//===-- X86FastISel.cpp - X86 FastISel implementation ---------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines the X86-specific support for the FastISel class. Much // of the target-specific code is generated by tablegen in the file // X86GenFastISel.inc, which is #included here. // //===----------------------------------------------------------------------===// #include "X86.h" #include "X86ISelLowering.h" #include "X86InstrBuilder.h" #include "X86RegisterInfo.h" #include "X86Subtarget.h" #include "X86TargetMachine.h" #include "llvm/CodeGen/Analysis.h" #include "llvm/CodeGen/FastISel.h" #include "llvm/CodeGen/FunctionLoweringInfo.h" #include "llvm/CodeGen/MachineConstantPool.h" #include "llvm/CodeGen/MachineFrameInfo.h" #include "llvm/CodeGen/MachineRegisterInfo.h" #include "llvm/IR/CallingConv.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/GlobalAlias.h" #include "llvm/IR/GlobalVariable.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/IR/Operator.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/ErrorHandling.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Target/TargetOptions.h" using namespace llvm; namespace { class X86FastISel : public FastISel { /// Subtarget - Keep a pointer to the X86Subtarget around so that we can /// make the right decision when generating code for different targets. const X86Subtarget *Subtarget; /// RegInfo - X86 register info. /// const X86RegisterInfo *RegInfo; /// X86ScalarSSEf32, X86ScalarSSEf64 - Select between SSE or x87 /// floating point ops. /// When SSE is available, use it for f32 operations. /// When SSE2 is available, use it for f64 operations. bool X86ScalarSSEf64; bool X86ScalarSSEf32; public: explicit X86FastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) : FastISel(funcInfo, libInfo) { Subtarget = &TM.getSubtarget<X86Subtarget>(); X86ScalarSSEf64 = Subtarget->hasSSE2(); X86ScalarSSEf32 = Subtarget->hasSSE1(); RegInfo = static_cast<const X86RegisterInfo*>(TM.getRegisterInfo()); } virtual bool TargetSelectInstruction(const Instruction *I); /// TryToFoldLoad - The specified machine instr operand is a vreg, and that /// vreg is being provided by the specified load instruction. If possible, /// try to fold the load as an operand to the instruction, returning true if /// possible. virtual bool TryToFoldLoad(MachineInstr *MI, unsigned OpNo, const LoadInst *LI); virtual bool FastLowerArguments(); #include "X86GenFastISel.inc" private: bool X86FastEmitCompare(const Value *LHS, const Value *RHS, EVT VT); bool X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &RR); bool X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM); bool X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM); bool X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg); bool X86SelectAddress(const Value *V, X86AddressMode &AM); bool X86SelectCallAddress(const Value *V, X86AddressMode &AM); bool X86SelectLoad(const Instruction *I); bool X86SelectStore(const Instruction *I); bool X86SelectRet(const Instruction *I); bool X86SelectCmp(const Instruction *I); bool X86SelectZExt(const Instruction *I); bool X86SelectBranch(const Instruction *I); bool X86SelectShift(const Instruction *I); bool X86SelectSelect(const Instruction *I); bool X86SelectTrunc(const Instruction *I); bool X86SelectFPExt(const Instruction *I); bool X86SelectFPTrunc(const Instruction *I); bool X86VisitIntrinsicCall(const IntrinsicInst &I); bool X86SelectCall(const Instruction *I); bool DoSelectCall(const Instruction *I, const char *MemIntName); const X86InstrInfo *getInstrInfo() const { return getTargetMachine()->getInstrInfo(); } const X86TargetMachine *getTargetMachine() const { return static_cast<const X86TargetMachine *>(&TM); } unsigned TargetMaterializeConstant(const Constant *C); unsigned TargetMaterializeAlloca(const AllocaInst *C); unsigned TargetMaterializeFloatZero(const ConstantFP *CF); /// isScalarFPTypeInSSEReg - Return true if the specified scalar FP type is /// computed in an SSE register, not on the X87 floating point stack. bool isScalarFPTypeInSSEReg(EVT VT) const { return (VT == MVT::f64 && X86ScalarSSEf64) || // f64 is when SSE2 (VT == MVT::f32 && X86ScalarSSEf32); // f32 is when SSE1 } bool isTypeLegal(Type *Ty, MVT &VT, bool AllowI1 = false); bool IsMemcpySmall(uint64_t Len); bool TryEmitSmallMemcpy(X86AddressMode DestAM, X86AddressMode SrcAM, uint64_t Len); }; } // end anonymous namespace. bool X86FastISel::isTypeLegal(Type *Ty, MVT &VT, bool AllowI1) { EVT evt = TLI.getValueType(Ty, /*HandleUnknown=*/true); if (evt == MVT::Other || !evt.isSimple()) // Unhandled type. Halt "fast" selection and bail. return false; VT = evt.getSimpleVT(); // For now, require SSE/SSE2 for performing floating-point operations, // since x87 requires additional work. if (VT == MVT::f64 && !X86ScalarSSEf64) return false; if (VT == MVT::f32 && !X86ScalarSSEf32) return false; // Similarly, no f80 support yet. if (VT == MVT::f80) return false; // We only handle legal types. For example, on x86-32 the instruction // selector contains all of the 64-bit instructions from x86-64, // under the assumption that i64 won't be used if the target doesn't // support it. return (AllowI1 && VT == MVT::i1) || TLI.isTypeLegal(VT); } #include "X86GenCallingConv.inc" /// X86FastEmitLoad - Emit a machine instruction to load a value of type VT. /// The address is either pre-computed, i.e. Ptr, or a GlobalAddress, i.e. GV. /// Return true and the result register by reference if it is possible. bool X86FastISel::X86FastEmitLoad(EVT VT, const X86AddressMode &AM, unsigned &ResultReg) { // Get opcode and regclass of the output for the given load instruction. unsigned Opc = 0; const TargetRegisterClass *RC = NULL; switch (VT.getSimpleVT().SimpleTy) { default: return false; case MVT::i1: case MVT::i8: Opc = X86::MOV8rm; RC = &X86::GR8RegClass; break; case MVT::i16: Opc = X86::MOV16rm; RC = &X86::GR16RegClass; break; case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; case MVT::i64: // Must be in x86-64 mode. Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; case MVT::f32: if (X86ScalarSSEf32) { Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; RC = &X86::FR32RegClass; } else { Opc = X86::LD_Fp32m; RC = &X86::RFP32RegClass; } break; case MVT::f64: if (X86ScalarSSEf64) { Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; RC = &X86::FR64RegClass; } else { Opc = X86::LD_Fp64m; RC = &X86::RFP64RegClass; } break; case MVT::f80: // No f80 support yet. return false; } ResultReg = createResultReg(RC); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg), AM); return true; } /// X86FastEmitStore - Emit a machine instruction to store a value Val of /// type VT. The address is either pre-computed, consisted of a base ptr, Ptr /// and a displacement offset, or a GlobalAddress, /// i.e. V. Return true if it is possible. bool X86FastISel::X86FastEmitStore(EVT VT, unsigned Val, const X86AddressMode &AM) { // Get opcode and regclass of the output for the given store instruction. unsigned Opc = 0; switch (VT.getSimpleVT().SimpleTy) { case MVT::f80: // No f80 support yet. default: return false; case MVT::i1: { // Mask out all but lowest bit. unsigned AndResult = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::AND8ri), AndResult).addReg(Val).addImm(1); Val = AndResult; } // FALLTHROUGH, handling i1 as i8. case MVT::i8: Opc = X86::MOV8mr; break; case MVT::i16: Opc = X86::MOV16mr; break; case MVT::i32: Opc = X86::MOV32mr; break; case MVT::i64: Opc = X86::MOV64mr; break; // Must be in x86-64 mode. case MVT::f32: Opc = X86ScalarSSEf32 ? (Subtarget->hasAVX() ? X86::VMOVSSmr : X86::MOVSSmr) : X86::ST_Fp32m; break; case MVT::f64: Opc = X86ScalarSSEf64 ? (Subtarget->hasAVX() ? X86::VMOVSDmr : X86::MOVSDmr) : X86::ST_Fp64m; break; case MVT::v4f32: Opc = X86::MOVAPSmr; break; case MVT::v2f64: Opc = X86::MOVAPDmr; break; case MVT::v4i32: case MVT::v2i64: case MVT::v8i16: case MVT::v16i8: Opc = X86::MOVDQAmr; break; } addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)), AM).addReg(Val); return true; } bool X86FastISel::X86FastEmitStore(EVT VT, const Value *Val, const X86AddressMode &AM) { // Handle 'null' like i32/i64 0. if (isa<ConstantPointerNull>(Val)) Val = Constant::getNullValue(TD.getIntPtrType(Val->getContext())); // If this is a store of a simple constant, fold the constant into the store. if (const ConstantInt *CI = dyn_cast<ConstantInt>(Val)) { unsigned Opc = 0; bool Signed = true; switch (VT.getSimpleVT().SimpleTy) { default: break; case MVT::i1: Signed = false; // FALLTHROUGH to handle as i8. case MVT::i8: Opc = X86::MOV8mi; break; case MVT::i16: Opc = X86::MOV16mi; break; case MVT::i32: Opc = X86::MOV32mi; break; case MVT::i64: // Must be a 32-bit sign extended value. if (isInt<32>(CI->getSExtValue())) Opc = X86::MOV64mi32; break; } if (Opc) { addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)), AM) .addImm(Signed ? (uint64_t) CI->getSExtValue() : CI->getZExtValue()); return true; } } unsigned ValReg = getRegForValue(Val); if (ValReg == 0) return false; return X86FastEmitStore(VT, ValReg, AM); } /// X86FastEmitExtend - Emit a machine instruction to extend a value Src of /// type SrcVT to type DstVT using the specified extension opcode Opc (e.g. /// ISD::SIGN_EXTEND). bool X86FastISel::X86FastEmitExtend(ISD::NodeType Opc, EVT DstVT, unsigned Src, EVT SrcVT, unsigned &ResultReg) { unsigned RR = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Opc, Src, /*TODO: Kill=*/false); if (RR == 0) return false; ResultReg = RR; return true; } /// X86SelectAddress - Attempt to fill in an address from the given value. /// bool X86FastISel::X86SelectAddress(const Value *V, X86AddressMode &AM) { const User *U = NULL; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast<Instruction>(V)) { // Don't walk into other basic blocks; it's possible we haven't // visited them yet, so the instructions may not yet be assigned // virtual registers. if (FuncInfo.StaticAllocaMap.count(static_cast<const AllocaInst *>(V)) || FuncInfo.MBBMap[I->getParent()] == FuncInfo.MBB) { Opcode = I->getOpcode(); U = I; } } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { Opcode = C->getOpcode(); U = C; } if (PointerType *Ty = dyn_cast<PointerType>(V->getType())) if (Ty->getAddressSpace() > 255) // Fast instruction selection doesn't support the special // address spaces. return false; switch (Opcode) { default: break; case Instruction::BitCast: // Look past bitcasts. return X86SelectAddress(U->getOperand(0), AM); case Instruction::IntToPtr: // Look past no-op inttoptrs. if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) return X86SelectAddress(U->getOperand(0), AM); break; case Instruction::PtrToInt: // Look past no-op ptrtoints. if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) return X86SelectAddress(U->getOperand(0), AM); break; case Instruction::Alloca: { // Do static allocas. const AllocaInst *A = cast<AllocaInst>(V); DenseMap<const AllocaInst*, int>::iterator SI = FuncInfo.StaticAllocaMap.find(A); if (SI != FuncInfo.StaticAllocaMap.end()) { AM.BaseType = X86AddressMode::FrameIndexBase; AM.Base.FrameIndex = SI->second; return true; } break; } case Instruction::Add: { // Adds of constants are common and easy enough. if (const ConstantInt *CI = dyn_cast<ConstantInt>(U->getOperand(1))) { uint64_t Disp = (int32_t)AM.Disp + (uint64_t)CI->getSExtValue(); // They have to fit in the 32-bit signed displacement field though. if (isInt<32>(Disp)) { AM.Disp = (uint32_t)Disp; return X86SelectAddress(U->getOperand(0), AM); } } break; } case Instruction::GetElementPtr: { X86AddressMode SavedAM = AM; // Pattern-match simple GEPs. uint64_t Disp = (int32_t)AM.Disp; unsigned IndexReg = AM.IndexReg; unsigned Scale = AM.Scale; gep_type_iterator GTI = gep_type_begin(U); // Iterate through the indices, folding what we can. Constants can be // folded, and one dynamic index can be handled, if the scale is supported. for (User::const_op_iterator i = U->op_begin() + 1, e = U->op_end(); i != e; ++i, ++GTI) { const Value *Op = *i; if (StructType *STy = dyn_cast<StructType>(*GTI)) { const StructLayout *SL = TD.getStructLayout(STy); Disp += SL->getElementOffset(cast<ConstantInt>(Op)->getZExtValue()); continue; } // A array/variable index is always of the form i*S where S is the // constant scale size. See if we can push the scale into immediates. uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType()); for (;;) { if (const ConstantInt *CI = dyn_cast<ConstantInt>(Op)) { // Constant-offset addressing. Disp += CI->getSExtValue() * S; break; } if (isa<AddOperator>(Op) && (!isa<Instruction>(Op) || FuncInfo.MBBMap[cast<Instruction>(Op)->getParent()] == FuncInfo.MBB) && isa<ConstantInt>(cast<AddOperator>(Op)->getOperand(1))) { // An add (in the same block) with a constant operand. Fold the // constant. ConstantInt *CI = cast<ConstantInt>(cast<AddOperator>(Op)->getOperand(1)); Disp += CI->getSExtValue() * S; // Iterate on the other operand. Op = cast<AddOperator>(Op)->getOperand(0); continue; } if (IndexReg == 0 && (!AM.GV || !Subtarget->isPICStyleRIPRel()) && (S == 1 || S == 2 || S == 4 || S == 8)) { // Scaled-index addressing. Scale = S; IndexReg = getRegForGEPIndex(Op).first; if (IndexReg == 0) return false; break; } // Unsupported. goto unsupported_gep; } } // Check for displacement overflow. if (!isInt<32>(Disp)) break; // Ok, the GEP indices were covered by constant-offset and scaled-index // addressing. Update the address state and move on to examining the base. AM.IndexReg = IndexReg; AM.Scale = Scale; AM.Disp = (uint32_t)Disp; if (X86SelectAddress(U->getOperand(0), AM)) return true; // If we couldn't merge the gep value into this addr mode, revert back to // our address and just match the value instead of completely failing. AM = SavedAM; break; unsupported_gep: // Ok, the GEP indices weren't all covered. break; } } // Handle constant address. if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { // Can't handle alternate code models yet. if (TM.getCodeModel() != CodeModel::Small) return false; // Can't handle TLS yet. if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) if (GVar->isThreadLocal()) return false; // Can't handle TLS yet, part 2 (this is slightly crazy, but this is how // it works...). if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV)) if (const GlobalVariable *GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false))) if (GVar->isThreadLocal()) return false; // RIP-relative addresses can't have additional register operands, so if // we've already folded stuff into the addressing