//===-- SIISelLowering.cpp - SI DAG Lowering Implementation ---------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // /// \file /// \brief Custom DAG lowering for SI // //===----------------------------------------------------------------------===// #include "SIISelLowering.h" #include "AMDIL.h" #include "AMDGPU.h" #include "AMDILIntrinsicInfo.h" #include "SIInstrInfo.h" #include "SIMachineFunctionInfo.h" #include "SIRegisterInfo.h" #include "llvm/IR/Function.h" #include "llvm/CodeGen/CallingConvLower.h" #include "llvm/CodeGen/MachineInstrBuilder.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/CodeGen/SelectionDAG.h" using namespace llvm; SITargetLowering::SITargetLowering(TargetMachine &TM) : AMDGPUTargetLowering(TM), TII(static_cast<const SIInstrInfo*>(TM.getInstrInfo())), TRI(TM.getRegisterInfo()) { addRegisterClass(MVT::i1, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::i64, &AMDGPU::SReg_64RegClass); addRegisterClass(MVT::v16i8, &AMDGPU::SReg_128RegClass); addRegisterClass(MVT::v32i8, &AMDGPU::SReg_256RegClass); addRegisterClass(MVT::v64i8, &AMDGPU::SReg_512RegClass); addRegisterClass(MVT::i32, &AMDGPU::VReg_32RegClass); addRegisterClass(MVT::f32, &AMDGPU::VReg_32RegClass); addRegisterClass(MVT::v1i32, &AMDGPU::VReg_32RegClass); addRegisterClass(MVT::v2i32, &AMDGPU::VReg_64RegClass); addRegisterClass(MVT::v2f32, &AMDGPU::VReg_64RegClass); addRegisterClass(MVT::v4i32, &AMDGPU::VReg_128RegClass); addRegisterClass(MVT::v4f32, &AMDGPU::VReg_128RegClass); addRegisterClass(MVT::v8i32, &AMDGPU::VReg_256RegClass); addRegisterClass(MVT::v8f32, &AMDGPU::VReg_256RegClass); addRegisterClass(MVT::v16i32, &AMDGPU::VReg_512RegClass); addRegisterClass(MVT::v16f32, &AMDGPU::VReg_512RegClass); computeRegisterProperties(); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8i32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v8f32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16i32, Expand); setOperationAction(ISD::VECTOR_SHUFFLE, MVT::v16f32, Expand); setOperationAction(ISD::ADD, MVT::i64, Legal); setOperationAction(ISD::ADD, MVT::i32, Legal); setOperationAction(ISD::SELECT_CC, MVT::f32, Custom); setOperationAction(ISD::SELECT_CC, MVT::i32, Custom); setOperationAction(ISD::SELECT_CC, MVT::Other, Expand); setTargetDAGCombine(ISD::SELECT_CC); setTargetDAGCombine(ISD::SETCC); setSchedulingPreference(Sched::Source); } SDValue SITargetLowering::LowerFormalArguments( SDValue Chain, CallingConv::ID CallConv, bool isVarArg, const SmallVectorImpl<ISD::InputArg> &Ins, DebugLoc DL, SelectionDAG &DAG, SmallVectorImpl<SDValue> &InVals) const { const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo(); MachineFunction &MF = DAG.getMachineFunction(); FunctionType *FType = MF.getFunction()->getFunctionType(); SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>(); assert(CallConv == CallingConv::C); SmallVector<ISD::InputArg, 16> Splits; uint32_t Skipped = 0; for (unsigned i = 0, e = Ins.size(), PSInputNum = 0; i != e; ++i) { const ISD::InputArg &Arg = Ins[i]; // First check if it's a PS input addr if (Info->ShaderType == ShaderType::PIXEL && !Arg.Flags.isInReg()) { assert((PSInputNum <= 15) && "Too many PS inputs!"); if (!Arg.Used) { // We can savely skip PS inputs Skipped |= 1 << i; ++PSInputNum; continue; } Info->PSInputAddr |= 1 << PSInputNum++; } // Second split vertices into their elements if (Arg.VT.isVector()) { ISD::InputArg NewArg = Arg; NewArg.Flags.setSplit(); NewArg.VT = Arg.VT.getVectorElementType(); // We REALLY want the ORIGINAL number of vertex elements here, e.g. a // three or five element vertex only needs three or five registers, // NOT four or eigth. Type *ParamType = FType->getParamType(Arg.OrigArgIndex); unsigned NumElements = ParamType->getVectorNumElements(); for (unsigned j = 0; j != NumElements; ++j) { Splits.push_back(NewArg); NewArg.PartOffset += NewArg.VT.getStoreSize(); } } else { Splits.push_back(Arg); } } SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CallConv, isVarArg, DAG.getMachineFunction(), getTargetMachine(), ArgLocs, *DAG.getContext()); // At least one interpolation mode must be enabled or else the GPU will hang. if (Info->ShaderType == ShaderType::PIXEL && (Info->PSInputAddr & 0x7F) == 0) { Info->PSInputAddr |= 1; CCInfo.AllocateReg(AMDGPU::VGPR0); CCInfo.AllocateReg(AMDGPU::VGPR1); } AnalyzeFormalArguments(CCInfo, Splits); for (unsigned i = 0, e = Ins.size(), ArgIdx = 0; i != e; ++i) { if (Skipped & (1 << i)) { InVals.push_back(SDValue()); continue; } CCValAssign &VA = ArgLocs[ArgIdx++]; assert(VA.isRegLoc() && "Parameter must be in a register!"); unsigned Reg = VA.getLocReg(); MVT VT = VA.getLocVT(); if (VT == MVT::i64) { // For now assume it is a pointer Reg = TRI->getMatchingSuperReg(Reg, AMDGPU::sub0, &AMDGPU::SReg_64RegClass); Reg = MF.addLiveIn(Reg, &AMDGPU::SReg_64RegClass); InVals.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT)); continue; } const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg, VT); Reg = MF.addLiveIn(Reg, RC); SDValue Val = DAG.getCopyFromReg(Chain, DL, Reg, VT); const ISD::InputArg &Arg = Ins[i]; if (Arg.VT.isVector()) { // Build a vector from the registers Type *ParamType = FType->getParamType(Arg.OrigArgIndex); unsigned NumElements = ParamType->getVectorNumElements(); SmallVector<SDValue, 4> Regs; Regs.push_back(Val); for (unsigned j = 1; j != NumElements; ++j) { Reg = ArgLocs[ArgIdx++].getLocReg(); Reg = MF.addLiveIn(Reg, RC); Regs.push_back(DAG.getCopyFromReg(Chain, DL, Reg, VT)); } // Fill up the missing vector elements NumElements = Arg.VT.getVectorNumElements() - NumElements; for (unsigned j = 0; j != NumElements; ++j) Regs.push_back(DAG.getUNDEF(VT)); InVals.push_back(DAG.getNode(ISD::BUILD_VECTOR, DL, Arg.VT, Regs.data(), Regs.size())); continue; } InVals.push_back(Val); } return Chain; } MachineBasicBlock * SITargetLowering::EmitInstrWithCustomInserter( MachineInstr * MI, MachineBasicBlock * BB) const { MachineRegisterInfo & MRI = BB->getParent()->getRegInfo(); MachineBasicBlock::iterator I = MI; switch (MI->getOpcode()) { default: return AMDGPUTargetLowering::EmitInstrWithCustomInserter(MI, BB); case AMDGPU::BRANCH: return BB; case AMDGPU::SI_WQM: LowerSI_WQM(MI, *BB, I, MRI); break; } return BB; } void SITargetLowering::LowerSI_WQM(MachineInstr *MI, MachineBasicBlock &BB, MachineBasicBlock::iterator I, MachineRegisterInfo & MRI) const { BuildMI(BB, I, BB.findDebugLoc(I), TII->get(AMDGPU::S_WQM_B64), AMDGPU::EXEC) .addReg(AMDGPU::EXEC); MI->eraseFromParent(); } EVT SITargetLowering::getSetCCResultType(EVT VT) const { return MVT::i1; } MVT SITargetLowering::getScalarShiftAmountTy(EVT VT) const { return MVT::i32; } //===----------------------------------------------------------------------===// // Custom DAG Lowering Operations //===----------------------------------------------------------------------===// SDValue SITargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const { switch (Op.getOpcode()) { default: return AMDGPUTargetLowering::LowerOperation(Op, DAG); case ISD::BRCOND: return LowerBRCOND(Op, DAG); case ISD::SELECT_CC: return LowerSELECT_CC(Op, DAG); } return SDValue(); } /// \brief Helper function for LowerBRCOND static SDNode *findUser(SDValue Value, unsigned Opcode) { SDNode *Parent = Value.getNode(); for (SDNode::use_iterator I = Parent->use_begin(), E = Parent->use_end(); I != E; ++I) { if (I.getUse().get() != Value) continue; if (I->getOpcode() == Opcode) return *I; } return 0; } /// This transforms the control flow intrinsics to get the branch destination as /// last parameter, also switches branch target with BR if the need arise SDValue SITargetLowering::LowerBRCOND(SDValue BRCOND, SelectionDAG &DAG) const { DebugLoc DL = BRCOND.getDebugLoc(); SDNode *Intr = BRCOND.getOperand(1).getNode(); SDValue Target = BRCOND.getOperand(2); SDNode *BR = 0; if (Intr->getOpcode() == ISD::SETCC) { // As long as we negate the condition everything is fine SDNode *SetCC = Intr; assert(SetCC->getConstantOperandVal(1) == 1); assert(cast<CondCodeSDNode>(SetCC->getOperand(2).getNode())->get() == ISD::SETNE); Intr = SetCC->getOperand(0).getNode(); } else { // Get the target from BR if we don't negate the condition BR = findUser(BRCOND, ISD::BR); Target = BR->getOperand(1); } assert(Intr->getOpcode() == ISD::INTRINSIC_W_CHAIN); // Build the result and SmallVector<EVT, 4> Res; for (unsigned i = 1, e = Intr->getNumValues(); i != e; ++i) Res.push_back(Intr->getValueType(i)); // operands of the new intrinsic call SmallVector<SDValue, 4> Ops; Ops.push_back(BRCOND.getOperand(0)); for (unsigned i = 1, e = Intr->getNumOperands(); i != e; ++i) Ops.push_back(Intr->getOperand(i)); Ops.push_back(Target); // build the new intrinsic call SDNode *Result = DAG.getNode( Res.size() > 1 ? ISD::INTRINSIC_W_CHAIN : ISD::INTRINSIC_VOID, DL, DAG.getVTList(Res.data(), Res.size()), Ops.data(), Ops.size()).getNode(); if (BR) { // Give the branch instruction our target SDValue Ops[] = { BR->getOperand(0), BRCOND.getOperand(2) }; DAG.MorphNodeTo(BR, ISD::BR, BR->getVTList(), Ops, 2); } SDValue Chain = SDValue(Result, Result->getNumValues() - 1); // Copy the intrinsic results to registers for (unsigned i = 1, e = Intr->getNumValues() - 1; i != e; ++i) { SDNode *CopyToReg = findUser(SDValue(Intr, i), ISD::CopyToReg); if (!CopyToReg) continue; Chain = DAG.getCopyToReg( Chain, DL, CopyToReg->getOperand(1), SDValue(Result, i - 1), SDValue()); DAG.ReplaceAllUsesWith(SDValue(CopyToReg, 0), CopyToReg->getOperand(0)); } // Remove the old intrinsic from the chain DAG.ReplaceAllUsesOfValueWith( SDValue(Intr, Intr->getNumValues() - 1), Intr->getOperand(0)); return Chain; } SDValue SITargetLowering::LowerSELECT_CC(SDValue Op, SelectionDAG &DAG) const { SDValue LHS = Op.getOperand(0); SDValue RHS = Op.getOperand(1); SDValue True = Op.getOperand(2); SDValue False = Op.getOperand(3); SDValue CC = Op.getOperand(4); EVT VT = Op.getValueType(); DebugLoc DL = Op.getDebugLoc(); // Possible Min/Max pattern SDValue MinMax = LowerMinMax(Op, DAG); if (MinMax.getNode()) { return MinMax; } SDValue Cond = DAG.getNode(ISD::SETCC, DL, MVT::i1, LHS, RHS, CC); return DAG.getNode(ISD::SELECT, DL, VT, Cond, True, False); } //===----------------------------------------------------------------------===// // Custom DAG optimizations //===----------------------------------------------------------------------===// SDValue SITargetLowering::PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const { SelectionDAG &DAG = DCI.DAG; DebugLoc DL = N->getDebugLoc(); EVT VT = N->getValueType(0); switch (N->getOpcode()) { default: break; case ISD::SELECT_CC: { N->dump(); ConstantSDNode *True, *False; // i1 selectcc(l, r, -1, 0, cc) -> i1 setcc(l, r, cc) if ((True = dyn_cast<ConstantSDNode>(N->getOperand(2))) && (False = dyn_cast<ConstantSDNode>(N->getOperand(3))) && True->isAllOnesValue() && False->isNullValue() && VT == MVT::i1) { return DAG.getNode(ISD::SETCC, DL, VT, N->getOperand(0), N->getOperand(1), N->getOperand(4)); } break; } case ISD::SETCC: { SDValue Arg0 = N->getOperand(0); SDValue Arg1 = N->getOperand(1); SDValue CC = N->getOperand(2); ConstantSDNode * C = NULL; ISD::CondCode CCOp = dyn_cast<CondCodeSDNode>(CC)->get(); // i1 setcc (sext(i1), 0, setne) -> i1 setcc(i1, 0, setne) if (VT == MVT::i1 && Arg0.getOpcode() == ISD::SIGN_EXTEND && Arg0.getOperand(0).getValueType() == MVT::i1 && (C = dyn_cast<ConstantSDNode>(Arg1)) && C->isNullValue() && CCOp == ISD::SETNE) { return SimplifySetCC(VT, Arg0.getOperand(0), DAG.getConstant(0, MVT::i1), CCOp, true, DCI, DL); } break; } } return SDValue(); } /// \brief Test if RegClass is one of the VSrc classes static bool isVSrc(unsigned RegClass) { return AMDGPU::VSrc_32RegClassID == RegClass || AMDGPU::VSrc_64RegClassID == RegClass; } /// \brief Test if RegClass is one of the SSrc classes static bool isSSrc(unsigned RegClass) { return AMDGPU::SSrc_32RegClassID == RegClass || AMDGPU::SSrc_64RegClassID == RegClass; } /// \brief Analyze the possible immediate value Op /// /// Returns -1 if it isn't an immediate, 0 if it's and inline immediate /// and the immediate value if it's a literal immediate int32_t SITargetLowering::analyzeImmediate(const SDNode *N) const { union { int32_t I; float F; } Imm; if (const ConstantSDNode *Node = dyn_cast<ConstantSDNode>(N)) Imm.I = Node->getSExtValue(); else if (const ConstantFPSDNode *Node = dyn_cast<ConstantFPSDNode>(N)) Imm.F = Node->getValueAPF().convertToFloat(); else return -1; // It isn't an immediate if ((Imm.I >= -16 && Imm.I <= 64) || Imm.F == 0.5f || Imm.F == -0.5f || Imm.F == 1.0f || Imm.F == -1.0f || Imm.F == 2.0f || Imm.F == -2.0f || Imm.F == 4.0f || Imm.F == -4.0f) return 0; // It's an inline immediate return Imm.I; // It's a literal immediate } /// \brief Try to fold an immediate directly into an instruction bool SITargetLowering::foldImm(SDValue &Operand, int32_t &Immediate, bool &ScalarSlotUsed) const { MachineSDNode *Mov = dyn_cast<MachineSDNode>(Operand); if (Mov == 0 || !TII->isMov(Mov->getMachineOpcode())) return false; const SDValue &Op = Mov->getOperand(0); int32_t Value = analyzeImmediate(Op.getNode()); if (Value == -1) { // Not an immediate at all return false; } else if (Value == 0) { // Inline immediates can always be fold Operand = Op; return true; } else if (Value == Immediate) { // Already fold literal immediate Operand = Op; return true; } else if (!ScalarSlotUsed && !Immediate) { // Fold this literal immediate ScalarSlotUsed = true; Immediate = Value; Operand = Op; return true; } return false; } /// \brief Does "Op" fit into register class "RegClass" ? bool SITargetLowering::fitsRegClass(SelectionDAG &DAG, SDValue &Op, unsigned RegClass) const { MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo(); SDNode *Node = Op.getNode(); int OpClass; if (MachineSDNode *MN = dyn_cast<MachineSDNode>(Node)) { const MCInstrDesc &Desc = TII->get(MN->getMachineOpcode()); OpClass = Desc.OpInfo[Op.getResNo()].RegClass; } else if (Node->getOpcode() == ISD::CopyFromReg) { RegisterSDNode *Reg = cast<RegisterSDNode>(Node->getOperand(1).getNode()); OpClass = MRI.getRegClass(Reg->getReg())->getID(); } else return false; if (OpClass == -1) return false; return TRI->getRegClass(RegClass)->hasSubClassEq(TRI->getRegClass(OpClass)); } /// \brief Make sure that we don't exeed the number of allowed scalars void SITargetLowering::ensureSRegLimit(SelectionDAG &DAG, SDValue &Operand, unsigned RegClass, bool &ScalarSlotUsed) const { // First map the operands register class to a destination class if (RegClass == AMDGPU::VSrc_32RegClassID) RegClass = AMDGPU::VReg_32RegClassID; else if (RegClass == AMDGPU::VSrc_64RegClassID) RegClass = AMDGPU::VReg_64RegClassID; else return; // Nothing todo if they fit naturaly if (fitsRegClass(DAG, Operand, RegClass)) return; // If the scalar slot isn't used yet use it now if (!ScalarSlotUsed) { ScalarSlotUsed = true; return; } // This is a conservative aproach, it is possible that we can't determine // the correct register class and copy too often, but better save than sorry. SDValue RC = DAG.getTargetConstant(RegClass, MVT::i32); SDNode *Node = DAG.getMachineNode(TargetOpcode::COPY_TO_REGCLASS, DebugLoc(), Operand.getValueType(), Operand, RC); Operand = SDValue(Node, 0); } SDNode *SITargetLowering::PostISelFolding(MachineSDNode *Node, SelectionDAG &DAG) const { // Original encoding (either e32 or e64) int Opcode = Node->getMachineOpcode(); const MCInstrDesc *Desc = &TII->get(Opcode); unsigned NumDefs = Desc->getNumDefs(); unsigned NumOps = Desc->getNumOperands(); // e64 version if available, -1 otherwise int OpcodeE64 = AMDGPU::getVOPe64(Opcode); const MCInstrDesc *DescE64 = OpcodeE64 == -1 ? 0 : &TII->get(OpcodeE64); assert(!DescE64 || DescE64->getNumDefs() == NumDefs); assert(!DescE64 || DescE64->getNumOperands() == (NumOps + 4)); int32_t Immediate = Desc->getSize() == 4 ? 0 : -1; bool HaveVSrc = false, HaveSSrc = false; // First figure out what we alread have in this instruction for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs; i != e && Op < NumOps; ++i, ++Op) { unsigned RegClass = Desc->OpInfo[Op].RegClass; if (isVSrc(RegClass)) HaveVSrc = true; else if (isSSrc(RegClass)) HaveSSrc = true; else continue; int32_t Imm = analyzeImmediate(Node->getOperand(i).getNode()); if (Imm != -1 && Imm != 0) { // Literal immediate Immediate = Imm; } } // If we neither have VSrc nor SSrc it makes no sense to continue if (!HaveVSrc && !HaveSSrc) return Node; // No scalar allowed when we have both VSrc and SSrc bool ScalarSlotUsed = HaveVSrc && HaveSSrc; // Second go over the operands and try to fold them std::vector<SDValue> Ops; bool Promote2e64 = false; for (unsigned i = 0, e = Node->getNumOperands(), Op = NumDefs; i != e && Op < NumOps; ++i, ++Op) { const SDValue &Operand = Node->getOperand(i); Ops.push_back(Operand); // Already folded immediate ? if (isa<ConstantSDNode>(Operand.getNode()) || isa<ConstantFPSDNode>(Operand.getNode())) continue; // Is this a VSrc or SSrc operand ? unsigned RegClass = Desc->OpInfo[Op].RegClass; if (!isVSrc(RegClass) && !isSSrc(RegClass)) { if (i == 1 && Desc->isCommutable() && fitsRegClass(DAG, Ops[0], RegClass) && foldImm(Ops[1], Immediate, ScalarSlotUsed)) { assert(isVSrc(Desc->OpInfo[NumDefs].RegClass) || isSSrc(Desc->OpInfo[NumDefs].RegClass)); // Swap commutable operands SDValue Tmp = Ops[1]; Ops[1] = Ops[0]; Ops[0] = Tmp; } else if (DescE64 && !Immediate) { // Test if it makes sense to switch to e64 encoding RegClass = DescE64->OpInfo[Op].RegClass; int32_t TmpImm = -1; if ((isVSrc(RegClass) || isSSrc(RegClass)) && foldImm(Ops[i], TmpImm, ScalarSlotUsed)) { Immediate = -1; Promote2e64 = true; Desc = DescE64; DescE64 = 0; } } continue; } // Try to fold the immediates if (!foldImm(Ops[i], Immediate, ScalarSlotUsed)) { // Folding didn't worked, make sure we don't hit the SReg limit ensureSRegLimit(DAG, Ops[i], RegClass, ScalarSlotUsed); } } if (Promote2e64) { // Add the modifier flags while promoting for (unsigned i = 0; i < 4; ++i) Ops.push_back(DAG.getTargetConstant(0, MVT::i32)); } // Add optional chain and glue for (unsigned i = NumOps - NumDefs, e = Node->getNumOperands(); i < e; ++i) Ops.push_back(Node->getOperand(i)); // Either create a complete new or update the current instruction if (Promote2e64) return DAG.getMachineNode(OpcodeE64, Node->getDebugLoc(), Node->getVTList(), Ops.data(), Ops.size()); else return DAG.UpdateNodeOperands(Node, Ops.data(), Ops.size()); }