//===-- HexagonISelLowering.cpp - Hexagon DAG Lowering Implementation -----===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the interfaces that Hexagon uses to lower LLVM code // into a selection DAG. // //===----------------------------------------------------------------------===// #include "HexagonISelLowering.h" #include "HexagonMachineFunctionInfo.h" #include "HexagonSubtarget.h" #include "HexagonTargetMachine.h" #include "HexagonTargetObjectFile.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunction.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineJumpTableInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAGISel.h" #include "llvm/CodeGen/ValueTypes.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Intrinsics.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/raw_ostream.h" using namespace llvm; const unsigned Hexagon_MAX_RET_SIZE = 64; static cl::opt<bool> EmitJumpTables("hexagon-emit-jump-tables", cl::init(true), cl::Hidden, cl::desc("Control jump table emission on Hexagon target")); int NumNamedVarArgParams = -1; // Implement calling convention for Hexagon. static bool CC_Hexagon(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool CC_Hexagon32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool CC_Hexagon64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State); static bool CC_Hexagon_VarArg (unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { // NumNamedVarArgParams can not be zero for a VarArg function. assert ( (NumNamedVarArgParams > 0) && "NumNamedVarArgParams is not bigger than zero."); if ( (int)ValNo < NumNamedVarArgParams ) { // Deal with named arguments. return CC_Hexagon(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State); } // Deal with un-named arguments. unsigned ofst; if (ArgFlags.isByVal()) { // If pass-by-value, the size allocated on stack is decided // by ArgFlags.getByValSize(), not by the size of LocVT. assert ((ArgFlags.getByValSize() > 8) && "ByValSize must be bigger than 8 bytes"); ofst = State.AllocateStack(ArgFlags.getByValSize(), 4); State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); return false; } if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { LocVT = MVT::i32; ValVT = MVT::i32; if (ArgFlags.isSExt()) LocInfo = CCValAssign::SExt; else if (ArgFlags.isZExt()) LocInfo = CCValAssign::ZExt; else LocInfo = CCValAssign::AExt; } if (LocVT == MVT::i32 || LocVT == MVT::f32) { ofst = State.AllocateStack(4, 4); State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); return false; } if (LocVT == MVT::i64 || LocVT == MVT::f64) { ofst = State.AllocateStack(8, 8); State.addLoc(CCValAssign::getMem(ValNo, ValVT, ofst, LocVT, LocInfo)); return false; } llvm_unreachable(0); } static bool CC_Hexagon (unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (ArgFlags.isByVal()) { // Passed on stack. assert ((ArgFlags.getByValSize() > 8) && "ByValSize must be bigger than 8 bytes"); unsigned Offset = State.AllocateStack(ArgFlags.getByValSize(), 4); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { LocVT = MVT::i32; ValVT = MVT::i32; if (ArgFlags.isSExt()) LocInfo = CCValAssign::SExt; else if (ArgFlags.isZExt()) LocInfo = CCValAssign::ZExt; else LocInfo = CCValAssign::AExt; } if (LocVT == MVT::i32 || LocVT == MVT::f32) { if (!CC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } if (LocVT == MVT::i64 || LocVT == MVT::f64) { if (!CC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } return true; // CC didn't match. } static bool CC_Hexagon32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { static const uint16_t RegList[] = { Hexagon::R0, Hexagon::R1, Hexagon::R2, Hexagon::R3, Hexagon::R4, Hexagon::R5 }; if (unsigned Reg = State.AllocateReg(RegList, 6)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } unsigned Offset = State.AllocateStack(4, 4); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } static bool CC_Hexagon64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } static const uint16_t RegList1[] = { Hexagon::D1, Hexagon::D2 }; static const uint16_t RegList2[] = { Hexagon::R1, Hexagon::R3 }; if (unsigned Reg = State.AllocateReg(RegList1, RegList2, 2)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } unsigned Offset = State.AllocateStack(8, 8, Hexagon::D2); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } static bool RetCC_Hexagon(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (LocVT == MVT::i1 || LocVT == MVT::i8 || LocVT == MVT::i16) { LocVT = MVT::i32; ValVT = MVT::i32; if (ArgFlags.isSExt()) LocInfo = CCValAssign::SExt; else if (ArgFlags.isZExt()) LocInfo = CCValAssign::ZExt; else LocInfo = CCValAssign::AExt; } if (LocVT == MVT::i32 || LocVT == MVT::f32) { if (!RetCC_Hexagon32(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } if (LocVT == MVT::i64 || LocVT == MVT::f64) { if (!RetCC_Hexagon64(ValNo, ValVT, LocVT, LocInfo, ArgFlags, State)) return false; } return true; // CC didn't match. } static bool RetCC_Hexagon32(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (LocVT == MVT::i32 || LocVT == MVT::f32) { if (unsigned Reg = State.AllocateReg(Hexagon::R0)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } unsigned Offset = State.AllocateStack(4, 4); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } static bool RetCC_Hexagon64(unsigned ValNo, MVT ValVT, MVT LocVT, CCValAssign::LocInfo LocInfo, ISD::ArgFlagsTy ArgFlags, CCState &State) { if (LocVT == MVT::i64 || LocVT == MVT::f64) { if (unsigned Reg = State.AllocateReg(Hexagon::D0)) { State.addLoc(CCValAssign::getReg(ValNo, ValVT, Reg, LocVT, LocInfo)); return false; } } unsigned Offset = State.AllocateStack(8, 8); State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo)); return false; } SDValue HexagonTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op, SelectionDAG &DAG) const { return SDValue(); } /// CreateCopyOfByValArgument - Make a copy of an aggregate at address specified /// by "Src" to address "Dst" of size "Size". Alignment information is /// specified by the specific parameter attribute. The copy will be passed as /// a byval function parameter. Sometimes what we are copying is the end of a /// larger object, the part that does not fit in registers. static SDValue CreateCopyOfByValArgument(SDValue Src, SDValue Dst, SDValue Chain, ISD::ArgFlagsTy Flags, SelectionDAG &DAG, DebugLoc dl) { SDValue SizeNode = DAG.getConstant(Flags.getByValSize(), MVT::i32); return DAG.getMemcpy(Chain, dl, Dst, Src, SizeNode, Flags.getByValAlign(), /*isVolatile=*/false, /*AlwaysInline=*/false, MachinePointerInfo(), MachinePointerInfo()); } // LowerReturn - Lower