserting value handle still pointed to this" " value!"); #endif llvm_unreachable("All references to V were not removed?"); } } void ValueHandleBase::ValueIsRAUWd(Value *Old, Value *New) { assert(Old->HasValueHandle &&"Should only be called if ValueHandles present"); assert(Old != New && "Changing value into itself!"); // Get the linked list base, which is guaranteed to exist since the // HasValueHandle flag is set. LLVMContextImpl *pImpl = Old->getContext().pImpl; ValueHandleBase *Entry = pImpl->ValueHandles[Old]; assert(Entry && "Value bit set but no entries exist"); // We use a local ValueHandleBase as an iterator so that // ValueHandles can add and remove themselves from the list without // breaking our iteration. This is not really an AssertingVH; we // just have to give ValueHandleBase some kind. for (ValueHandleBase Iterator(Assert, *Entry); Entry; Entry = Iterator.Next) { Iterator.RemoveFromUseList(); Iterator.AddToExistingUseListAfter(Entry); assert(Entry->Next == &Iterator && "Loop invariant broken."); switch (Entry->getKind()) { case Assert: // Asserting handle does not follow RAUW implicitly. break; case Tracking: // Tracking goes to new value like a WeakVH. Note that this may make it // something incompatible with its templated type. We don't want to have a // virtual (or inline) interface to handle this though, so instead we make // the TrackingVH accessors guarantee that a client never sees this value. // FALLTHROUGH case Weak: // Weak goes to the new value, which will unlink it from Old's list. Entry->operator=(New); break; case Callback: // Forward to the subclass's implementation. static_cast<CallbackVH*>(Entry)->allUsesReplacedWith(New); break; } } #ifndef NDEBUG // If any new tracking or weak value handles were added while processing the // list, then complain about it now. if (Old->HasValueHandle) for (Entry = pImpl->ValueHandles[Old]; Entry; Entry = Entry->Next) switch (Entry->getKind()) { case Tracking: case Weak: dbgs() << "After RAUW from " << *Old->getType() << " %" << Old->getName() << " to " << *New->getType() << " %" << New->getName() << "\n"; llvm_unreachable("A tracking or weak value handle still pointed to the" " old value!\n"); default: break; } #endif } // Default implementation for CallbackVH. void CallbackVH::allUsesReplacedWith(Value *) {} void CallbackVH::deleted() { setValPtr(NULL); }