mode, just force the // global value into its own register, which we can use as the basereg. if (!Subtarget->isPICStyleRIPRel() || (AM.Base.Reg == 0 && AM.IndexReg == 0)) { // Okay, we've committed to selecting this global. Set up the address. AM.GV = GV; // Allow the subtarget to classify the global. unsigned char GVFlags = Subtarget->ClassifyGlobalReference(GV, TM); // If this reference is relative to the pic base, set it now. if (isGlobalRelativeToPICBase(GVFlags)) { // FIXME: How do we know Base.Reg is free?? AM.Base.Reg = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); } // Unless the ABI requires an extra load, return a direct reference to // the global. if (!isGlobalStubReference(GVFlags)) { if (Subtarget->isPICStyleRIPRel()) { // Use rip-relative addressing if we can. Above we verified that the // base and index registers are unused. assert(AM.Base.Reg == 0 && AM.IndexReg == 0); AM.Base.Reg = X86::RIP; } AM.GVOpFlags = GVFlags; return true; } // Ok, we need to do a load from a stub. If we've already loaded from // this stub, reuse the loaded pointer, otherwise emit the load now. DenseMap<const Value*, unsigned>::iterator I = LocalValueMap.find(V); unsigned LoadReg; if (I != LocalValueMap.end() && I->second != 0) { LoadReg = I->second; } else { // Issue load from stub. unsigned Opc = 0; const TargetRegisterClass *RC = NULL; X86AddressMode StubAM; StubAM.Base.Reg = AM.Base.Reg; StubAM.GV = GV; StubAM.GVOpFlags = GVFlags; // Prepare for inserting code in the local-value area. SavePoint SaveInsertPt = enterLocalValueArea(); if (TLI.getPointerTy() == MVT::i64) { Opc = X86::MOV64rm; RC = &X86::GR64RegClass; if (Subtarget->isPICStyleRIPRel()) StubAM.Base.Reg = X86::RIP; } else { Opc = X86::MOV32rm; RC = &X86::GR32RegClass; } LoadReg = createResultReg(RC); MachineInstrBuilder LoadMI = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), LoadReg); addFullAddress(LoadMI, StubAM); // Ok, back to normal mode. leaveLocalValueArea(SaveInsertPt); // Prevent loading GV stub multiple times in same MBB. LocalValueMap[V] = LoadReg; } // Now construct the final address. Note that the Disp, Scale, // and Index values may already be set here. AM.Base.Reg = LoadReg; AM.GV = 0; return true; } } // If all else fails, try to materialize the value in a register. if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { if (AM.Base.Reg == 0) { AM.Base.Reg = getRegForValue(V); return AM.Base.Reg != 0; } if (AM.IndexReg == 0) { assert(AM.Scale == 1 && "Scale with no index!"); AM.IndexReg = getRegForValue(V); return AM.IndexReg != 0; } } return false; } /// X86SelectCallAddress - Attempt to fill in an address from the given value. /// bool X86FastISel::X86SelectCallAddress(const Value *V, X86AddressMode &AM) { const User *U = NULL; unsigned Opcode = Instruction::UserOp1; if (const Instruction *I = dyn_cast<Instruction>(V)) { Opcode = I->getOpcode(); U = I; } else if (const ConstantExpr *C = dyn_cast<ConstantExpr>(V)) { Opcode = C->getOpcode(); U = C; } switch (Opcode) { default: break; case Instruction::BitCast: // Look past bitcasts. return X86SelectCallAddress(U->getOperand(0), AM); case Instruction::IntToPtr: // Look past no-op inttoptrs. if (TLI.getValueType(U->getOperand(0)->getType()) == TLI.getPointerTy()) return X86SelectCallAddress(U->getOperand(0), AM); break; case Instruction::PtrToInt: // Look past no-op ptrtoints. if (TLI.getValueType(U->getType()) == TLI.getPointerTy()) return X86SelectCallAddress(U->getOperand(0), AM); break; } // Handle constant address. if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) { // Can't handle alternate code models yet. if (TM.getCodeModel() != CodeModel::Small) return false; // RIP-relative addresses can't have additional register operands. if (Subtarget->isPICStyleRIPRel() && (AM.Base.Reg != 0 || AM.IndexReg != 0)) return false; // Can't handle DLLImport. if (GV->hasDLLImportLinkage()) return false; // Can't handle TLS. if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) if (GVar->isThreadLocal()) return false; // Okay, we've committed to selecting this global. Set up the basic address. AM.GV = GV; // No ABI requires an extra load for anything other than DLLImport, which // we rejected above. Return a direct reference to the global. if (Subtarget->isPICStyleRIPRel()) { // Use rip-relative addressing if we can. Above we verified that the // base and index registers are unused. assert(AM.Base.Reg == 0 && AM.IndexReg == 0); AM.Base.Reg = X86::RIP; } else if (Subtarget->isPICStyleStubPIC()) { AM.GVOpFlags = X86II::MO_PIC_BASE_OFFSET; } else if (Subtarget->isPICStyleGOT()) { AM.GVOpFlags = X86II::MO_GOTOFF; } return true; } // If all else fails, try to materialize the value in a register. if (!AM.GV || !Subtarget->isPICStyleRIPRel()) { if (AM.Base.Reg == 0) { AM.Base.Reg = getRegForValue(V); return AM.Base.Reg != 0; } if (AM.IndexReg == 0) { assert(AM.Scale == 1 && "Scale with no index!"); AM.IndexReg = getRegForValue(V); return AM.IndexReg != 0; } } return false; } /// X86SelectStore - Select and emit code to implement store instructions. bool X86FastISel::X86SelectStore(const Instruction *I) { // Atomic stores need special handling. const StoreInst *S = cast<StoreInst>(I); if (S->isAtomic()) return false; unsigned SABIAlignment = TD.getABITypeAlignment(S->getValueOperand()->getType()); if (S->getAlignment() != 0 && S->getAlignment() < SABIAlignment) return false; MVT VT; if (!isTypeLegal(I->getOperand(0)->getType(), VT, /*AllowI1=*/true)) return false; X86AddressMode AM; if (!X86SelectAddress(I->getOperand(1), AM)) return false; return X86FastEmitStore(VT, I->getOperand(0), AM); } /// X86SelectRet - Select and emit code to implement ret instructions. bool X86FastISel::X86SelectRet(const Instruction *I) { const ReturnInst *Ret = cast<ReturnInst>(I); const Function &F = *I->getParent()->getParent(); const X86MachineFunctionInfo *X86MFInfo = FuncInfo.MF->getInfo<X86MachineFunctionInfo>(); if (!FuncInfo.CanLowerReturn) return false; CallingConv::ID CC = F.getCallingConv(); if (CC != CallingConv::C && CC != CallingConv::Fast && CC != CallingConv::X86_FastCall) return false; if (Subtarget->isTargetWin64()) return false; // Don't handle popping bytes on return for now. if (X86MFInfo->getBytesToPopOnReturn() != 0) return false; // fastcc with -tailcallopt is intended to provide a guaranteed // tail call optimization. Fastisel doesn't know how to do that. if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) return false; // Let SDISel handle vararg functions. if (F.isVarArg()) return false; // Build a list of return value registers. SmallVector<unsigned, 4> RetRegs; if (Ret->getNumOperands() > 0) { SmallVector<ISD::OutputArg, 4> Outs; GetReturnInfo(F.getReturnType(), F.getAttributes(), Outs, TLI); // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ValLocs; CCState CCInfo(CC, F.isVarArg(), *FuncInfo.MF, TM, ValLocs, I->getContext()); CCInfo.AnalyzeReturn(Outs, RetCC_X86); const Value *RV = Ret->getOperand(0); unsigned Reg = getRegForValue(RV); if (Reg == 0) return false; // Only handle a single return value for now. if (ValLocs.size() != 1) return false; CCValAssign &VA = ValLocs[0]; // Don't bother handling odd stuff for now. if (VA.getLocInfo() != CCValAssign::Full) return false; // Only handle register returns