ISD::RET. If a struct is larger than 8 bytes and is // passed by value, the function prototype is modified to return void and // the value is stored in memory pointed by a pointer passed by caller. SDValue HexagonTargetLowering::LowerReturn(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, DebugLoc dl, SelectionDAG &DAG) const { // CCValAssign - represent the assignment of the return value to locations. SmallVector<CCValAssign, 16> RVLocs; // CCState - Info about the registers and stack slot. CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); // Analyze return values of ISD::RET CCInfo.AnalyzeReturn(Outs, RetCC_Hexagon); SDValue Flag; SmallVector<SDValue, 4> RetOps(1, Chain); // Copy the result values into the output registers. for (unsigned i = 0; i != RVLocs.size(); ++i) { CCValAssign &VA = RVLocs[i]; Chain = DAG.getCopyToReg(Chain, dl, VA.getLocReg(), OutVals[i], Flag); // Guarantee that all emitted copies are stuck together with flags. Flag = Chain.getValue(1); RetOps.push_back(DAG.getRegister(VA.getLocReg(), VA.getLocVT())); } RetOps[0] = Chain; // Update chain. // Add the flag if we have it. if (Flag.getNode()) RetOps.push_back(Flag); return DAG.getNode(HexagonISD::RET_FLAG, dl, MVT::Other, &RetOps[0], RetOps.size()); } /// LowerCallResult - Lower the result values of an ISD::CALL into the /// appropriate copies out of appropriate physical registers. This assumes that /// Chain/InFlag are the input chain/flag to use, and that TheCall is the call /// being lowered. Returns a SDNode with the same number of values as the /// ISD::CALL. SDValue HexagonTargetLowering::LowerCallResult(SDValue Chain, SDValue InFlag, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals, const SmallVectorImpl<SDValue> &OutVals, SDValue Callee) const { // Assign locations to each value returned by this call. SmallVector<CCValAssign, 16> RVLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), RVLocs, *DAG.getContext()); CCInfo.AnalyzeCallResult(Ins, RetCC_Hexagon); // Copy all of the result registers out of their specified physreg. for (unsigned i = 0; i != RVLocs.size(); ++i) { Chain = DAG.getCopyFromReg(Chain, dl, RVLocs[i].getLocReg(), RVLocs[i].getValVT(), InFlag).getValue(1); InFlag = Chain.getValue(2); InVals.push_back(Chain.getValue(0)); } return Chain; } /// LowerCall - Functions arguments are copied from virtual regs to /// (physical regs)/(stack frame), CALLSEQ_START and CALLSEQ_END are emitted. SDValue HexagonTargetLowering::LowerCall(TargetLowering::CallLoweringInfo &CLI, SmallVectorImpl<SDValue> &InVals) const { SelectionDAG &DAG = CLI.DAG; DebugLoc &dl = CLI.DL; SmallVector<ISD::OutputArg, 32> &Outs = CLI.Outs; SmallVector<SDValue, 32> &OutVals = CLI.OutVals; SmallVector<ISD::InputArg, 32> &Ins = CLI.Ins; SDValue Chain = CLI.Chain; SDValue Callee = CLI.Callee; bool &isTailCall = CLI.IsTailCall; CallingConv::ID CallConv = CLI.CallConv; bool isVarArg = CLI.IsVarArg; bool IsStructRet = (Outs.empty()) ? false : Outs[0].Flags.isSRet(); // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); // Check for varargs. NumNamedVarArgParams = -1; if (GlobalAddressSDNode *GA = dyn_cast<GlobalAddressSDNode>(Callee)) { const Function* CalleeFn = NULL; Callee = DAG.getTargetGlobalAddress(GA->getGlobal(), dl, MVT::i32); if ((CalleeFn = dyn_cast<Function>(GA->getGlobal()))) { // If a function has zero args and is a vararg function, that's // disallowed so it must be an undeclared function. Do not assume // varargs if the callee is undefined. if (CalleeFn->isVarArg() && CalleeFn->getFunctionType()->getNumParams() != 0) { NumNamedVarArgParams = CalleeFn->getFunctionType()->getNumParams(); } } } if (NumNamedVarArgParams > 0) CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon_VarArg); else CCInfo.AnalyzeCallOperands(Outs, CC_Hexagon); if(isTailCall) { bool StructAttrFlag = DAG.getMachineFunction().getFunction()->hasStructRetAttr(); isTailCall = IsEligibleForTailCallOptimization(Callee, CallConv, isVarArg, IsStructRet, StructAttrFlag, Outs, OutVals, Ins, DAG); for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i){ CCValAssign &VA = ArgLocs[i]; if (VA.isMemLoc()) { isTailCall = false; break; } } if (isTailCall) { DEBUG(dbgs () << "Eligible for Tail Call\n"); } else { DEBUG(dbgs () << "Argument must be passed on stack. Not eligible for Tail Call\n"); } } // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); SmallVector<std::pair<unsigned, SDValue>, 16> RegsToPass; SmallVector<SDValue, 8> MemOpChains; SDValue StackPtr = DAG.getCopyFromReg(Chain, dl, TM.getRegisterInfo()->getStackRegister(), getPointerTy()); // Walk the register/memloc assignments, inserting copies/loads. for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; SDValue Arg = OutVals[i]; ISD::ArgFlagsTy Flags = Outs[i].Flags; // Promote the value if needed. switch (VA.getLocInfo()) { default: // Loc info must be one of Full, SExt, ZExt, or AExt. llvm_unreachable("Unknown loc info!"); case CCValAssign::Full: break; case CCValAssign::SExt: Arg = DAG.getNode(ISD::SIGN_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::ZExt: Arg = DAG.getNode(ISD::ZERO_EXTEND, dl, VA.getLocVT(), Arg); break; case CCValAssign::AExt: Arg = DAG.getNode(ISD::ANY_EXTEND, dl, VA.getLocVT(), Arg); break; } if (VA.isMemLoc()) { unsigned LocMemOffset = VA.getLocMemOffset(); SDValue PtrOff = DAG.getConstant(LocMemOffset, StackPtr.getValueType()); PtrOff = DAG.getNode(ISD::ADD, dl, MVT::i32, StackPtr, PtrOff); if (Flags.isByVal()) { // The argument is a struct passed by value. According to LLVM, "Arg" // is is pointer. MemOpChains.push_back(CreateCopyOfByValArgument(Arg, PtrOff, Chain, Flags, DAG, dl)); } else { // The argument is not passed by value. "Arg" is a buildin type. It is // not a pointer. MemOpChains.push_back(DAG.getStore(Chain, dl, Arg, PtrOff, MachinePointerInfo(),false, false, 0)); } continue; } // Arguments that can be passed on register must be kept at RegsToPass // vector. if (VA.isRegLoc()) { RegsToPass.push_back(std::make_pair(VA.getLocReg(), Arg)); } } // Transform all store nodes into one single node because all store // nodes are independent of each other. if (!MemOpChains.empty()) { Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOpChains[0], MemOpChains.size()); } if (!isTailCall) Chain = DAG.getCALLSEQ_START(Chain, DAG.getConstant(NumBytes, getPointerTy(), true)); // Build a sequence of copy-to-reg nodes chained together with token // chain and flag operands which copy the outgoing args into registers. // The InFlag in necessary since all emitted instructions must be // stuck together. SDValue