//===-- MBlazeAsmPrinter.cpp - MBlaze LLVM assembly writer ----------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file contains a printer that converts from our internal representation // of machine-dependent LLVM code to GAS-format MBlaze assembly language. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "mblaze-asm-printer" #include "MBlaze.h" #include "InstPrinter/MBlazeInstPrinter.h" #include "MBlazeInstrInfo.h" #include "MBlazeMCInstLower.h" #include "MBlazeMachineFunction.h" #include "MBlazeSubtarget.h" #include "MBlazeTargetMachine.h" #include "llvm/CodeGen/AsmPrinter.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineFunctionPass.h" #include "llvm/CodeGen/MachineInstr.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Module.h" #include "llvm/MC/MCAsmInfo.h" #include "llvm/MC/MCInst.h" #include "llvm/MC/MCStreamer.h" #include "llvm/MC/MCSymbol.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/TargetRegistry.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/Mangler.h" #include "llvm/Target/TargetLoweringObjectFile.h" #include "llvm/Target/TargetMachine.h" #include "llvm/Target/TargetOptions.h" #include <cctype> using namespace llvm; namespace { class MBlazeAsmPrinter : public AsmPrinter { const MBlazeSubtarget *Subtarget; public: explicit MBlazeAsmPrinter(TargetMachine &TM, MCStreamer &Streamer) : AsmPrinter(TM, Streamer) { Subtarget = &TM.getSubtarget<MBlazeSubtarget>(); } virtual const char *getPassName() const { return "MBlaze Assembly Printer"; } void printSavedRegsBitmask(); void emitFrameDirective(); virtual void EmitFunctionBodyStart(); virtual void EmitFunctionBodyEnd(); virtual void EmitFunctionEntryLabel(); virtual bool isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const; bool PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant, const char *ExtraCode, raw_ostream &O); void printOperand(const MachineInstr *MI, int opNum, raw_ostream &O); void printUnsignedImm(const MachineInstr *MI, int opNum, raw_ostream &O); void printFSLImm(const MachineInstr *MI, int opNum, raw_ostream &O); void printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O, const char *Modifier = 0); void EmitInstruction(const MachineInstr *MI); }; } // end of anonymous namespace // #include "MBlazeGenAsmWriter.inc" //===----------------------------------------------------------------------===// // // MBlaze Asm Directives // // -- Frame directive "frame Stackpointer, Stacksize, RARegister" // Describe the stack frame. // // -- Mask directives "mask bitmask, offset" // Tells the assembler which registers are saved and where. // bitmask - contain a little endian bitset indicating which registers are // saved on function prologue (e.g. with a 0x80000000 mask, the // assembler knows the register 31 (RA) is saved at prologue. // offset - the position before stack pointer subtraction indicating where // the first saved register on prologue is located. (e.g. with a // // Consider the following function prologue: // // .frame R19,48,R15 // .mask 0xc0000000,-8 // addiu R1, R1, -48 // sw R15, 40(R1) // sw R19, 36(R1) // // With a 0xc0000000 mask, the assembler knows the register 15 (R15) and // 19 (R19) are saved at prologue. As the save order on prologue is from // left to right, R15 is saved first. A -8 offset means that after the // stack pointer subtration, the first register in the mask (R15) will be // saved at address 48-8=40. // //===----------------------------------------------------------------------===// // Print a 32 bit hex number with all numbers. static void printHex32(unsigned int Value, raw_ostream &O) { O << "0x"; for (int i = 7; i >= 0; i--) O.write_hex((Value & (0xF << (i*4))) >> (i*4)); } // Create a bitmask with all callee saved registers for CPU or Floating Point // registers. For CPU registers consider RA, GP and FP for saving if necessary. void MBlazeAsmPrinter::printSavedRegsBitmask() { const TargetFrameLowering *TFI = TM.getFrameLowering(); const TargetRegisterInfo &RI = *TM.getRegisterInfo(); // CPU Saved Registers Bitmasks unsigned int CPUBitmask = 0; // Set the CPU Bitmasks const MachineFrameInfo *MFI = MF->getFrameInfo(); const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo(); for (unsigned i = 0, e = CSI.size(); i != e; ++i) { unsigned Reg = CSI[i].getReg(); unsigned RegNum = getMBlazeRegisterNumbering(Reg); if (MBlaze::GPRRegClass.contains(Reg)) CPUBitmask |= (1 << RegNum); } // Return Address and Frame registers must also be set in CPUBitmask. if (TFI->hasFP(*MF)) CPUBitmask |= (1 << getMBlazeRegisterNumbering(RI.getFrameRegister(*MF))); if (MFI->adjustsStack()) CPUBitmask |= (1 << getMBlazeRegisterNumbering(RI.getRARegister())); // Print CPUBitmask OutStreamer.EmitRawText("\t.mask\t0x" + Twine::utohexstr(CPUBitmask)); } /// Frame Directive void