for now. if (!VA.isRegLoc()) return false; // The calling-convention tables for x87 returns don't tell // the whole story. if (VA.getLocReg() == X86::ST0 || VA.getLocReg() == X86::ST1) return false; unsigned SrcReg = Reg + VA.getValNo(); EVT SrcVT = TLI.getValueType(RV->getType()); EVT DstVT = VA.getValVT(); // Special handling for extended integers. if (SrcVT != DstVT) { if (SrcVT != MVT::i1 && SrcVT != MVT::i8 && SrcVT != MVT::i16) return false; if (!Outs[0].Flags.isZExt() && !Outs[0].Flags.isSExt()) return false; assert(DstVT == MVT::i32 && "X86 should always ext to i32"); if (SrcVT == MVT::i1) { if (Outs[0].Flags.isSExt()) return false; SrcReg = FastEmitZExtFromI1(MVT::i8, SrcReg, /*TODO: Kill=*/false); SrcVT = MVT::i8; } unsigned Op = Outs[0].Flags.isZExt() ? ISD::ZERO_EXTEND : ISD::SIGN_EXTEND; SrcReg = FastEmit_r(SrcVT.getSimpleVT(), DstVT.getSimpleVT(), Op, SrcReg, /*TODO: Kill=*/false); } // Make the copy. unsigned DstReg = VA.getLocReg(); const TargetRegisterClass* SrcRC = MRI.getRegClass(SrcReg); // Avoid a cross-class copy. This is very unlikely. if (!SrcRC->contains(DstReg)) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), DstReg).addReg(SrcReg); // Add register to return instruction. RetRegs.push_back(VA.getLocReg()); } // The x86-64 ABI for returning structs by value requires that we copy // the sret argument into %rax for the return. We saved the argument into // a virtual register in the entry block, so now we copy the value out // and into %rax. if (Subtarget->is64Bit() && F.hasStructRetAttr()) { unsigned Reg = X86MFInfo->getSRetReturnReg(); assert(Reg && "SRetReturnReg should have been set in LowerFormalArguments()!"); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), X86::RAX).addReg(Reg); RetRegs.push_back(X86::RAX); } // Now emit the RET. MachineInstrBuilder MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::RET)); for (unsigned i = 0, e = RetRegs.size(); i != e; ++i) MIB.addReg(RetRegs[i], RegState::Implicit); return true; } /// X86SelectLoad - Select and emit code to implement load instructions. /// bool X86FastISel::X86SelectLoad(const Instruction *I) { // Atomic loads need special handling. if (cast<LoadInst>(I)->isAtomic()) return false; MVT VT; if (!isTypeLegal(I->getType(), VT, /*AllowI1=*/true)) return false; X86AddressMode AM; if (!X86SelectAddress(I->getOperand(0), AM)) return false; unsigned ResultReg = 0; if (X86FastEmitLoad(VT, AM, ResultReg)) { UpdateValueMap(I, ResultReg); return true; } return false; } static unsigned X86ChooseCmpOpcode(EVT VT, const X86Subtarget *Subtarget) { bool HasAVX = Subtarget->hasAVX(); bool X86ScalarSSEf32 = Subtarget->hasSSE1(); bool X86ScalarSSEf64 = Subtarget->hasSSE2(); switch (VT.getSimpleVT().SimpleTy) { default: return 0; case MVT::i8: return X86::CMP8rr; case MVT::i16: return X86::CMP16rr; case MVT::i32: return X86::CMP32rr; case MVT::i64: return X86::CMP64rr; case MVT::f32: return X86ScalarSSEf32 ? (HasAVX ? X86::VUCOMISSrr : X86::UCOMISSrr) : 0; case MVT::f64: return X86ScalarSSEf64 ? (HasAVX ? X86::VUCOMISDrr : X86::UCOMISDrr) : 0; } } /// X86ChooseCmpImmediateOpcode - If we have a comparison with RHS as the RHS /// of the comparison, return an opcode that works for the compare (e.g. /// CMP32ri) otherwise return 0. static unsigned X86ChooseCmpImmediateOpcode(EVT VT, const ConstantInt *RHSC) { switch (VT.getSimpleVT().SimpleTy) { // Otherwise, we can't fold the immediate into this comparison. default: return 0; case MVT::i8: return X86::CMP8ri; case MVT::i16: return X86::CMP16ri; case MVT::i32: return X86::CMP32ri; case MVT::i64: // 64-bit comparisons are only valid if the immediate fits in a 32-bit sext // field. if ((int)RHSC->getSExtValue() == RHSC->getSExtValue()) return X86::CMP64ri32; return 0; } } bool X86FastISel::X86FastEmitCompare(const Value *Op0, const Value *Op1, EVT VT) { unsigned Op0Reg = getRegForValue(Op0); if (Op0Reg == 0) return false; // Handle 'null' like i32/i64 0. if (isa<ConstantPointerNull>(Op1)) Op1 = Constant::getNullValue(TD.getIntPtrType(Op0->getContext())); // We have two options: compare with register or immediate. If the RHS of // the compare is an immediate that we can fold into this compare, use // CMPri, otherwise use CMPrr. if (const ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { if (unsigned CompareImmOpc = X86ChooseCmpImmediateOpcode(VT, Op1C)) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareImmOpc)) .addReg(Op0Reg) .addImm(Op1C->getSExtValue()); return true; } } unsigned CompareOpc = X86ChooseCmpOpcode(VT, Subtarget); if (CompareOpc == 0) return false; unsigned Op1Reg = getRegForValue(Op1); if (Op1Reg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CompareOpc)) .addReg(Op0Reg) .addReg(Op1Reg); return true; } bool X86FastISel::X86SelectCmp(const Instruction *I) { const CmpInst *CI = cast<CmpInst>(I); MVT VT; if (!isTypeLegal(I->getOperand(0)->getType(), VT)) return false; unsigned ResultReg = createResultReg(&X86::GR8RegClass); unsigned SetCCOpc; bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. switch (CI->getPredicate()) { case CmpInst::FCMP_OEQ: { if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) return false; unsigned EReg = createResultReg(&X86::GR8RegClass); unsigned NPReg = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETEr), EReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNPr), NPReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::AND8rr), ResultReg).addReg(NPReg).addReg(EReg); UpdateValueMap(I, ResultReg); return true; } case CmpInst::FCMP_UNE: { if (!X86FastEmitCompare(CI->getOperand(0), CI->getOperand(1), VT)) return false; unsigned NEReg = createResultReg(&X86::GR8RegClass); unsigned PReg = createResultReg(&X86::GR8RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETNEr), NEReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::SETPr), PReg); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::OR8rr),ResultReg) .addReg(PReg).addReg(NEReg); UpdateValueMap(I, ResultReg); return true; } case CmpInst::FCMP_OGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; case CmpInst::FCMP_OGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; case CmpInst::FCMP_OLT: SwapArgs = true; SetCCOpc = X86::SETAr; break; case CmpInst::FCMP_OLE: SwapArgs = true; SetCCOpc = X86::SETAEr; break; case CmpInst::FCMP_ONE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; case CmpInst::FCMP_ORD: SwapArgs = false; SetCCOpc = X86::SETNPr; break; case CmpInst::FCMP_UNO: SwapArgs = false; SetCCOpc = X86::SETPr; break; case CmpInst::FCMP_UEQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; case CmpInst::FCMP_UGT: SwapArgs = true; SetCCOpc = X86::SETBr; break; case CmpInst::FCMP_UGE: SwapArgs = true; SetCCOpc = X86::SETBEr; break; case CmpInst::FCMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; case CmpInst::FCMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; case CmpInst::ICMP_EQ: SwapArgs = false; SetCCOpc = X86::SETEr; break; case CmpInst::ICMP_NE: SwapArgs = false; SetCCOpc = X86::SETNEr; break; case CmpInst::ICMP_UGT: SwapArgs = false; SetCCOpc = X86::SETAr; break; case CmpInst::ICMP_UGE: SwapArgs = false; SetCCOpc = X86::SETAEr; break; case CmpInst::ICMP_ULT: SwapArgs = false; SetCCOpc = X86::SETBr; break; case CmpInst::ICMP_ULE: SwapArgs = false; SetCCOpc = X86::SETBEr; break; case CmpInst::ICMP_SGT: SwapArgs = false; SetCCOpc = X86::SETGr; break; case CmpInst::ICMP_SGE: SwapArgs = false; SetCCOpc = X86::SETGEr; break; case CmpInst::ICMP_SLT: SwapArgs = false; SetCCOpc = X86::SETLr; break; case CmpInst::ICMP_SLE: SwapArgs = false; SetCCOpc = X86::SETLEr; break; default: return false; } const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); if (SwapArgs) std::swap(Op0, Op1); // Emit a compare of Op0/Op1. if (!X86FastEmitCompare(Op0, Op1, VT)) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(SetCCOpc), ResultReg); UpdateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectZExt(const Instruction *I) { // Handle zero-extension from i1 to i8, which is common. if (!I->getOperand(0)->getType()->isIntegerTy(1)) return false; EVT DstVT = TLI.getValueType(I->getType()); if (!TLI.isTypeLegal(DstVT)) return false; unsigned ResultReg = getRegForValue(I->getOperand(0)); if (ResultReg == 0) return false; // Set the high bits to zero. ResultReg = FastEmitZExtFromI1(MVT::i8, ResultReg, /*TODO: Kill=*/false); if (ResultReg == 0) return false; if (DstVT != MVT::i8) { ResultReg = FastEmit_r(MVT::i8, DstVT.getSimpleVT(), ISD::ZERO_EXTEND, ResultReg, /*Kill=*/true); if (ResultReg == 0) return false; } UpdateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectBranch(const Instruction *I) { // Unconditional branches are selected by tablegen-generated code. // Handle a conditional branch. const BranchInst *BI = cast<BranchInst>(I); MachineBasicBlock *TrueMBB = FuncInfo.MBBMap[BI->getSuccessor(0)]; MachineBasicBlock *FalseMBB = FuncInfo.MBBMap[BI->getSuccessor(1)]; // Fold the common case of a conditional branch with a comparison // in the same block (values defined on other blocks may not have // initialized registers). if (const CmpInst *CI = dyn_cast<CmpInst>(BI->getCondition())) { if (CI->hasOneUse() && CI->getParent() == I->getParent()) { EVT VT = TLI.getValueType(CI->getOperand(0)->getType()); // Try to take advantage of fallthrough opportunities. CmpInst::Predicate Predicate = CI->getPredicate(); if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { std::swap(TrueMBB, FalseMBB); Predicate = CmpInst::getInversePredicate(Predicate); } bool SwapArgs; // false -> compare Op0, Op1. true -> compare Op1, Op0. unsigned BranchOpc; // Opcode to jump on, e.g. "X86::JA" switch (Predicate) { case CmpInst::FCMP_OEQ: std::swap(TrueMBB, FalseMBB); Predicate = CmpInst::FCMP_UNE; // FALL THROUGH case CmpInst::FCMP_UNE: SwapArgs = false; BranchOpc = X86::JNE_4; break; case CmpInst::FCMP_OGT: SwapArgs = false; BranchOpc = X86::JA_4; break; case CmpInst::FCMP_OGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; case CmpInst::FCMP_OLT: SwapArgs = true; BranchOpc = X86::JA_4; break; case CmpInst::FCMP_OLE: SwapArgs = true; BranchOpc = X86::JAE_4; break; case CmpInst::FCMP_ONE: SwapArgs = false; BranchOpc = X86::JNE_4; break; case CmpInst::FCMP_ORD: SwapArgs = false; BranchOpc = X86::JNP_4; break; case CmpInst::FCMP_UNO: SwapArgs = false; BranchOpc = X86::JP_4; break; case CmpInst::FCMP_UEQ: SwapArgs = false; BranchOpc = X86::JE_4; break; case CmpInst::FCMP_UGT: SwapArgs = true; BranchOpc = X86::JB_4; break; case CmpInst::FCMP_UGE: SwapArgs = true; BranchOpc = X86::JBE_4; break; case CmpInst::FCMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; case CmpInst::FCMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; case CmpInst::ICMP_EQ: SwapArgs = false; BranchOpc = X86::JE_4; break; case CmpInst::ICMP_NE: SwapArgs = false; BranchOpc = X86::JNE_4; break; case CmpInst::ICMP_UGT: SwapArgs = false; BranchOpc = X86::JA_4; break; case CmpInst::ICMP_UGE: SwapArgs = false; BranchOpc = X86::JAE_4; break; case CmpInst::ICMP_ULT: SwapArgs = false; BranchOpc = X86::JB_4; break; case CmpInst::ICMP_ULE: SwapArgs = false; BranchOpc = X86::JBE_4; break; case CmpInst::ICMP_SGT: SwapArgs = false; BranchOpc = X86::JG_4; break; case CmpInst::ICMP_SGE: SwapArgs = false; BranchOpc = X86::JGE_4; break; case CmpInst::ICMP_SLT: SwapArgs = false; BranchOpc = X86::JL_4; break; case CmpInst::ICMP_SLE: SwapArgs = false; BranchOpc = X86::JLE_4; break; default: return false; } const Value *Op0 = CI->getOperand(0), *Op1 = CI->getOperand(1); if (SwapArgs) std::swap(Op0, Op1); // Emit a compare of the LHS and RHS, setting the flags. if (!X86FastEmitCompare(Op0, Op1, VT)) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(BranchOpc)) .addMBB(TrueMBB); if (Predicate == CmpInst::FCMP_UNE) { // X86 requires a second branch to handle UNE (and OEQ, // which is mapped to UNE above). BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JP_4)) .addMBB(TrueMBB); } FastEmitBranch(FalseMBB, DL); FuncInfo.MBB->addSuccessor(TrueMBB); return true; } } else if (TruncInst *TI = dyn_cast<TruncInst>(BI->getCondition())) { // Handle things like "%cond = trunc i32 %X to i1 / br i1 %cond", which // typically happen for _Bool and C++ bools. MVT SourceVT; if (TI->hasOneUse() && TI->getParent() == I->getParent() && isTypeLegal(TI->getOperand(0)->getType(), SourceVT)) { unsigned TestOpc = 0; switch (SourceVT.SimpleTy) { default: break; case MVT::i8: TestOpc = X86::TEST8ri; break; case MVT::i16: TestOpc = X86::TEST16ri; break; case MVT::i32: TestOpc = X86::TEST32ri; break; case MVT::i64: TestOpc = X86::TEST64ri32; break; } if (TestOpc) { unsigned OpReg = getRegForValue(TI->getOperand(0)); if (OpReg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TestOpc)) .addReg(OpReg).addImm(1); unsigned JmpOpc = X86::JNE_4; if (FuncInfo.MBB->isLayoutSuccessor(TrueMBB)) { std::swap(TrueMBB, FalseMBB); JmpOpc = X86::JE_4; } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(JmpOpc)) .addMBB(TrueMBB); FastEmitBranch(FalseMBB, DL); FuncInfo.MBB->addSuccessor(TrueMBB); return true; } } } // Otherwise do a clumsy setcc and re-test it. // Note that i1 essentially gets ANY_EXTEND'ed to i8 where it isn't used // in an explicit cast, so make sure to handle that correctly. unsigned OpReg = getRegForValue(BI->getCondition()); if (OpReg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8ri)) .addReg(OpReg).addImm(1); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::JNE_4)) .addMBB(TrueMBB); FastEmitBranch(FalseMBB, DL); FuncInfo.MBB->addSuccessor(TrueMBB); return true; } bool X86FastISel::X86SelectShift(const Instruction *I) { unsigned CReg = 0, OpReg = 0; const TargetRegisterClass *RC = NULL; if (I->getType()->isIntegerTy(8)) { CReg = X86::CL; RC = &X86::GR8RegClass; switch (I->getOpcode()) { case Instruction::LShr: OpReg = X86::SHR8rCL; break; case Instruction::AShr: OpReg = X86::SAR8rCL; break; case Instruction::Shl: OpReg = X86::SHL8rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(16)) { CReg = X86::CX; RC = &X86::GR16RegClass; switch (I->getOpcode()) { case Instruction::LShr: OpReg = X86::SHR16rCL; break; case Instruction::AShr: OpReg = X86::SAR16rCL; break; case Instruction::Shl: OpReg = X86::SHL16rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(32)) { CReg = X86::ECX; RC = &X86::GR32RegClass; switch (I->getOpcode()) { case Instruction::LShr: OpReg = X86::SHR32rCL; break; case Instruction::AShr: OpReg = X86::SAR32rCL; break; case Instruction::Shl: OpReg = X86::SHL32rCL; break; default: return false; } } else if (I->getType()->isIntegerTy(64)) { CReg = X86::RCX; RC = &X86::GR64RegClass; switch (I->getOpcode()) { case Instruction::LShr: OpReg = X86::SHR64rCL; break; case Instruction::AShr: OpReg = X86::SAR64rCL; break; case Instruction::Shl: OpReg = X86::SHL64rCL; break; default: return false; } } else { return false; } MVT VT; if (!isTypeLegal(I->getType(), VT)) return false; unsigned Op0Reg = getRegForValue(I->getOperand(0)); if (Op0Reg == 0) return false; unsigned Op1Reg = getRegForValue(I->getOperand(1)); if (Op1Reg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), CReg).addReg(Op1Reg); // The shift instruction uses X86::CL. If we defined a super-register // of X86::CL, emit a subreg KILL to precisely describe what we're doing here. if (CReg != X86::CL) BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::KILL), X86::CL) .addReg(CReg, RegState::Kill); unsigned ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpReg), ResultReg) .addReg(Op0Reg); UpdateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectSelect(const Instruction *I) { MVT VT; if (!isTypeLegal(I->getType(), VT)) return false; // We only use cmov here, if we don't have a cmov instruction bail. if (!Subtarget->hasCMov()) return false; unsigned Opc = 0; const TargetRegisterClass *RC = NULL; if (VT == MVT::i16) { Opc = X86::CMOVE16rr; RC = &X86::GR16RegClass; } else if (VT == MVT::i32) { Opc = X86::CMOVE32rr; RC = &X86::GR32RegClass; } else if (VT == MVT::i64) { Opc = X86::CMOVE64rr; RC = &X86::GR64RegClass; } else { return false; } unsigned Op0Reg = getRegForValue(I->getOperand(0)); if (Op0Reg == 0) return false; unsigned Op1Reg = getRegForValue(I->getOperand(1)); if (Op1Reg == 0) return false; unsigned Op2Reg = getRegForValue(I->getOperand(2)); if (Op2Reg == 0) return false; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TEST8rr)) .addReg(Op0Reg).addReg(Op0Reg); unsigned ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg) .addReg(Op1Reg).addReg(Op2Reg); UpdateValueMap(I, ResultReg); return true; } bool X86FastISel::X86SelectFPExt(const Instruction *I) { // fpext from float to double. if (X86ScalarSSEf64 && I->getType()->isDoubleTy()) { const Value *V = I->getOperand(0); if (V->getType()->isFloatTy()) { unsigned OpReg = getRegForValue(V); if (OpReg == 0) return false; unsigned ResultReg = createResultReg(&X86::FR64RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::CVTSS2SDrr), ResultReg) .addReg(OpReg); UpdateValueMap(I, ResultReg); return true; } } return false; } bool X86FastISel::X86SelectFPTrunc(const Instruction *I) { if (X86ScalarSSEf64) { if (I->getType()->isFloatTy()) { const Value *V = I->getOperand(0); if (V->getType()->isDoubleTy()) { unsigned OpReg = getRegForValue(V); if (OpReg == 0) return false; unsigned ResultReg = createResultReg(&X86::FR32RegClass); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::CVTSD2SSrr), ResultReg) .addReg(OpReg); UpdateValueMap(I, ResultReg); return true; } } } return false; } bool X86FastISel::X86SelectTrunc(const Instruction *I) { EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(I->getType()); // This code only handles truncation to byte. if (DstVT != MVT::i8 && DstVT != MVT::i1) return false; if (!TLI.isTypeLegal(SrcVT)) return false; unsigned InputReg = getRegForValue(I->getOperand(0)); if (!InputReg) // Unhandled operand. Halt "fast" selection and bail. return false; if (SrcVT == MVT::i8) { // Truncate from i8 to i1; no code needed. UpdateValueMap(I, InputReg); return true; } if (!Subtarget->is64Bit()) { // If we're on x86-32; we can't extract an i8 from a general register. // First issue a copy to GR16_ABCD or GR32_ABCD. const TargetRegisterClass *CopyRC = (SrcVT == MVT::i16) ? (const TargetRegisterClass*)&X86::GR16_ABCDRegClass : (const TargetRegisterClass*)&X86::GR32_ABCDRegClass; unsigned CopyReg = createResultReg(CopyRC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), CopyReg).addReg(InputReg); InputReg = CopyReg; } // Issue an extract_subreg. unsigned ResultReg = FastEmitInst_extractsubreg(MVT::i8, InputReg, /*Kill=*/true, X86::sub_8bit); if (!ResultReg) return false; UpdateValueMap(I, ResultReg); return true; } bool X86FastISel::IsMemcpySmall(uint64_t Len) { return Len <= (Subtarget->is64Bit() ? 32 : 16); } bool X86FastISel::TryEmitSmallMemcpy(X86AddressMode DestAM, X86AddressMode SrcAM, uint64_t Len) { // Make sure we don't bloat code by inlining very large memcpy's. if (!IsMemcpySmall(Len)) return false; bool i64Legal = Subtarget->is64Bit(); // We don't care about alignment here since we just emit integer accesses. while (Len) { MVT VT; if (Len >= 8 && i64Legal) VT = MVT::i64; else if (Len >= 4) VT = MVT::i32; else if (Len >= 2) VT = MVT::i16; else { VT = MVT::i8; } unsigned Reg; bool RV = X86FastEmitLoad(VT, SrcAM, Reg); RV &= X86FastEmitStore(VT, Reg, DestAM); assert(RV && "Failed to emit load or store??"); unsigned Size = VT.getSizeInBits()/8; Len -= Size; DestAM.Disp += Size; SrcAM.Disp += Size; } return true; } bool X86FastISel::X86VisitIntrinsicCall(const IntrinsicInst &I) { // FIXME: Handle more intrinsics. switch (I.getIntrinsicID()) { default: return false; case Intrinsic::memcpy: { const MemCpyInst &MCI = cast<MemCpyInst>(I); // Don't handle volatile or variable length memcpys. if (MCI.isVolatile()) return false; if (isa<ConstantInt>(MCI.getLength())) { // Small memcpy's are common enough that we want to do them // without a call if possible. uint64_t Len = cast<ConstantInt>(MCI.getLength())->getZExtValue(); if (IsMemcpySmall(Len)) { X86AddressMode DestAM, SrcAM; if (!X86SelectAddress(MCI.getRawDest(), DestAM) || !X86SelectAddress(MCI.getRawSource(), SrcAM)) return false; TryEmitSmallMemcpy(DestAM, SrcAM, Len); return true; } } unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; if (!MCI.getLength()->getType()->isIntegerTy(SizeWidth)) return false; if (MCI.getSourceAddressSpace() > 255 || MCI.getDestAddressSpace() > 255) return false; return DoSelectCall(&I, "memcpy"); } case Intrinsic::memset: { const MemSetInst &MSI = cast<MemSetInst>(I); if (MSI.isVolatile()) return false; unsigned SizeWidth = Subtarget->is64Bit() ? 64 : 32; if (!MSI.getLength()->getType()->isIntegerTy(SizeWidth)) return false; if (MSI.getDestAddressSpace() > 255) return false; return DoSelectCall(&I, "memset"); } case Intrinsic::stackprotector: { // Emit code to store the stack guard onto the stack. EVT PtrTy = TLI.getPointerTy(); const Value *Op1 = I.getArgOperand(0); // The guard's value. const AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1)); // Grab the frame index. X86AddressMode AM; if (!X86SelectAddress(Slot, AM)) return false; if (!X86FastEmitStore(PtrTy, Op1, AM)) return false; return true; } case Intrinsic::dbg_declare: { const DbgDeclareInst *DI = cast<DbgDeclareInst>(&I); X86AddressMode AM; assert(DI->getAddress() && "Null address should be checked earlier!"); if (!X86SelectAddress(DI->getAddress(), AM)) return false; const MCInstrDesc &II = TII.get(TargetOpcode::DBG_VALUE); // FIXME may need to add RegState::Debug to any registers produced, // although ESP/EBP should be the only ones at the moment. addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, II), AM). addImm(0).addMetadata(DI->getVariable()); return true; } case Intrinsic::trap: { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::TRAP)); return true; } case