InFlag; if (!isTailCall) { for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } } // For tail calls lower the arguments to the 'real' stack slot. if (isTailCall) { // Force all the incoming stack arguments to be loaded from the stack // before any new outgoing arguments are stored to the stack, because the // outgoing stack slots may alias the incoming argument stack slots, and // the alias isn't otherwise explicit. This is slightly more conservative // than necessary, because it means that each store effectively depends // on every argument instead of just those arguments it would clobber. // // Do not flag preceding copytoreg stuff together with the following stuff. InFlag = SDValue(); for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Chain = DAG.getCopyToReg(Chain, dl, RegsToPass[i].first, RegsToPass[i].second, InFlag); InFlag = Chain.getValue(1); } InFlag =SDValue(); } // If the callee is a GlobalAddress/ExternalSymbol node (quite common, every // direct call is) turn it into a TargetGlobalAddress/TargetExternalSymbol // node so that legalize doesn't hack it. if (flag_aligned_memcpy) { const char *MemcpyName = "__hexagon_memcpy_likely_aligned_min32bytes_mult8bytes"; Callee = DAG.getTargetExternalSymbol(MemcpyName, getPointerTy()); flag_aligned_memcpy = false; } else if (GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee)) { Callee = DAG.getTargetGlobalAddress(G->getGlobal(), dl, getPointerTy()); } else if (ExternalSymbolSDNode *S = dyn_cast<ExternalSymbolSDNode>(Callee)) { Callee = DAG.getTargetExternalSymbol(S->getSymbol(), getPointerTy()); } // Returns a chain & a flag for retval copy to use. SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue); SmallVector<SDValue, 8> Ops; Ops.push_back(Chain); Ops.push_back(Callee); // Add argument registers to the end of the list so that they are // known live into the call. for (unsigned i = 0, e = RegsToPass.size(); i != e; ++i) { Ops.push_back(DAG.getRegister(RegsToPass[i].first, RegsToPass[i].second.getValueType())); } if (InFlag.getNode()) { Ops.push_back(InFlag); } if (isTailCall) return DAG.getNode(HexagonISD::TC_RETURN, dl, NodeTys, &Ops[0], Ops.size()); Chain = DAG.getNode(HexagonISD::CALL, dl, NodeTys, &Ops[0], Ops.size()); InFlag = Chain.getValue(1); // Create the CALLSEQ_END node. Chain = DAG.getCALLSEQ_END(Chain, DAG.getIntPtrConstant(NumBytes, true), DAG.getIntPtrConstant(0, true), InFlag); InFlag = Chain.getValue(1); // Handle result values, copying them out of physregs into vregs that we // return. return LowerCallResult(Chain, InFlag, CallConv, isVarArg, Ins, dl, DAG, InVals, OutVals, Callee); } static bool getIndexedAddressParts(SDNode *Ptr, EVT VT, bool isSEXTLoad, SDValue &Base, SDValue &Offset, bool &isInc, SelectionDAG &DAG) { if (Ptr->getOpcode() != ISD::ADD) return false; if (VT == MVT::i64 || VT == MVT::i32 || VT == MVT::i16 || VT == MVT::i8) { isInc = (Ptr->getOpcode() == ISD::ADD); Base = Ptr->getOperand(0); Offset = Ptr->getOperand(1); // Ensure that Offset is a constant. return (isa<ConstantSDNode>(Offset)); } return false; } // TODO: Put this function along with the other isS* functions in // HexagonISelDAGToDAG.cpp into a common file. Or better still, use the // functions defined in HexagonOperands.td. static bool Is_PostInc_S4_Offset(SDNode * S, int ShiftAmount) { ConstantSDNode *N = cast<ConstantSDNode>(S); // immS4 predicate - True if the immediate fits in a 4-bit sign extended. // field. int64_t v = (int64_t)N->getSExtValue(); int64_t m = 0; if (ShiftAmount > 0) { m = v % ShiftAmount; v = v >> ShiftAmount; } return (v <= 7) && (v >= -8) && (m == 0); } /// getPostIndexedAddressParts - returns true by value, base pointer and /// offset pointer and addressing mode by reference if this node can be /// combined with a load / store to form a post-indexed load / store. bool HexagonTargetLowering::getPostIndexedAddressParts(SDNode *N, SDNode *Op, SDValue &Base, SDValue &Offset, ISD::MemIndexedMode &AM, SelectionDAG &DAG) const { EVT VT; SDValue Ptr; bool isSEXTLoad = false; if (LoadSDNode *LD = dyn_cast<LoadSDNode>(N)) { VT = LD->getMemoryVT(); isSEXTLoad = LD->getExtensionType() == ISD::SEXTLOAD; } else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) { VT = ST->getMemoryVT(); if (ST->getValue().getValueType() == MVT::i64 && ST->isTruncatingStore()) { return false; } } else { return false; } bool isInc = false; bool isLegal = getIndexedAddressParts(Op, VT, isSEXTLoad, Base, Offset, isInc, DAG); // ShiftAmount = number of left-shifted bits in the Hexagon instruction. int ShiftAmount = VT.getSizeInBits() / 16; if (isLegal && Is_PostInc_S4_Offset(Offset.getNode(), ShiftAmount)) { AM = isInc ? ISD::POST_INC : ISD::POST_DEC; return true; } return false; } SDValue HexagonTargetLowering::LowerINLINEASM(SDValue Op, SelectionDAG &DAG) const { SDNode *Node = Op.getNode(); MachineFunction &MF = DAG.getMachineFunction(); HexagonMachineFunctionInfo *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>(); switch (Node->getOpcode()) { case ISD::INLINEASM: { unsigned NumOps = Node->getNumOperands(); if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue) --NumOps; // Ignore the flag operand. for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) { if (FuncInfo->hasClobberLR()) break; unsigned Flags = cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue(); unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags); ++i; // Skip the ID value. switch (InlineAsm::getKind(Flags)) { default: llvm_unreachable("Bad flags!"); case InlineAsm::Kind_RegDef: case InlineAsm::Kind_RegUse: case InlineAsm::Kind_Imm: case InlineAsm::Kind_Clobber: case InlineAsm::Kind_Mem: { for (; NumVals; --NumVals, ++i) {} break; } case InlineAsm::Kind_RegDefEarlyClobber: { for (; NumVals; --NumVals, ++i) { unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg(); // Check it to be lr if (Reg == TM.getRegisterInfo()->getRARegister()) { FuncInfo->setHasClobberLR(true); break; } } break; } } } } } // Node->getOpcode return Op; } // // Taken from the XCore backend. // SDValue HexagonTargetLowering:: LowerBR_JT(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Table = Op.getOperand(1); SDValue Index = Op.getOperand(2); DebugLoc dl = Op.getDebugLoc(); JumpTableSDNode *JT = cast<JumpTableSDNode>(Table); unsigned JTI = JT->getIndex(); MachineFunction &MF = DAG.getMachineFunction(); const MachineJumpTableInfo *MJTI = MF.getJumpTableInfo(); SDValue TargetJT = DAG.getTargetJumpTable(JT->getIndex(), MVT::i32); // Mark all jump table targets as address taken. const std::vector<MachineJumpTableEntry> &JTE = MJTI->getJumpTables(); const std::vector<MachineBasicBlock*> &JTBBs = JTE[JTI].MBBs; for (unsigned i = 0, e = JTBBs.size(); i != e; ++i) { MachineBasicBlock *MBB = JTBBs[i]; MBB->setHasAddressTaken(); // This line is needed to set the hasAddressTaken flag on the BasicBlock // object. BlockAddress::get(const_cast<BasicBlock *>(MBB->getBasicBlock())); } SDValue JumpTableBase = DAG.getNode(HexagonISD::WrapperJT, dl, getPointerTy(), TargetJT); SDValue ShiftIndex = DAG.getNode(ISD::SHL, dl, MVT::i32, Index, DAG.getConstant(2, MVT::i32)); SDValue JTAddress = DAG.getNode(ISD::ADD, dl, MVT::i32, JumpTableBase, ShiftIndex); SDValue LoadTarget = DAG.getLoad(MVT::i32, dl, Chain, JTAddress, MachinePointerInfo(), false, false, false, 0); return DAG.getNode(HexagonISD::BR_JT, dl, MVT::Other, Chain, LoadTarget); } SDValue HexagonTargetLowering::LowerDYNAMIC_STACKALLOC(SDValue Op, SelectionDAG &DAG) const { SDValue Chain = Op.getOperand(0); SDValue Size = Op.getOperand(1); DebugLoc dl = Op.getDebugLoc(); unsigned SPReg = getStackPointerRegisterToSaveRestore(); // Get a reference to the stack pointer. SDValue StackPointer = DAG.getCopyFromReg(Chain, dl, SPReg, MVT::i32); // Subtract the dynamic size from the actual stack size to // obtain the new stack size. SDValue Sub = DAG.getNode(ISD::SUB, dl, MVT::i32, StackPointer, Size); // // For Hexagon, the outgoing memory arguments area should be on top of the // alloca area on the stack i.e., the outgoing memory arguments should be // at a lower address than the alloca area. Move the alloca area down the // stack by adding back the space reserved for outgoing arguments to SP // here. // // We do not know what the size of the outgoing args is at this point. // So, we add a pseudo instruction ADJDYNALLOC that will adjust the // stack pointer. We patch this instruction with the correct, known // offset in emitPrologue(). // // Use a placeholder immediate (zero) for now. This will be patched up // by emitPrologue(). SDValue ArgAdjust = DAG.getNode(HexagonISD::ADJDYNALLOC, dl, MVT::i32, Sub, DAG.getConstant(0, MVT::i32)); // The Sub result contains the new stack start address, so it // must be placed in the stack pointer register. SDValue CopyChain = DAG.getCopyToReg(Chain, dl, TM.getRegisterInfo()->getStackRegister(), Sub); SDValue Ops[2] = { ArgAdjust, CopyChain }; return DAG.getMergeValues(Ops, 2, dl); } SDValue HexagonTargetLowering::LowerFormalArguments(SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc dl, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MachineRegisterInfo &RegInfo = MF.getRegInfo(); HexagonMachineFunctionInfo *FuncInfo = MF.getInfo<HexagonMachineFunctionInfo>(); // Assign locations to all of the incoming arguments. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); CCInfo.AnalyzeFormalArguments(Ins, CC_Hexagon); // For LLVM, in the case when returning a struct by value (>8byte), // the first argument is a pointer that points to the location on caller's // stack where the return value will be stored. For Hexagon, the location on // caller's stack is passed only when the struct size is smaller than (and // equal to) 8 bytes. If not, no address will be passed into callee and // callee return the result direclty through R0/R1. SmallVector<SDValue, 4> MemOps; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; ISD::ArgFlagsTy Flags = Ins[i].Flags; unsigned ObjSize; unsigned StackLocation; int FI; if ( (VA.isRegLoc() && !Flags.isByVal()) || (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() > 8)) { // Arguments passed in registers // 1. int, long long, ptr args that get allocated in register. // 2. Large struct that gets an register to put its address in. EVT RegVT = VA.getLocVT(); if (RegVT == MVT::i8 || RegVT == MVT::i16 || RegVT == MVT::i32 || RegVT == MVT::f32) { unsigned VReg = RegInfo.createVirtualRegister(&Hexagon::IntRegsRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); } else if (RegVT == MVT::i64) { unsigned VReg = RegInfo.createVirtualRegister(&Hexagon::DoubleRegsRegClass); RegInfo.addLiveIn(VA.getLocReg(), VReg); InVals.push_back(DAG.getCopyFromReg(Chain, dl, VReg, RegVT)); } else { assert (0); } } else if (VA.isRegLoc() && Flags.isByVal() && Flags.getByValSize() <= 8) { assert (0 && "ByValSize must be bigger than 8 bytes"); } else { // Sanity check. assert(VA.isMemLoc()); if (Flags.isByVal()) { // If it's a byval parameter, then we need to compute the // "real" size, not the size of the pointer. ObjSize = Flags.getByValSize(); } else { ObjSize = VA.getLocVT().getStoreSizeInBits() >> 3; } StackLocation = HEXAGON_LRFP_SIZE + VA.getLocMemOffset(); // Create the frame index object for this incoming parameter... FI = MFI->CreateFixedObject(ObjSize, StackLocation, true); // Create the SelectionDAG nodes cordl, responding to a load // from this parameter. SDValue FIN = DAG.getFrameIndex(FI, MVT::i32); if (Flags.isByVal()) { // If it's a pass-by-value aggregate, then do not dereference the stack // location. Instead, we should generate a reference to the stack // location. InVals.push_back(FIN); } else { InVals.push_back(DAG.getLoad(VA.getLocVT(), dl, Chain, FIN, MachinePointerInfo(), false, false, false, 0)); } } } if (!MemOps.empty()) Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, &MemOps[0], MemOps.size()); if (isVarArg) { // This will point to the next argument passed via stack. int FrameIndex = MFI->CreateFixedObject(Hexagon_PointerSize, HEXAGON_LRFP_SIZE + CCInfo.getNextStackOffset(), true); FuncInfo->setVarArgsFrameIndex(FrameIndex); } return Chain; } SDValue HexagonTargetLowering::LowerVASTART(SDValue Op, SelectionDAG &DAG) const { // VASTART stores the address of the VarArgsFrameIndex slot into the // memory location argument. MachineFunction &MF = DAG.getMachineFunction(); HexagonMachineFunctionInfo *QFI = MF.getInfo<HexagonMachineFunctionInfo>(); SDValue Addr = DAG.getFrameIndex(QFI->getVarArgsFrameIndex(), MVT::i32); const Value *SV = cast<SrcValueSDNode>(Op.getOperand(2))->getValue(); return DAG.getStore(Op.getOperand(0), Op.getDebugLoc(), Addr, Op.getOperand(1), MachinePointerInfo(SV), false, false, 0); } SDValue HexagonTargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue CC = Op.getOperand(4); SDValue TrueVal = Op.getOperand(2); SDValue FalseVal = Op.getOperand(3); DebugLoc dl = Op.getDebugLoc(); SDNode* OpNode = Op.getNode(); EVT SVT = OpNode->getValueType(0); SDValue Cond = DAG.getNode(ISD::SETCC, dl, MVT::i1, LHS, RHS, CC); return DAG.getNode(ISD::SELECT, dl, SVT, Cond, TrueVal, FalseVal); } SDValue HexagonTargetLowering::LowerConstantPool(SDValue Op, SelectionDAG &DAG) const { EVT ValTy = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(Op); SDValue Res; if (CP->isMachineConstantPoolEntry()) Res = DAG.getTargetConstantPool(CP->getMachineCPVal(), ValTy, CP->getAlignment()); else Res = DAG.getTargetConstantPool(CP->getConstVal(), ValTy, CP->getAlignment()); return DAG.getNode(HexagonISD::CONST32, dl, ValTy, Res); } SDValue HexagonTargetLowering::LowerRETURNADDR(SDValue Op, SelectionDAG &DAG) const { const TargetRegisterInfo *TRI = TM.getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); MachineFrameInfo *MFI = MF.getFrameInfo(); MFI->setReturnAddressIsTaken(true); EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); if (Depth) { SDValue FrameAddr = LowerFRAMEADDR(Op, DAG); SDValue Offset = DAG.getConstant(4, MVT::i32); return DAG.getLoad(VT, dl, DAG.getEntryNode(), DAG.getNode(ISD::ADD, dl, VT, FrameAddr, Offset), MachinePointerInfo(), false, false, false, 0); } // Return LR, which contains the return address. Mark it an implicit live-in. unsigned Reg = MF.addLiveIn(TRI->getRARegister(), getRegClassFor(MVT::i32)); return DAG.getCopyFromReg(DAG.getEntryNode(), dl, Reg, VT); } SDValue HexagonTargetLowering::LowerFRAMEADDR(SDValue Op, SelectionDAG &DAG) const { const HexagonRegisterInfo *TRI = TM.getRegisterInfo(); MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo(); MFI->setFrameAddressIsTaken(true); EVT VT = Op.getValueType(); DebugLoc dl = Op.getDebugLoc(); unsigned Depth = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue(); SDValue FrameAddr = DAG.getCopyFromReg(DAG.getEntryNode(), dl, TRI->getFrameRegister(), VT); while (Depth--) FrameAddr = DAG.getLoad(VT, dl, DAG.getEntryNode(), FrameAddr, MachinePointerInfo(), false, false, false, 0); return FrameAddr; } SDValue HexagonTargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG& DAG) const { DebugLoc dl = Op.getDebugLoc(); return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); } SDValue HexagonTargetLowering::LowerATOMIC_FENCE(SDValue Op, SelectionDAG& DAG) const { DebugLoc dl = Op.getDebugLoc(); return DAG.getNode(HexagonISD::BARRIER, dl, MVT::Other, Op.getOperand(0)); } SDValue HexagonTargetLowering::LowerGLOBALADDRESS(SDValue Op, SelectionDAG &DAG) const { SDValue Result; const GlobalValue *GV = cast<GlobalAddressSDNode>(Op)->getGlobal(); int64_t Offset = cast<GlobalAddressSDNode>(Op)->getOffset(); DebugLoc dl = Op.getDebugLoc(); Result = DAG.getTargetGlobalAddress(GV, dl, getPointerTy(), Offset); const HexagonTargetObjectFile &TLOF = static_cast<const HexagonTargetObjectFile &>(getObjFileLowering()); if (TLOF.IsGlobalInSmallSection(GV, getTargetMachine())) { return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), Result); } return DAG.getNode(HexagonISD::CONST32, dl, getPointerTy(), Result); } SDValue HexagonTargetLowering::LowerBlockAddress(SDValue Op, SelectionDAG &DAG) const { const BlockAddress *BA = cast<BlockAddressSDNode>(Op)->getBlockAddress(); SDValue BA_SD = DAG.getTargetBlockAddress(BA, MVT::i32); DebugLoc dl = Op.getDebugLoc(); return DAG.getNode(HexagonISD::CONST32_GP, dl, getPointerTy(), BA_SD); } //===----------------------------------------------------------------------===// // TargetLowering Implementation //===----------------------------------------------------------------------===// HexagonTargetLowering::HexagonTargetLowering(HexagonTargetMachine &targetmachine) : TargetLowering(targetmachine, new HexagonTargetObjectFile()), TM(targetmachine) { const HexagonRegisterInfo* QRI = TM.getRegisterInfo(); // Set up the register classes. addRegisterClass(MVT::i32, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::i64, &Hexagon::DoubleRegsRegClass); if (QRI->Subtarget.hasV5TOps()) { addRegisterClass(MVT::f32, &Hexagon::IntRegsRegClass); addRegisterClass(MVT::f64, &Hexagon::DoubleRegsRegClass); } addRegisterClass(MVT::i1, &Hexagon::PredRegsRegClass); computeRegisterProperties(); // Align loop entry setPrefLoopAlignment(4); // Limits for inline expansion of memcpy/memmove MaxStoresPerMemcpy = 6; MaxStoresPerMemmove = 6; // // Library calls for unsupported operations // setLibcallName(RTLIB::SINTTOFP_I128_F64, "__hexagon_floattidf"); setLibcallName(RTLIB::SINTTOFP_I128_F32, "__hexagon_floattisf"); setLibcallName(RTLIB::FPTOUINT_F32_I128, "__hexagon_fixunssfti"); setLibcallName(RTLIB::FPTOUINT_F64_I128, "__hexagon_fixunsdfti"); setLibcallName(RTLIB::FPTOSINT_F32_I128, "__hexagon_fixsfti"); setLibcallName(RTLIB::FPTOSINT_F64_I128, "__hexagon_fixdfti"); setLibcallName(RTLIB::SDIV_I32, "__hexagon_divsi3"); setOperationAction(ISD::SDIV, MVT::i32, Expand); setLibcallName(RTLIB::SREM_I32, "__hexagon_umodsi3"); setOperationAction(ISD::SREM, MVT::i32, Expand); setLibcallName(RTLIB::SDIV_I64, "__hexagon_divdi3"); setOperationAction(ISD::SDIV, MVT::i64, Expand); setLibcallName(RTLIB::SREM_I64, "__hexagon_moddi3"); setOperationAction(ISD::SREM, MVT::i64, Expand); setLibcallName(RTLIB::UDIV_I32, "__hexagon_udivsi3"); setOperationAction(ISD::UDIV, MVT::i32, Expand); setLibcallName(RTLIB::UDIV_I64, "__hexagon_udivdi3"); setOperationAction(ISD::UDIV, MVT::i64, Expand); setLibcallName(RTLIB::UREM_I32, "__hexagon_umodsi3"); setOperationAction(ISD::UREM, MVT::i32, Expand); setLibcallName(RTLIB::UREM_I64, "__hexagon_umoddi3"); setOperationAction(ISD::UREM, MVT::i64, Expand); setLibcallName(RTLIB::DIV_F32, "__hexagon_divsf3"); setOperationAction(ISD::FDIV, MVT::f32, Expand); setLibcallName(RTLIB::DIV_F64, "__hexagon_divdf3"); setOperationAction(ISD::FDIV, MVT::f64, Expand); setOperationAction(ISD::FSQRT, MVT::f32, Expand); setOperationAction(ISD::FSQRT, MVT::f64, Expand); setOperationAction(ISD::FSIN, MVT::f32, Expand); setOperationAction(ISD::FSIN, MVT::f64, Expand); if (QRI->Subtarget.hasV5TOps()) { // Hexagon V5 