//===-- AMDGPUStructurizeCFG.cpp - ------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// The pass implemented in this file transforms the programs control flow /// graph into a form that's suitable for code generation on hardware that /// implements control flow by execution masking. This currently includes all /// AMD GPUs but may as well be useful for other types of hardware. // //===----------------------------------------------------------------------===// #include "AMDGPU.h" #include "llvm/ADT/SCCIterator.h" #include "llvm/Analysis/RegionInfo.h" #include "llvm/Analysis/RegionIterator.h" #include "llvm/Analysis/RegionPass.h" #include "llvm/IR/Module.h" #include "llvm/Transforms/Utils/SSAUpdater.h" #include "llvm/Support/PatternMatch.h" using namespace llvm; using namespace llvm::PatternMatch; namespace { // Definition of the complex types used in this pass. typedef std::pair<BasicBlock *, Value *> BBValuePair; typedef SmallVector<RegionNode*, 8> RNVector; typedef SmallVector<BasicBlock*, 8> BBVector; typedef SmallVector<BranchInst*, 8> BranchVector; typedef SmallVector<BBValuePair, 2> BBValueVector; typedef SmallPtrSet<BasicBlock *, 8> BBSet; typedef DenseMap<PHINode *, BBValueVector> PhiMap; typedef DenseMap<DomTreeNode *, unsigned> DTN2UnsignedMap; typedef DenseMap<BasicBlock *, PhiMap> BBPhiMap; typedef DenseMap<BasicBlock *, Value *> BBPredicates; typedef DenseMap<BasicBlock *, BBPredicates> PredMap; typedef DenseMap<BasicBlock *, BasicBlock*> BB2BBMap; typedef DenseMap<BasicBlock *, BBVector> BB2BBVecMap; // The name for newly created blocks. static const char *FlowBlockName = "Flow"; /// @brief Find the nearest common dominator for multiple BasicBlocks /// /// Helper class for AMDGPUStructurizeCFG /// TODO: Maybe move into common code class NearestCommonDominator { DominatorTree *DT; DTN2UnsignedMap IndexMap; BasicBlock *Result; unsigned ResultIndex; bool ExplicitMentioned; public: /// \brief Start a new query NearestCommonDominator(DominatorTree *DomTree) { DT = DomTree; Result = 0; } /// \brief Add BB to the resulting dominator void addBlock(BasicBlock *BB, bool Remember = true) { DomTreeNode *Node = DT->getNode(BB); if (Result == 0) { unsigned Numbering = 0; for (;Node;Node = Node->getIDom()) IndexMap[Node] = ++Numbering; Result = BB; ResultIndex = 1; ExplicitMentioned = Remember; return; } for (;Node;Node = Node->getIDom()) if (IndexMap.count(Node)) break; else IndexMap[Node] = 0; assert(Node && "Dominator tree invalid!"); unsigned Numbering = IndexMap[Node]; if (Numbering > ResultIndex) { Result = Node->getBlock(); ResultIndex = Numbering; ExplicitMentioned = Remember && (Result == BB); } else if (Numbering == ResultIndex) { ExplicitMentioned |= Remember; } } /// \brief Is "Result" one of the BBs added with "Remember" = True? bool wasResultExplicitMentioned() { return ExplicitMentioned; } /// \brief Get the query result BasicBlock *getResult() { return Result; } }; /// @brief Transforms the control flow graph on one single entry/exit region /// at a time. /// /// After the transform all "If"/"Then"/"Else" style control flow looks like /// this: /// /// \verbatim /// 1 /// || /// | | /// 2 | /// | / /// |/ /// 3 /// || Where: /// | | 1 = "If" block, calculates the condition /// 4 | 2 = "Then" subregion, runs if the condition is true /// | / 3 = "Flow" blocks, newly inserted flow blocks, rejoins the flow /// |/ 4 = "Else" optional subregion, runs if the condition is false /// 5 5 = "End" block, also rejoins the control flow /// \endverbatim /// /// Control flow is expressed as a branch where the true exit goes into the /// "Then"/"Else" region, while the false