MBlazeAsmPrinter::emitFrameDirective() { if (!OutStreamer.hasRawTextSupport()) return; const TargetRegisterInfo &RI = *TM.getRegisterInfo(); unsigned stkReg = RI.getFrameRegister(*MF); unsigned retReg = RI.getRARegister(); unsigned stkSze = MF->getFrameInfo()->getStackSize(); OutStreamer.EmitRawText("\t.frame\t" + Twine(MBlazeInstPrinter::getRegisterName(stkReg)) + "," + Twine(stkSze) + "," + Twine(MBlazeInstPrinter::getRegisterName(retReg))); } void MBlazeAsmPrinter::EmitFunctionEntryLabel() { if (OutStreamer.hasRawTextSupport()) OutStreamer.EmitRawText("\t.ent\t" + Twine(CurrentFnSym->getName())); AsmPrinter::EmitFunctionEntryLabel(); } void MBlazeAsmPrinter::EmitFunctionBodyStart() { if (!OutStreamer.hasRawTextSupport()) return; emitFrameDirective(); printSavedRegsBitmask(); } void MBlazeAsmPrinter::EmitFunctionBodyEnd() { if (OutStreamer.hasRawTextSupport()) OutStreamer.EmitRawText("\t.end\t" + Twine(CurrentFnSym->getName())); } //===----------------------------------------------------------------------===// void MBlazeAsmPrinter::EmitInstruction(const MachineInstr *MI) { MBlazeMCInstLower MCInstLowering(OutContext, *this); MCInst TmpInst; MCInstLowering.Lower(MI, TmpInst); OutStreamer.EmitInstruction(TmpInst); } // Print out an operand for an inline asm expression. bool MBlazeAsmPrinter:: PrintAsmOperand(const MachineInstr *MI, unsigned OpNo, unsigned AsmVariant,const char *ExtraCode, raw_ostream &O) { // Does this asm operand have a single letter operand modifier? if (ExtraCode && ExtraCode[0]) if (ExtraCode[1] != 0) return true; // Unknown modifier. switch (ExtraCode[0]) { default: // See if this is a generic print operand return AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O); } printOperand(MI, OpNo, O); return false; } void MBlazeAsmPrinter::printOperand(const MachineInstr *MI, int opNum, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(opNum); switch (MO.getType()) { case MachineOperand::MO_Register: O << MBlazeInstPrinter::getRegisterName(MO.getReg()); break; case MachineOperand::MO_Immediate: O << (int32_t)MO.getImm(); break; case MachineOperand::MO_FPImmediate: { const ConstantFP *fp = MO.getFPImm(); printHex32(fp->getValueAPF().bitcastToAPInt().getZExtValue(), O); O << ";\t# immediate = " << *fp; break; } case MachineOperand::MO_MachineBasicBlock: O << *MO.getMBB()->getSymbol(); return; case MachineOperand::MO_GlobalAddress: O << *Mang->getSymbol(MO.getGlobal()); break; case MachineOperand::MO_ExternalSymbol: O << *GetExternalSymbolSymbol(MO.getSymbolName()); break; case MachineOperand::MO_JumpTableIndex: O << MAI->getPrivateGlobalPrefix() << "JTI" << getFunctionNumber() << '_' << MO.getIndex(); break; case MachineOperand::MO_ConstantPoolIndex: O << MAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << "_" << MO.getIndex(); if (MO.getOffset()) O << "+" << MO.getOffset(); break; default: llvm_unreachable("<unknown operand type>"); } } void MBlazeAsmPrinter::printUnsignedImm(const MachineInstr *MI, int opNum, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(opNum); if (MO.isImm()) O << (uint32_t)MO.getImm(); else printOperand(MI, opNum, O); } void MBlazeAsmPrinter::printFSLImm(const MachineInstr *MI, int opNum, raw_ostream &O) { const MachineOperand &MO = MI->getOperand(opNum); if (MO.isImm()) O << "rfsl" << (unsigned int)MO.getImm(); else printOperand(MI, opNum, O); } void MBlazeAsmPrinter:: printMemOperand(const MachineInstr *MI, int opNum, raw_ostream &O, const char *Modifier) { printOperand(MI, opNum, O); O << ", "; printOperand(MI, opNum+1, O); } /// isBlockOnlyReachableByFallthough - Return true if the basic block has /// exactly one predecessor and the control transfer mechanism between /// the predecessor and this block is a fall-through. bool MBlazeAsmPrinter:: isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const { // If this is a landing pad, it isn't a fall through. If it has no preds, // then nothing falls through to it. if (MBB->isLandingPad() || MBB->pred_empty()) return false; // If there isn't exactly one predecessor, it can't be a fall through. MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI; ++PI2; if (PI2 != MBB->pred_end()) return false; // The predecessor has to be immediately before this block. const MachineBasicBlock *Pred = *PI; if (!Pred->isLayoutSuccessor(MBB)) return false; // If the block is completely empty, then it definitely does fall through. if (Pred->empty()) return true; // Check if the last terminator is an unconditional branch. MachineBasicBlock::const_iterator I = Pred->end(); while (I != Pred->begin() && !(--I)->isTerminator()) ; // Noop return I == Pred->end() || !I->isBarrier(); } // Force static initialization. extern "C" void LLVMInitializeMBlazeAsmPrinter() { RegisterAsmPrinter<MBlazeAsmPrinter> X(TheMBlazeTarget); }