Support. setOperationAction(ISD::FADD, MVT::f32, Legal); setOperationAction(ISD::FADD, MVT::f64, Legal); setOperationAction(ISD::FP_EXTEND, MVT::f32, Legal); setCondCodeAction(ISD::SETOEQ, MVT::f32, Legal); setCondCodeAction(ISD::SETOEQ, MVT::f64, Legal); setCondCodeAction(ISD::SETUEQ, MVT::f32, Legal); setCondCodeAction(ISD::SETUEQ, MVT::f64, Legal); setCondCodeAction(ISD::SETOGE, MVT::f32, Legal); setCondCodeAction(ISD::SETOGE, MVT::f64, Legal); setCondCodeAction(ISD::SETUGE, MVT::f32, Legal); setCondCodeAction(ISD::SETUGE, MVT::f64, Legal); setCondCodeAction(ISD::SETOGT, MVT::f32, Legal); setCondCodeAction(ISD::SETOGT, MVT::f64, Legal); setCondCodeAction(ISD::SETUGT, MVT::f32, Legal); setCondCodeAction(ISD::SETUGT, MVT::f64, Legal); setCondCodeAction(ISD::SETOLE, MVT::f32, Legal); setCondCodeAction(ISD::SETOLE, MVT::f64, Legal); setCondCodeAction(ISD::SETOLT, MVT::f32, Legal); setCondCodeAction(ISD::SETOLT, MVT::f64, Legal); setOperationAction(ISD::ConstantFP, MVT::f32, Legal); setOperationAction(ISD::ConstantFP, MVT::f64, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::i1, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::i1, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i1, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i1, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::i8, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::i8, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i8, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i8, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::i16, Promote); setOperationAction(ISD::FP_TO_SINT, MVT::i16, Promote); setOperationAction(ISD::UINT_TO_FP, MVT::i16, Promote); setOperationAction(ISD::SINT_TO_FP, MVT::i16, Promote); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::i32, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Legal); setOperationAction(ISD::FP_TO_UINT, MVT::i64, Legal); setOperationAction(ISD::FP_TO_SINT, MVT::i64, Legal); setOperationAction(ISD::UINT_TO_FP, MVT::i64, Legal); setOperationAction(ISD::SINT_TO_FP, MVT::i64, Legal); setOperationAction(ISD::FABS, MVT::f32, Legal); setOperationAction(ISD::FABS, MVT::f64, Expand); setOperationAction(ISD::FNEG, MVT::f32, Legal); setOperationAction(ISD::FNEG, MVT::f64, Expand); } else { // Expand fp<->uint. setOperationAction(ISD::FP_TO_SINT, MVT::i32, Expand); setOperationAction(ISD::FP_TO_UINT, MVT::i32, Expand); setOperationAction(ISD::SINT_TO_FP, MVT::i32, Expand); setOperationAction(ISD::UINT_TO_FP, MVT::i32, Expand); setLibcallName(RTLIB::SINTTOFP_I64_F32, "__hexagon_floatdisf"); setLibcallName(RTLIB::UINTTOFP_I64_F32, "__hexagon_floatundisf"); setLibcallName(RTLIB::UINTTOFP_I32_F32, "__hexagon_floatunsisf"); setLibcallName(RTLIB::SINTTOFP_I32_F32, "__hexagon_floatsisf"); setLibcallName(RTLIB::SINTTOFP_I64_F64, "__hexagon_floatdidf"); setLibcallName(RTLIB::UINTTOFP_I64_F64, "__hexagon_floatundidf"); setLibcallName(RTLIB::UINTTOFP_I32_F64, "__hexagon_floatunsidf"); setLibcallName(RTLIB::SINTTOFP_I32_F64, "__hexagon_floatsidf"); setLibcallName(RTLIB::FPTOUINT_F32_I32, "__hexagon_fixunssfsi"); setLibcallName(RTLIB::FPTOUINT_F32_I64, "__hexagon_fixunssfdi"); setLibcallName(RTLIB::FPTOSINT_F64_I64, "__hexagon_fixdfdi"); setLibcallName(RTLIB::FPTOSINT_F32_I64, "__hexagon_fixsfdi"); setLibcallName(RTLIB::FPTOUINT_F64_I32, "__hexagon_fixunsdfsi"); setLibcallName(RTLIB::FPTOUINT_F64_I64, "__hexagon_fixunsdfdi"); setLibcallName(RTLIB::ADD_F64, "__hexagon_adddf3"); setOperationAction(ISD::FADD, MVT::f64, Expand); setLibcallName(RTLIB::ADD_F32, "__hexagon_addsf3"); setOperationAction(ISD::FADD, MVT::f32, Expand); setLibcallName(RTLIB::FPEXT_F32_F64, "__hexagon_extendsfdf2"); setOperationAction(ISD::FP_EXTEND, MVT::f32, Expand); setLibcallName(RTLIB::OEQ_F32, "__hexagon_eqsf2"); setCondCodeAction(ISD::SETOEQ, MVT::f32, Expand); setLibcallName(RTLIB::OEQ_F64, "__hexagon_eqdf2"); setCondCodeAction(ISD::SETOEQ, MVT::f64, Expand); setLibcallName(RTLIB::OGE_F32, "__hexagon_gesf2"); setCondCodeAction(ISD::SETOGE, MVT::f32, Expand); setLibcallName(RTLIB::OGE_F64, "__hexagon_gedf2"); setCondCodeAction(ISD::SETOGE, MVT::f64, Expand); setLibcallName(RTLIB::OGT_F32, "__hexagon_gtsf2"); setCondCodeAction(ISD::SETOGT, MVT::f32, Expand); setLibcallName(RTLIB::OGT_F64, "__hexagon_gtdf2"); setCondCodeAction(ISD::SETOGT, MVT::f64, Expand); setLibcallName(RTLIB::FPTOSINT_F64_I32, "__hexagon_fixdfsi"); setOperationAction(ISD::FP_TO_SINT, MVT::f64, Expand); setLibcallName(RTLIB::FPTOSINT_F32_I32, "__hexagon_fixsfsi"); setOperationAction(ISD::FP_TO_SINT, MVT::f32, Expand); setLibcallName(RTLIB::OLE_F64, "__hexagon_ledf2"); setCondCodeAction(ISD::SETOLE, MVT::f64, Expand); setLibcallName(RTLIB::OLE_F32, "__hexagon_lesf2"); setCondCodeAction(ISD::SETOLE, MVT::f32, Expand); setLibcallName(RTLIB::OLT_F64, "__hexagon_ltdf2"); setCondCodeAction(ISD::SETOLT, MVT::f64, Expand); setLibcallName(RTLIB::OLT_F32, "__hexagon_ltsf2"); setCondCodeAction(ISD::SETOLT, MVT::f32, Expand); setLibcallName(RTLIB::MUL_F64, "__hexagon_muldf3"); setOperationAction(ISD::FMUL, MVT::f64, Expand); setLibcallName(RTLIB::MUL_F32, "__hexagon_mulsf3"); setOperationAction(ISD::MUL, MVT::f32, Expand); setLibcallName(RTLIB::UNE_F64, "__hexagon_nedf2"); setCondCodeAction(ISD::SETUNE, MVT::f64, Expand); setLibcallName(RTLIB::UNE_F32, "__hexagon_nesf2"); setLibcallName(RTLIB::SUB_F64, "__hexagon_subdf3"); setOperationAction(ISD::SUB, MVT::f64, Expand); setLibcallName(RTLIB::SUB_F32, "__hexagon_subsf3"); setOperationAction(ISD::SUB, MVT::f32, Expand); setLibcallName(RTLIB::FPROUND_F64_F32, "__hexagon_truncdfsf2"); setOperationAction(ISD::FP_ROUND, MVT::f64, Expand); setLibcallName(RTLIB::UO_F64, "__hexagon_unorddf2"); setCondCodeAction(ISD::SETUO, MVT::f64, Expand); setLibcallName(RTLIB::O_F64, "__hexagon_unorddf2"); setCondCodeAction(ISD::SETO, MVT::f64, Expand); setLibcallName(RTLIB::O_F32, "__hexagon_unordsf2"); setCondCodeAction(ISD::SETO, MVT::f32, Expand); setLibcallName(RTLIB::UO_F32, "__hexagon_unordsf2"); setCondCodeAction(ISD::SETUO, MVT::f32, Expand); setOperationAction(ISD::FABS, MVT::f32, Expand); setOperationAction(ISD::FABS, MVT::f64, Expand); setOperationAction(ISD::FNEG, MVT::f32, Expand); setOperationAction(ISD::FNEG, MVT::f64, Expand); } setLibcallName(RTLIB::SREM_I32, "__hexagon_modsi3"); setOperationAction(ISD::SREM, MVT::i32, Expand); setIndexedLoadAction(ISD::POST_INC, MVT::i8, Legal); setIndexedLoadAction(ISD::POST_INC, MVT::i16, Legal); setIndexedLoadAction(ISD::POST_INC, MVT::i32, Legal); setIndexedLoadAction(ISD::POST_INC, MVT::i64, Legal); setIndexedStoreAction(ISD::POST_INC, MVT::i8, Legal); setIndexedStoreAction(ISD::POST_INC, MVT::i16, Legal); setIndexedStoreAction(ISD::POST_INC, MVT::i32, Legal); setIndexedStoreAction(ISD::POST_INC, MVT::i64, Legal); setOperationAction(ISD::BUILD_PAIR, MVT::i64, Expand); // Turn FP extload into load/fextend. setLoadExtAction(ISD::EXTLOAD, MVT::f32, Expand); // Hexagon has a i1 sign extending load. setLoadExtAction(ISD::SEXTLOAD, MVT::i1, Expand); // Turn FP truncstore into trunc + store. setTruncStoreAction(MVT::f64, MVT::f32, Expand); // Custom legalize GlobalAddress nodes into CONST32. setOperationAction(ISD::GlobalAddress, MVT::i32, Custom); setOperationAction(ISD::GlobalAddress, MVT::i8, Custom); setOperationAction(ISD::BlockAddress, MVT::i32, Custom); // Truncate action? setOperationAction(ISD::TRUNCATE, MVT::i64, Expand); // Hexagon