exit skips the region /// The condition for the optional "Else" region is expressed as a PHI node. /// The incomming values of the PHI node are true for the "If" edge and false /// for the "Then" edge. /// /// Additionally to that even complicated loops look like this: /// /// \verbatim /// 1 /// || /// | | /// 2 ^ Where: /// | / 1 = "Entry" block /// |/ 2 = "Loop" optional subregion, with all exits at "Flow" block /// 3 3 = "Flow" block, with back edge to entry block /// | /// \endverbatim /// /// The back edge of the "Flow" block is always on the false side of the branch /// while the true side continues the general flow. So the loop condition /// consist of a network of PHI nodes where the true incoming values expresses /// breaks and the false values expresses continue states. class AMDGPUStructurizeCFG : public RegionPass { static char ID; Type *Boolean; ConstantInt *BoolTrue; ConstantInt *BoolFalse; UndefValue *BoolUndef; Function *Func; Region *ParentRegion; DominatorTree *DT; RNVector Order; BBSet Visited; BBPhiMap DeletedPhis; BB2BBVecMap AddedPhis; PredMap Predicates; BranchVector Conditions; BB2BBMap Loops; PredMap LoopPreds; BranchVector LoopConds; RegionNode *PrevNode; void orderNodes(); void analyzeLoops(RegionNode *N); Value *invert(Value *Condition); Value *buildCondition(BranchInst *Term, unsigned Idx, bool Invert); void gatherPredicates(RegionNode *N); void collectInfos(); void insertConditions(bool Loops); void delPhiValues(BasicBlock *From, BasicBlock *To); void addPhiValues(BasicBlock *From, BasicBlock *To); void setPhiValues(); void killTerminator(BasicBlock *BB); void changeExit(RegionNode *Node, BasicBlock *NewExit, bool IncludeDominator); BasicBlock *getNextFlow(BasicBlock *Dominator); BasicBlock *needPrefix(bool NeedEmpty); BasicBlock *needPostfix(BasicBlock *Flow, bool ExitUseAllowed); void setPrevNode(BasicBlock *BB); bool dominatesPredicates(BasicBlock *BB, RegionNode *Node); bool isPredictableTrue(RegionNode *Node); void wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd); void handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd); void createFlow(); void rebuildSSA(); public: AMDGPUStructurizeCFG(): RegionPass(ID) { initializeRegionInfoPass(*PassRegistry::getPassRegistry()); } using Pass::doInitialization; virtual bool doInitialization(Region *R, RGPassManager &RGM); virtual bool runOnRegion(Region *R, RGPassManager &RGM); virtual const char *getPassName() const { return "AMDGPU simplify control flow"; } void getAnalysisUsage(AnalysisUsage &AU) const { AU.addRequired<DominatorTree>(); AU.addPreserved<DominatorTree>(); RegionPass::getAnalysisUsage(AU); } }; } // end anonymous namespace char AMDGPUStructurizeCFG::ID = 0; /// \brief Initialize the types and constants used in the pass bool AMDGPUStructurizeCFG::doInitialization(Region *R, RGPassManager &RGM) { LLVMContext &Context = R->getEntry()->getContext(); Boolean = Type::getInt1Ty(Context); BoolTrue = ConstantInt::getTrue(Context); BoolFalse = ConstantInt::getFalse(Context); BoolUndef = UndefValue::get(Boolean); return false; } /// \brief Build up the general order of nodes void AMDGPUStructurizeCFG::orderNodes() { scc_iterator<Region *> I = scc_begin(ParentRegion), E = scc_end(ParentRegion); for (Order.clear(); I != E; ++I) { std::vector<RegionNode *> &Nodes = *I; Order.append(Nodes.begin(), Nodes.end()); } } /// \brief Determine the end of the loops void AMDGPUStructurizeCFG::analyzeLoops(RegionNode *N) { if (N->isSubRegion()) { // Test for exit as back edge BasicBlock *Exit = N->getNodeAs<Region>()->getExit(); if (Visited.count(Exit)) Loops[Exit] = N->getEntry(); } else { // Test for sucessors as back edge BasicBlock *BB = N->getNodeAs<BasicBlock>(); BranchInst *Term = cast<BranchInst>(BB->getTerminator()); for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { BasicBlock *Succ = Term->getSuccessor(i); if (Visited.count(Succ)) Loops[Succ] = BB; } } } /// \brief Invert the given condition Value *AMDGPUStructurizeCFG::invert(Value *Condition) { // First: Check if it's a constant if (Condition == BoolTrue) return BoolFalse; if (Condition == BoolFalse) return BoolTrue; if (Condition == BoolUndef) return BoolUndef; // Second: If the condition is already inverted, return the original value if (match(Condition, m_Not(m_Value(Condition)))) return Condition; // Third: Check all the users for an invert BasicBlock *Parent = cast<Instruction>(Condition)->getParent(); for (Value::use_iterator I = Condition->use_begin(), E = Condition->use_end(); I != E; ++I) { Instruction *User = dyn_cast<Instruction>(*I); if (!User || User->getParent() != Parent) continue; if (match(*I, m_Not(m_Specific(Condition)))) return *I; } // Last option: Create a new instruction return BinaryOperator::CreateNot(Condition, "", Parent->getTerminator()); } /// \brief Build the condition for one edge Value *AMDGPUStructurizeCFG::buildCondition(BranchInst *Term, unsigned Idx, bool Invert) { Value *Cond = Invert ? BoolFalse : BoolTrue; if (Term->isConditional()) { Cond = Term->getCondition(); if (Idx != Invert) Cond = invert(Cond); } return Cond; } /// \brief Analyze the predecessors of each block and build up predicates void AMDGPUStructurizeCFG::gatherPredicates(RegionNode *N) { RegionInfo *RI = ParentRegion->getRegionInfo(); BasicBlock *BB = N->getEntry(); BBPredicates &Pred = Predicates[BB]; BBPredicates &LPred = LoopPreds[BB]; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { // Ignore it if it's a branch from outside into our region entry if (!ParentRegion->contains(*PI)) continue; Region *R = RI->getRegionFor(*PI); if (R == ParentRegion) { // It's a top level block in our region BranchInst *Term = cast<BranchInst>((*PI)->getTerminator()); for (unsigned i = 0, e = Term->getNumSuccessors(); i != e; ++i) { BasicBlock *Succ = Term->getSuccessor(i); if (Succ != BB) continue; if (Visited.count(*PI)) { // Normal forward edge if (Term->isConditional()) { // Try to treat it like an ELSE block BasicBlock *Other = Term->getSuccessor(!i); if (Visited.count(Other) && !Loops.count(Other) && !Pred.count(Other) && !Pred.count(*PI)) { Pred[Other] = BoolFalse; Pred[*PI] = BoolTrue; continue; } } Pred[*PI] = buildCondition(Term, i, false); } else { // Back edge LPred[*PI] = buildCondition(Term, i, true); } } } else { // It's an exit from a sub region while(R->getParent() != ParentRegion) R = R->getParent(); // Edge from inside a subregion to its entry, ignore it if (R == N) continue; BasicBlock *Entry = R->getEntry(); if (Visited.count(Entry)) Pred[Entry] = BoolTrue; else LPred[Entry] = BoolFalse; } } } /// \brief Collect various loop and predicate infos void AMDGPUStructurizeCFG::collectInfos() { // Reset predicate Predicates.clear(); // and loop infos Loops.clear(); LoopPreds.clear(); // Reset the visited nodes Visited.clear(); for (RNVector::reverse_iterator OI = Order.rbegin(), OE = Order.rend(); OI != OE; ++OI) { // Analyze all the conditions leading to a node gatherPredicates(*OI); // Remember that we've seen this node Visited.insert((*OI)->getEntry()); // Find the last back edges analyzeLoops(*OI); } } /// \brief Insert the missing branch conditions void AMDGPUStructurizeCFG::insertConditions(bool Loops) { BranchVector &Conds = Loops ? LoopConds : Conditions; Value *Default = Loops ? BoolTrue : BoolFalse; SSAUpdater PhiInserter; for (BranchVector::iterator I = Conds.begin(), E = Conds.end(); I != E; ++I) { BranchInst *Term = *I; assert(Term->isConditional()); BasicBlock *Parent = Term->getParent(); BasicBlock *SuccTrue = Term->getSuccessor(0); BasicBlock *SuccFalse = Term->getSuccessor(1); PhiInserter.Initialize(Boolean, ""); PhiInserter.AddAvailableValue(&Func->getEntryBlock(), Default); PhiInserter.AddAvailableValue(Loops ? SuccFalse : Parent, Default); BBPredicates &Preds = Loops ? LoopPreds[SuccFalse] : Predicates[SuccTrue]; NearestCommonDominator Dominator(DT); Dominator.addBlock(Parent, false); Value *ParentValue = 0; for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end(); PI != PE; ++PI) { if (PI->first == Parent) { ParentValue = PI->second; break; } PhiInserter.AddAvailableValue(PI->first, PI->second); Dominator.addBlock(PI->first); } if (ParentValue) { Term->setCondition(ParentValue); } else { if (!Dominator.wasResultExplicitMentioned()) PhiInserter.AddAvailableValue(Dominator.getResult(), Default); Term->setCondition(PhiInserter.GetValueInMiddleOfBlock(Parent)); } } } /// \brief Remove all PHI values coming from "From" into "To" and remember /// them in DeletedPhis void AMDGPUStructurizeCFG::delPhiValues(BasicBlock *From, BasicBlock *To) { PhiMap &Map = DeletedPhis[To]; for (BasicBlock::iterator I = To->begin(), E = To->end(); I != E && isa<PHINode>(*I);) { PHINode &Phi = cast<PHINode>(*I++); while (Phi.getBasicBlockIndex(From) != -1) { Value *Deleted = Phi.removeIncomingValue(From, false); Map[&Phi].push_back(std::make_pair(From, Deleted)); } } } /// \brief Add a dummy PHI value as soon as we knew the new predecessor void AMDGPUStructurizeCFG::addPhiValues(BasicBlock *From, BasicBlock *To) { for (BasicBlock::iterator I = To->begin(), E = To->end(); I != E && isa<PHINode>(*I);) { PHINode &Phi = cast<PHINode>(*I++); Value *Undef = UndefValue::get(Phi.getType()); Phi.addIncoming(Undef, From); } AddedPhis[To].push_back(From); } /// \brief Add the real PHI value as soon as everything is set up void AMDGPUStructurizeCFG::setPhiValues() { SSAUpdater Updater; for (BB2BBVecMap::iterator AI = AddedPhis.begin(), AE = AddedPhis.end(); AI != AE; ++AI) { BasicBlock *To = AI->first; BBVector &From = AI->second; if (!DeletedPhis.count(To)) continue; PhiMap &Map = DeletedPhis[To]; for (PhiMap::iterator PI = Map.begin(), PE = Map.end(); PI != PE; ++PI) { PHINode *Phi = PI->first; Value *Undef = UndefValue::get(Phi->getType()); Updater.Initialize(Phi->getType(), ""); Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); Updater.AddAvailableValue(To, Undef); NearestCommonDominator Dominator(DT); Dominator.addBlock(To, false); for (BBValueVector::iterator VI = PI->second.begin(), VE = PI->second.end(); VI != VE; ++VI) { Updater.AddAvailableValue(VI->first, VI->second); Dominator.addBlock(VI->first); } if (!Dominator.wasResultExplicitMentioned()) Updater.AddAvailableValue(Dominator.getResult(), Undef); for (BBVector::iterator FI = From.begin(), FE = From.end(); FI != FE; ++FI) { int Idx = Phi->getBasicBlockIndex(*FI); assert(Idx != -1); Phi->setIncomingValue(Idx, Updater.GetValueAtEndOfBlock(*FI)); } } DeletedPhis.erase(To); } assert(DeletedPhis.empty()); } /// \brief Remove phi values from all successors and then remove the terminator. void AMDGPUStructurizeCFG::killTerminator(BasicBlock *BB) { TerminatorInst *Term = BB->getTerminator(); if (!Term) return; for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { delPhiValues(BB, *SI); } Term->eraseFromParent(); } /// \brief Let node exit(s) point to NewExit void AMDGPUStructurizeCFG::changeExit(RegionNode *Node, BasicBlock *NewExit, bool