doesn't have sext_inreg, replace them with shl/sra. setOperationAction(ISD::SIGN_EXTEND_INREG, MVT::i1 , Expand); // Hexagon has no REM or DIVREM operations. setOperationAction(ISD::UREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i32, Expand); setOperationAction(ISD::SDIVREM, MVT::i32, Expand); setOperationAction(ISD::UDIVREM, MVT::i32, Expand); setOperationAction(ISD::SREM, MVT::i64, Expand); setOperationAction(ISD::SDIVREM, MVT::i64, Expand); setOperationAction(ISD::UDIVREM, MVT::i64, Expand); setOperationAction(ISD::BSWAP, MVT::i64, Expand); // Lower SELECT_CC to SETCC and SELECT. setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i64, Custom); if (QRI->Subtarget.hasV5TOps()) { // We need to make the operation type of SELECT node to be Custom, // such that we don't go into the infinite loop of // select -> setcc -> select_cc -> select loop. setOperationAction(ISD::SELECT, MVT::f32, Custom); setOperationAction(ISD::SELECT, MVT::f64, Custom); setOperationAction(ISD::SELECT_CC, MVT::f32, Expand); setOperationAction(ISD::SELECT_CC, MVT::f64, Expand); setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); } else { // Hexagon has no select or setcc: expand to SELECT_CC. setOperationAction(ISD::SELECT, MVT::f32, Expand); setOperationAction(ISD::SELECT, MVT::f64, Expand); // This is a workaround documented in DAGCombiner.cpp:2892 We don't // support SELECT_CC on every type. setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); } setOperationAction(ISD::BRIND, MVT::Other, Expand); if (EmitJumpTables) { setOperationAction(ISD::BR_JT, MVT::Other, Custom); } else { setOperationAction(ISD::BR_JT, MVT::Other, Expand); } // Increase jump tables cutover to 5, was 4. setMinimumJumpTableEntries(5); setOperationAction(ISD::BR_CC, MVT::f32, Expand); setOperationAction(ISD::BR_CC, MVT::f64, Expand); setOperationAction(ISD::BR_CC, MVT::i1, Expand); setOperationAction(ISD::BR_CC, MVT::i32, Expand); setOperationAction(ISD::MEMBARRIER, MVT::Other, Custom); setOperationAction(ISD::ATOMIC_FENCE, MVT::Other, Custom); setOperationAction(ISD::FSIN , MVT::f64, Expand); setOperationAction(ISD::FCOS , MVT::f64, Expand); setOperationAction(ISD::FREM , MVT::f64, Expand); setOperationAction(ISD::FSIN , MVT::f32, Expand); setOperationAction(ISD::FCOS , MVT::f32, Expand); setOperationAction(ISD::FREM , MVT::f32, Expand); setOperationAction(ISD::FSINCOS, MVT::f64, Expand); setOperationAction(ISD::FSINCOS, MVT::f32, Expand); // In V4, we have double word add/sub with carry. The problem with // modelling this instruction is that it produces 2 results - Rdd and Px. // To model update of Px, we will have to use Defs[p0..p3] which will // cause any predicate live range to spill. So, we pretend we dont't // have these instructions. setOperationAction(ISD::ADDE, MVT::i8, Expand); setOperationAction(ISD::ADDE, MVT::i16, Expand); setOperationAction(ISD::ADDE, MVT::i32, Expand); setOperationAction(ISD::ADDE, MVT::i64, Expand); setOperationAction(ISD::SUBE, MVT::i8, Expand); setOperationAction(ISD::SUBE, MVT::i16, Expand); setOperationAction(ISD::SUBE, MVT::i32, Expand); setOperationAction(ISD::SUBE, MVT::i64, Expand); setOperationAction(ISD::ADDC, MVT::i8, Expand); setOperationAction(ISD::ADDC, MVT::i16, Expand); setOperationAction(ISD::ADDC, MVT::i32, Expand); setOperationAction(ISD::ADDC, MVT::i64, Expand); setOperationAction(ISD::SUBC, MVT::i8, Expand); setOperationAction(ISD::SUBC, MVT::i16, Expand); setOperationAction(ISD::SUBC, MVT::i32, Expand); setOperationAction(ISD::SUBC, MVT::i64, Expand); setOperationAction(ISD::CTPOP, MVT::i32, Expand); setOperationAction(ISD::CTPOP, MVT::i64, Expand); setOperationAction(ISD::CTTZ , MVT::i32, Expand); setOperationAction(ISD::CTTZ , MVT::i64, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i64, Expand); setOperationAction(ISD::CTLZ , MVT::i32, Expand); setOperationAction(ISD::CTLZ , MVT::i64, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand); setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i64, Expand); setOperationAction(ISD::ROTL , MVT::i32, Expand); setOperationAction(ISD::ROTR , MVT::i32, Expand); setOperationAction(ISD::BSWAP, MVT::i32, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand); setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand); setOperationAction(ISD::FPOW , MVT::f64, Expand); setOperationAction(ISD::FPOW , MVT::f32, Expand); setOperationAction(ISD::SHL_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRA_PARTS, MVT::i32, Expand); setOperationAction(ISD::SRL_PARTS, MVT::i32, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i32, Expand); setOperationAction(ISD::SMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::UMUL_LOHI, MVT::i64, Expand); setOperationAction(ISD::EXCEPTIONADDR, MVT::i64, Expand); setOperationAction(ISD::EHSELECTION, MVT::i64, Expand); setOperationAction(ISD::EXCEPTIONADDR, MVT::i32, Expand); setOperationAction(ISD::EHSELECTION, MVT::i32, Expand); setOperationAction(ISD::EH_RETURN, MVT::Other, Expand); if (TM.getSubtargetImpl()->isSubtargetV2()) { setExceptionPointerRegister(Hexagon::R20); setExceptionSelectorRegister(Hexagon::R21); } else { setExceptionPointerRegister(Hexagon::R0); setExceptionSelectorRegister(Hexagon::R1); } // VASTART needs to be custom lowered to use the VarArgsFrameIndex. setOperationAction(ISD::VASTART , MVT::Other, Custom); // Use the default implementation. setOperationAction(ISD::VAARG , MVT::Other, Expand); setOperationAction(ISD::VACOPY , MVT::Other, Expand); setOperationAction(ISD::VAEND , MVT::Other, Expand); setOperationAction(ISD::STACKSAVE , MVT::Other, Expand); setOperationAction(ISD::STACKRESTORE , MVT::Other, Expand); setOperationAction(ISD::DYNAMIC_STACKALLOC, MVT::i32 , Custom); setOperationAction(ISD::INLINEASM , MVT::Other, Custom); setMinFunctionAlignment(2); // Needed for DYNAMIC_STACKALLOC expansion. unsigned StackRegister = TM.getRegisterInfo()->getStackRegister(); setStackPointerRegisterToSaveRestore(StackRegister); setSchedulingPreference(Sched::VLIW); } const char* HexagonTargetLowering::getTargetNodeName(unsigned Opcode) const { switch (Opcode) { default: return 0; case HexagonISD::CONST32: return "HexagonISD::CONST32"; case HexagonISD::CONST32_GP: return "HexagonISD::CONST32_GP"; case HexagonISD::CONST32_Int_Real: return "HexagonISD::CONST32_Int_Real"; case HexagonISD::ADJDYNALLOC: return "HexagonISD::ADJDYNALLOC"; case HexagonISD::CMPICC: return "HexagonISD::CMPICC"; case HexagonISD::CMPFCC: return "HexagonISD::CMPFCC"; case HexagonISD::BRICC: return "HexagonISD::BRICC"; case HexagonISD::BRFCC: return "HexagonISD::BRFCC"; case HexagonISD::SELECT_ICC: return "HexagonISD::SELECT_ICC"; case HexagonISD::SELECT_FCC: return "HexagonISD::SELECT_FCC"; case HexagonISD::Hi: return "HexagonISD::Hi"; case HexagonISD::Lo: return "HexagonISD::Lo"; case HexagonISD::FTOI: return "HexagonISD::FTOI"; case HexagonISD::ITOF: return "HexagonISD::ITOF"; case HexagonISD::CALL: return "HexagonISD::CALL"; case HexagonISD::RET_FLAG: return "HexagonISD::RET_FLAG"; case HexagonISD::BR_JT: return "HexagonISD::BR_JT"; case HexagonISD::TC_RETURN: return "HexagonISD::TC_RETURN"; } } bool HexagonTargetLowering::isTruncateFree(Type *Ty1, Type *Ty2) const { EVT MTy1 = EVT::getEVT(Ty1); EVT MTy2 = EVT::getEVT(Ty2); if (!MTy1.isSimple() || !MTy2.isSimple()) { return false; } return ((MTy1.getSimpleVT() == MVT::i64) && (MTy2.getSimpleVT() == MVT::i32)); } bool HexagonTargetLowering::isTruncateFree(EVT VT1, EVT VT2) const { if (!VT1.isSimple() || !VT2.isSimple()) { return false; } return ((VT1.getSimpleVT() == MVT::i64) && (VT2.getSimpleVT() == MVT::i32)); } SDValue HexagonTargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: llvm_unreachable("Should not custom lower this!"); case ISD::ConstantPool: return LowerConstantPool(Op, DAG); // Frame & Return address. Currently unimplemented. case ISD::RETURNADDR: return LowerRETURNADDR(Op, DAG); case ISD::FRAMEADDR: return LowerFRAMEADDR(Op, DAG); case ISD::GlobalTLSAddress: llvm_unreachable("TLS not implemented for Hexagon."); case ISD::MEMBARRIER: return LowerMEMBARRIER(Op, DAG); case ISD::ATOMIC_FENCE: return LowerATOMIC_FENCE(Op, DAG); case ISD::GlobalAddress: return LowerGLOBALADDRESS(Op, DAG); case ISD::BlockAddress: return LowerBlockAddress(Op, DAG); case ISD::VASTART: return LowerVASTART(Op, DAG); case ISD::BR_JT: return LowerBR_JT(Op, DAG); case ISD::DYNAMIC_STACKALLOC: return LowerDYNAMIC_STACKALLOC(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); case ISD::SELECT: return Op; case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG); case ISD::INLINEASM: return LowerINLINEASM(Op, DAG); } } //===----------------------------------------------------------------------===// // Hexagon Scheduler Hooks //===----------------------------------------------------------------------===// MachineBasicBlock * HexagonTargetLowering::EmitInstrWithCustomInserter(MachineInstr *MI, MachineBasicBlock *BB) const { switch (MI->getOpcode()) { case Hexagon::ADJDYNALLOC: { MachineFunction *MF = BB->getParent(); HexagonMachineFunctionInfo *FuncInfo = MF->getInfo<HexagonMachineFunctionInfo>(); FuncInfo->addAllocaAdjustInst(MI); return BB; } default: llvm_unreachable("Unexpected instr type to insert"); } // switch } //===----------------------------------------------------------------------===// // Inline Assembly Support //===----------------------------------------------------------------------===// std::pair<unsigned, const TargetRegisterClass*> HexagonTargetLowering::getRegForInlineAsmConstraint(const std::string &Constraint, EVT VT) const { if (Constraint.size() == 1) { switch (Constraint[0]) { case 'r': // R0-R31 switch (VT.getSimpleVT().SimpleTy) { default: llvm_unreachable("getRegForInlineAsmConstraint Unhandled data type"); case MVT::i32: case MVT::i16: case MVT::i8: case MVT::f32: return std::make_pair(0U, &Hexagon::IntRegsRegClass); case MVT::i64: case MVT::f64: return std::make_pair(0U, &Hexagon::DoubleRegsRegClass); } default: llvm_unreachable("Unknown asm register class"); } } return TargetLowering::getRegForInlineAsmConstraint(Constraint, VT); } /// isFPImmLegal - Returns true if the target can instruction select the /// specified FP immediate natively. If false, the legalizer will /// materialize the FP immediate as a load from a constant pool. bool HexagonTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const { const HexagonRegisterInfo* QRI = TM.getRegisterInfo(); return QRI->Subtarget.hasV5TOps(); } /// isLegalAddressingMode - Return true if the addressing mode represented by /// AM is legal for this target, for a load/store of the specified type. bool HexagonTargetLowering::isLegalAddressingMode(const AddrMode &AM, Type *Ty) const { // Allows a signed-extended 11-bit immediate field. if (AM.BaseOffs <= -(1LL << 13) || AM.BaseOffs >= (1LL << 13)-1) { return false; } // No global is ever allowed as a base. if (AM.BaseGV) { return false; } int Scale = AM.Scale; if (Scale < 0) Scale = -Scale; switch (Scale) { case 0: // No scale reg, "r+i", "r", or just "i". break; default: // No scaled addressing mode. return false; } return true; } /// isLegalICmpImmediate - Return true if the specified immediate is legal /// icmp immediate, that is the target has icmp instructions which can compare /// a register against the immediate without having to materialize the /// immediate into a register. bool HexagonTargetLowering::isLegalICmpImmediate(int64_t Imm) const { return Imm >= -512 && Imm <= 511; } /// IsEligibleForTailCallOptimization - Check whether the call is eligible /// for tail call optimization. Targets which want to do tail call /// optimization should implement this function. bool HexagonTargetLowering::IsEligibleForTailCallOptimization( SDValue Callee, CallingConv::ID CalleeCC, bool isVarArg, bool isCalleeStructRet, bool isCallerStructRet, const SmallVectorImpl<ISD::OutputArg> &Outs, const SmallVectorImpl<SDValue> &OutVals, const SmallVectorImpl<ISD::InputArg> &Ins, SelectionDAG& DAG) const { const Function *CallerF = DAG.getMachineFunction().getFunction(); CallingConv::ID CallerCC = CallerF->getCallingConv(); bool CCMatch = CallerCC == CalleeCC; // *************************************************************************** // Look for obvious safe cases to perform tail call optimization that do not // require ABI changes. // *************************************************************************** // If this is a tail call via a function pointer, then don't do it! if (!(dyn_cast<GlobalAddressSDNode>(Callee)) && !(dyn_cast<ExternalSymbolSDNode>(Callee))) { return false; } // Do not optimize if the calling conventions do not match. if (!CCMatch) return false; // Do not tail call optimize vararg calls. if (isVarArg) return false; // Also avoid tail call optimization if either caller or callee uses struct // return semantics. if (isCalleeStructRet || isCallerStructRet) return false; // In addition to the cases above, we also disable Tail Call Optimization if // the calling convention code that at least one outgoing argument needs to // go on the stack. We cannot check that here because at this point that // information is not available. return true; }