IncludeDominator) { if (Node->isSubRegion()) { Region *SubRegion = Node->getNodeAs<Region>(); BasicBlock *OldExit = SubRegion->getExit(); BasicBlock *Dominator = 0; // Find all the edges from the sub region to the exit for (pred_iterator I = pred_begin(OldExit), E = pred_end(OldExit); I != E;) { BasicBlock *BB = *I++; if (!SubRegion->contains(BB)) continue; // Modify the edges to point to the new exit delPhiValues(BB, OldExit); BB->getTerminator()->replaceUsesOfWith(OldExit, NewExit); addPhiValues(BB, NewExit); // Find the new dominator (if requested) if (IncludeDominator) { if (!Dominator) Dominator = BB; else Dominator = DT->findNearestCommonDominator(Dominator, BB); } } // Change the dominator (if requested) if (Dominator) DT->changeImmediateDominator(NewExit, Dominator); // Update the region info SubRegion->replaceExit(NewExit); } else { BasicBlock *BB = Node->getNodeAs<BasicBlock>(); killTerminator(BB); BranchInst::Create(NewExit, BB); addPhiValues(BB, NewExit); if (IncludeDominator) DT->changeImmediateDominator(NewExit, BB); } } /// \brief Create a new flow node and update dominator tree and region info BasicBlock *AMDGPUStructurizeCFG::getNextFlow(BasicBlock *Dominator) { LLVMContext &Context = Func->getContext(); BasicBlock *Insert = Order.empty() ? ParentRegion->getExit() : Order.back()->getEntry(); BasicBlock *Flow = BasicBlock::Create(Context, FlowBlockName, Func, Insert); DT->addNewBlock(Flow, Dominator); ParentRegion->getRegionInfo()->setRegionFor(Flow, ParentRegion); return Flow; } /// \brief Create a new or reuse the previous node as flow node BasicBlock *AMDGPUStructurizeCFG::needPrefix(bool NeedEmpty) { BasicBlock *Entry = PrevNode->getEntry(); if (!PrevNode->isSubRegion()) { killTerminator(Entry); if (!NeedEmpty || Entry->getFirstInsertionPt() == Entry->end()) return Entry; } // create a new flow node BasicBlock *Flow = getNextFlow(Entry); // and wire it up changeExit(PrevNode, Flow, true); PrevNode = ParentRegion->getBBNode(Flow); return Flow; } /// \brief Returns the region exit if possible, otherwise just a new flow node BasicBlock *AMDGPUStructurizeCFG::needPostfix(BasicBlock *Flow, bool ExitUseAllowed) { if (Order.empty() && ExitUseAllowed) { BasicBlock *Exit = ParentRegion->getExit(); DT->changeImmediateDominator(Exit, Flow); addPhiValues(Flow, Exit); return Exit; } return getNextFlow(Flow); } /// \brief Set the previous node void AMDGPUStructurizeCFG::setPrevNode(BasicBlock *BB) { PrevNode = ParentRegion->contains(BB) ? ParentRegion->getBBNode(BB) : 0; } /// \brief Does BB dominate all the predicates of Node ? bool AMDGPUStructurizeCFG::dominatesPredicates(BasicBlock *BB, RegionNode *Node) { BBPredicates &Preds = Predicates[Node->getEntry()]; for (BBPredicates::iterator PI = Preds.begin(), PE = Preds.end(); PI != PE; ++PI) { if (!DT->dominates(BB, PI->first)) return false; } return true; } /// \brief Can we predict that this node will always be called? bool AMDGPUStructurizeCFG::isPredictableTrue(RegionNode *Node) { BBPredicates &Preds = Predicates[Node->getEntry()]; bool Dominated = false; // Regionentry is always true if (PrevNode == 0) return true; for (BBPredicates::iterator I = Preds.begin(), E = Preds.end(); I != E; ++I) { if (I->second != BoolTrue) return false; if (!Dominated && DT->dominates(I->first, PrevNode->getEntry())) Dominated = true; } // TODO: The dominator check is too strict return Dominated; } /// Take one node from the order vector and wire it up void AMDGPUStructurizeCFG::wireFlow(bool ExitUseAllowed, BasicBlock *LoopEnd) { RegionNode *Node = Order.pop_back_val(); Visited.insert(Node->getEntry()); if (isPredictableTrue(Node)) { // Just a linear flow if (PrevNode) { changeExit(PrevNode, Node->getEntry(), true); } PrevNode = Node; } else { // Insert extra prefix node (or reuse last one) BasicBlock *Flow = needPrefix(false); // Insert extra postfix node (or use exit instead) BasicBlock *Entry = Node->getEntry(); BasicBlock *Next = needPostfix(Flow, ExitUseAllowed); // let it point to entry and next block Conditions.push_back(BranchInst::Create(Entry, Next, BoolUndef, Flow)); addPhiValues(Flow, Entry); DT->changeImmediateDominator(Entry, Flow); PrevNode = Node; while (!Order.empty() && !Visited.count(LoopEnd) && dominatesPredicates(Entry, Order.back())) { handleLoops(false, LoopEnd); } changeExit(PrevNode, Next, false); setPrevNode(Next); } } void AMDGPUStructurizeCFG::handleLoops(bool ExitUseAllowed, BasicBlock *LoopEnd) { RegionNode *Node = Order.back(); BasicBlock *LoopStart = Node->getEntry(); if (!Loops.count(LoopStart)) { wireFlow(ExitUseAllowed, LoopEnd); return; } if (!isPredictableTrue(Node)) LoopStart = needPrefix(true); LoopEnd = Loops[Node->getEntry()]; wireFlow(false, LoopEnd); while (!Visited.count(LoopEnd)) { handleLoops(false, LoopEnd); } // Create an extra loop end node LoopEnd = needPrefix(false); BasicBlock *Next = needPostfix(LoopEnd, ExitUseAllowed); LoopConds.push_back(BranchInst::Create(Next, LoopStart, BoolUndef, LoopEnd)); addPhiValues(LoopEnd, LoopStart); setPrevNode(Next); } /// After this function control flow looks like it should be, but /// branches and PHI nodes only have undefined conditions. void AMDGPUStructurizeCFG::createFlow() { BasicBlock *Exit = ParentRegion->getExit(); bool EntryDominatesExit = DT->dominates(ParentRegion->getEntry(), Exit); DeletedPhis.clear(); AddedPhis.clear(); Conditions.clear(); LoopConds.clear(); PrevNode = 0; Visited.clear(); while (!Order.empty()) { handleLoops(EntryDominatesExit, 0); } if (PrevNode) changeExit(PrevNode, Exit, EntryDominatesExit); else assert(EntryDominatesExit); } /// Handle a rare case where the disintegrated nodes instructions /// no longer dominate all their uses. Not sure if this is really nessasary void AMDGPUStructurizeCFG::rebuildSSA() { SSAUpdater Updater; for (Region::block_iterator I = ParentRegion->block_begin(), E = ParentRegion->block_end(); I != E; ++I) { BasicBlock *BB = *I; for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; ++II) { bool Initialized = false; for (Use *I = &II->use_begin().getUse(), *Next; I; I = Next) { Next = I->getNext(); Instruction *User = cast<Instruction>(I->getUser()); if (User->getParent() == BB) { continue; } else if (PHINode *UserPN = dyn_cast<PHINode>(User)) { if (UserPN->getIncomingBlock(*I) == BB) continue; } if (DT->dominates(II, User)) continue; if (!Initialized) { Value *Undef = UndefValue::get(II->getType()); Updater.Initialize(II->getType(), ""); Updater.AddAvailableValue(&Func->getEntryBlock(), Undef); Updater.AddAvailableValue(BB, II); Initialized = true; } Updater.RewriteUseAfterInsertions(*I); } } } } /// \brief Run the transformation for each region found bool AMDGPUStructurizeCFG::runOnRegion(Region *R, RGPassManager &RGM) { if (R->isTopLevelRegion()) return false; Func = R->getEntry()->getParent(); ParentRegion = R; DT = &getAnalysis<DominatorTree>(); orderNodes(); collectInfos(); createFlow(); insertConditions(false); insertConditions(true); setPhiValues(); rebuildSSA(); // Cleanup Order.clear(); Visited.clear(); DeletedPhis.clear(); AddedPhis.clear(); Predicates.clear(); Conditions.clear(); Loops.clear(); LoopPreds.clear(); LoopConds.clear(); return true; } /// \brief Create the pass Pass *llvm::createAMDGPUStructurizeCFGPass() { return new AMDGPUStructurizeCFG(); }