Intrinsic::sadd_with_overflow: case Intrinsic::uadd_with_overflow: { // FIXME: Should fold immediates. // Replace "add with overflow" intrinsics with an "add" instruction followed // by a seto/setc instruction. const Function *Callee = I.getCalledFunction(); Type *RetTy = cast<StructType>(Callee->getReturnType())->getTypeAtIndex(unsigned(0)); MVT VT; if (!isTypeLegal(RetTy, VT)) return false; const Value *Op1 = I.getArgOperand(0); const Value *Op2 = I.getArgOperand(1); unsigned Reg1 = getRegForValue(Op1); unsigned Reg2 = getRegForValue(Op2); if (Reg1 == 0 || Reg2 == 0) // FIXME: Handle values *not* in registers. return false; unsigned OpC = 0; if (VT == MVT::i32) OpC = X86::ADD32rr; else if (VT == MVT::i64) OpC = X86::ADD64rr; else return false; // The call to CreateRegs builds two sequential registers, to store the // both the returned values. unsigned ResultReg = FuncInfo.CreateRegs(I.getType()); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(OpC), ResultReg) .addReg(Reg1).addReg(Reg2); unsigned Opc = X86::SETBr; if (I.getIntrinsicID() == Intrinsic::sadd_with_overflow) Opc = X86::SETOr; BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg+1); UpdateValueMap(&I, ResultReg, 2); return true; } } } bool X86FastISel::FastLowerArguments() { if (!FuncInfo.CanLowerReturn) return false; if (Subtarget->isTargetWindows()) return false; const Function *F = FuncInfo.Fn; if (F->isVarArg()) return false; CallingConv::ID CC = F->getCallingConv(); if (CC != CallingConv::C) return false; if (!Subtarget->is64Bit()) return false; // Only handle simple cases. i.e. Up to 6 i32/i64 scalar arguments. unsigned Idx = 1; for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++Idx) { if (Idx > 6) return false; if (F->getAttributes().hasAttribute(Idx, Attribute::ByVal) || F->getAttributes().hasAttribute(Idx, Attribute::InReg) || F->getAttributes().hasAttribute(Idx, Attribute::StructRet) || F->getAttributes().hasAttribute(Idx, Attribute::Nest)) return false; Type *ArgTy = I->getType(); if (ArgTy->isStructTy() || ArgTy->isArrayTy() || ArgTy->isVectorTy()) return false; EVT ArgVT = TLI.getValueType(ArgTy); if (!ArgVT.isSimple()) return false; switch (ArgVT.getSimpleVT().SimpleTy) { case MVT::i32: case MVT::i64: break; default: return false; } } static const uint16_t GPR32ArgRegs[] = { X86::EDI, X86::ESI, X86::EDX, X86::ECX, X86::R8D, X86::R9D }; static const uint16_t GPR64ArgRegs[] = { X86::RDI, X86::RSI, X86::RDX, X86::RCX, X86::R8 , X86::R9 }; Idx = 0; const TargetRegisterClass *RC32 = TLI.getRegClassFor(MVT::i32); const TargetRegisterClass *RC64 = TLI.getRegClassFor(MVT::i64); for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I, ++Idx) { if (I->use_empty()) continue; bool is32Bit = TLI.getValueType(I->getType()) == MVT::i32; const TargetRegisterClass *RC = is32Bit ? RC32 : RC64; unsigned SrcReg = is32Bit ? GPR32ArgRegs[Idx] : GPR64ArgRegs[Idx]; unsigned DstReg = FuncInfo.MF->addLiveIn(SrcReg, RC); // FIXME: Unfortunately it's necessary to emit a copy from the livein copy. // Without this, EmitLiveInCopies may eliminate the livein if its only // use is a bitcast (which isn't turned into an instruction). unsigned ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), ResultReg).addReg(DstReg, getKillRegState(true)); UpdateValueMap(I, ResultReg); } return true; } bool X86FastISel::X86SelectCall(const Instruction *I) { const CallInst *CI = cast<CallInst>(I); const Value *Callee = CI->getCalledValue(); // Can't handle inline asm yet. if (isa<InlineAsm>(Callee)) return false; // Handle intrinsic calls. if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) return X86VisitIntrinsicCall(*II); // Allow SelectionDAG isel to handle tail calls. if (cast<CallInst>(I)->isTailCall()) return false; return DoSelectCall(I, 0); } static unsigned computeBytesPoppedByCallee(const X86Subtarget &Subtarget, const ImmutableCallSite &CS) { if (Subtarget.is64Bit()) return 0; if (Subtarget.isTargetWindows()) return 0; CallingConv::ID CC = CS.getCallingConv(); if (CC == CallingConv::Fast || CC == CallingConv::GHC) return 0; if (!CS.paramHasAttr(1, Attribute::StructRet)) return 0; if (CS.paramHasAttr(1, Attribute::InReg)) return 0; return 4; } // Select either a call, or an llvm.memcpy/memmove/memset intrinsic bool X86FastISel::DoSelectCall(const Instruction *I, const char *MemIntName) { const CallInst *CI = cast<CallInst>(I); const Value *Callee = CI->getCalledValue(); // Handle only C and fastcc calling conventions for now. ImmutableCallSite CS(CI); CallingConv::ID CC = CS.getCallingConv(); if (CC != CallingConv::C && CC != CallingConv::Fast && CC != CallingConv::X86_FastCall) return false; // fastcc with -tailcallopt is intended to provide a guaranteed // tail call optimization. Fastisel doesn't know how to do that. if (CC == CallingConv::Fast && TM.Options.GuaranteedTailCallOpt) return false; PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType()); FunctionType *FTy = cast<FunctionType>(PT->getElementType()); bool isVarArg = FTy->isVarArg(); // Don't know how to handle Win64 varargs yet. Nothing special needed for // x86-32. Special handling for x86-64 is implemented. if (isVarArg && Subtarget->isTargetWin64()) return false; // Fast-isel doesn't know about callee-pop yet. if (X86::isCalleePop(CC, Subtarget->is64Bit(), isVarArg, TM.Options.GuaranteedTailCallOpt)) return false; // Check whether the function can return without sret-demotion. SmallVector<ISD::OutputArg, 4> Outs; GetReturnInfo(I->getType(), CS.getAttributes(), Outs, TLI); bool CanLowerReturn = TLI.CanLowerReturn(CS.getCallingConv(), *FuncInfo.MF, FTy->isVarArg(), Outs, FTy->getContext()); if (!CanLowerReturn) return false; // Materialize callee address in a register. FIXME: GV address can be // handled with a CALLpcrel32 instead. X86AddressMode CalleeAM; if (!X86SelectCallAddress(Callee, CalleeAM)) return false; unsigned CalleeOp = 0; const GlobalValue *GV = 0; if (CalleeAM.GV != 0) { GV = CalleeAM.GV; } else if (CalleeAM.Base.Reg != 0) { CalleeOp = CalleeAM.Base.Reg; } else return false; // Deal with call operands first. SmallVector<const Value *, 8> ArgVals; SmallVector<unsigned, 8> Args; SmallVector<MVT, 8> ArgVTs; SmallVector<ISD::ArgFlagsTy, 8> ArgFlags; unsigned arg_size = CS.arg_size(); Args.reserve(arg_size); ArgVals.reserve(arg_size); ArgVTs.reserve(arg_size); ArgFlags.reserve(arg_size); for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end(); i != e; ++i) { // If we're lowering a mem intrinsic instead of a regular call, skip the // last two arguments, which should not passed to the underlying functions. if (MemIntName && e-i <= 2) break; Value *ArgVal = *i; ISD::ArgFlagsTy Flags; unsigned AttrInd = i - CS.arg_begin() + 1; if (CS.paramHasAttr(AttrInd, Attribute::SExt)) Flags.setSExt(); if (CS.paramHasAttr(AttrInd, Attribute::ZExt)) Flags.setZExt(); if (CS.paramHasAttr(AttrInd, Attribute::ByVal)) { PointerType *Ty = cast<PointerType>(ArgVal->getType()); Type *ElementTy = Ty->getElementType(); unsigned FrameSize = TD.getTypeAllocSize(ElementTy); unsigned FrameAlign = CS.getParamAlignment(AttrInd); if (!FrameAlign) FrameAlign = TLI.getByValTypeAlignment(ElementTy); Flags.setByVal(); Flags.setByValSize(FrameSize); Flags.setByValAlign(FrameAlign); if (!IsMemcpySmall(FrameSize)) return false; } if (CS.paramHasAttr(AttrInd, Attribute::InReg)) Flags.setInReg(); if (CS.paramHasAttr(AttrInd, Attribute::Nest)) Flags.setNest(); // If this is an i1/i8/i16 argument, promote to i32 to avoid an extra // instruction. This is safe because it is common to all fastisel supported // calling conventions on x86. if (ConstantInt *CI = dyn_cast<ConstantInt>(ArgVal)) { if (CI->getBitWidth() == 1 || CI->getBitWidth() == 8 || CI->getBitWidth() == 16) { if (Flags.isSExt()) ArgVal = ConstantExpr::getSExt(CI,Type::getInt32Ty(CI->getContext())); else ArgVal = ConstantExpr::getZExt(CI,Type::getInt32Ty(CI->getContext())); } } unsigned ArgReg; // Passing bools around ends up doing a trunc to i1 and passing it. // Codegen this as an argument + "and 1". if (ArgVal->getType()->isIntegerTy(1) && isa<TruncInst>(ArgVal) && cast<TruncInst>(ArgVal)->getParent() == I->getParent() && ArgVal->hasOneUse()) { ArgVal = cast<TruncInst>(ArgVal)->getOperand(0); ArgReg = getRegForValue(ArgVal); if (ArgReg == 0) return false; MVT ArgVT; if (!isTypeLegal(ArgVal->getType(), ArgVT)) return false; ArgReg = FastEmit_ri(ArgVT, ArgVT, ISD::AND, ArgReg, ArgVal->hasOneUse(), 1); } else { ArgReg = getRegForValue(ArgVal); } if (ArgReg == 0) return false; Type *ArgTy = ArgVal->getType(); MVT ArgVT; if (!isTypeLegal(ArgTy, ArgVT)) return false; if (ArgVT == MVT::x86mmx) return false; unsigned OriginalAlignment = TD.getABITypeAlignment(ArgTy); Flags.setOrigAlign(OriginalAlignment); Args.push_back(ArgReg); ArgVals.push_back(ArgVal); ArgVTs.push_back(ArgVT); ArgFlags.push_back(Flags); } // Analyze operands of the call, assigning locations to each operand. SmallVector<CCValAssign, 16> ArgLocs; CCState CCInfo(CC, isVarArg, *FuncInfo.MF, TM, ArgLocs, I->getParent()->getContext()); // Allocate shadow area for Win64 if (Subtarget->isTargetWin64()) CCInfo.AllocateStack(32, 8); CCInfo.AnalyzeCallOperands(ArgVTs, ArgFlags, CC_X86); // Get a count of how many bytes are to be pushed on the stack. unsigned NumBytes = CCInfo.getNextStackOffset(); // Issue CALLSEQ_START unsigned AdjStackDown = TII.getCallFrameSetupOpcode(); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackDown)) .addImm(NumBytes); // Process argument: walk the register/memloc assignments, inserting // copies / loads. SmallVector<unsigned, 4> RegArgs; for (unsigned i = 0, e = ArgLocs.size(); i != e; ++i) { CCValAssign &VA = ArgLocs[i]; unsigned Arg = Args[VA.getValNo()]; EVT ArgVT = ArgVTs[VA.getValNo()]; // Promote the value if needed. switch (VA.getLocInfo()) { case CCValAssign::Full: break; case CCValAssign::SExt: { assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && "Unexpected extend"); bool Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); assert(Emitted && "Failed to emit a sext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::ZExt: { assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && "Unexpected extend"); bool Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); assert(Emitted && "Failed to emit a zext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::AExt: { assert(VA.getLocVT().isInteger() && !VA.getLocVT().isVector() && "Unexpected extend"); bool Emitted = X86FastEmitExtend(ISD::ANY_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); if (!Emitted) Emitted = X86FastEmitExtend(ISD::ZERO_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); if (!Emitted) Emitted = X86FastEmitExtend(ISD::SIGN_EXTEND, VA.getLocVT(), Arg, ArgVT, Arg); assert(Emitted && "Failed to emit a aext!"); (void)Emitted; ArgVT = VA.getLocVT(); break; } case CCValAssign::BCvt: { unsigned BC = FastEmit_r(ArgVT.getSimpleVT(), VA.getLocVT(), ISD::BITCAST, Arg, /*TODO: Kill=*/false); assert(BC != 0 && "Failed to emit a bitcast!"); Arg = BC; ArgVT = VA.getLocVT(); break; } case CCValAssign::VExt: // VExt has not been implemented, so this should be impossible to reach // for now. However, fallback to Selection DAG isel once implemented. return false; case CCValAssign::Indirect: // FIXME: Indirect doesn't need extending, but fast-isel doesn't fully // support this. return false; } if (VA.isRegLoc()) { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), VA.getLocReg()).addReg(Arg); RegArgs.push_back(VA.getLocReg()); } else { unsigned LocMemOffset = VA.getLocMemOffset(); X86AddressMode AM; AM.Base.Reg = RegInfo->getStackRegister(); AM.Disp = LocMemOffset; const Value *ArgVal = ArgVals[VA.getValNo()]; ISD::ArgFlagsTy Flags = ArgFlags[VA.getValNo()]; if (Flags.isByVal()) { X86AddressMode SrcAM; SrcAM.Base.Reg = Arg; bool Res = TryEmitSmallMemcpy(AM, SrcAM, Flags.getByValSize()); assert(Res && "memcpy length already checked!"); (void)Res; } else if (isa<ConstantInt>(ArgVal) || isa<ConstantPointerNull>(ArgVal)) { // If this is a really simple value, emit this with the Value* version // of X86FastEmitStore. If it isn't simple, we don't want to do this, // as it can cause us to reevaluate the argument. if (!X86FastEmitStore(ArgVT, ArgVal, AM)) return false; } else { if (!X86FastEmitStore(ArgVT, Arg, AM)) return false; } } } // ELF / PIC requires GOT in the EBX register before function calls via PLT // GOT pointer. if (Subtarget->isPICStyleGOT()) { unsigned Base = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), X86::EBX).addReg(Base); } if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) { // Count the number of XMM registers allocated. static const uint16_t XMMArgRegs[] = { X86::XMM0, X86::XMM1, X86::XMM2, X86::XMM3, X86::XMM4, X86::XMM5, X86::XMM6, X86::XMM7 }; unsigned NumXMMRegs = CCInfo.getFirstUnallocated(XMMArgRegs, 8); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::MOV8ri), X86::AL).addImm(NumXMMRegs); } // Issue the call. MachineInstrBuilder MIB; if (CalleeOp) { // Register-indirect call. unsigned CallOpc; if (Subtarget->is64Bit()) CallOpc = X86::CALL64r; else CallOpc = X86::CALL32r; MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)) .addReg(CalleeOp); } else { // Direct call. assert(GV && "Not a direct call"); unsigned CallOpc; if (Subtarget->is64Bit()) CallOpc = X86::CALL64pcrel32; else CallOpc = X86::CALLpcrel32; // See if we need any target-specific flags on the GV operand. unsigned char OpFlags = 0; // On ELF targets, in both X86-64 and X86-32 mode, direct calls to // external symbols most go through the PLT in PIC mode. If the symbol // has hidden or protected visibility, or if it is static or local, then // we don't need to use the PLT - we can directly call it. if (Subtarget->isTargetELF() && TM.getRelocationModel() == Reloc::PIC_ && GV->hasDefaultVisibility() && !GV->hasLocalLinkage()) { OpFlags = X86II::MO_PLT; } else if (Subtarget->isPICStyleStubAny() && (GV->isDeclaration() || GV->isWeakForLinker()) && (!Subtarget->getTargetTriple().isMacOSX() || Subtarget->getTargetTriple().isMacOSXVersionLT(10, 5))) { // PC-relative references to external symbols should go through $stub, // unless we're building with the leopard linker or later, which // automatically synthesizes these stubs. OpFlags = X86II::MO_DARWIN_STUB; } MIB = BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(CallOpc)); if (MemIntName) MIB.addExternalSymbol(MemIntName, OpFlags); else MIB.addGlobalAddress(GV, 0, OpFlags); } // Add a register mask with the call-preserved registers. // Proper defs for return values will be added by setPhysRegsDeadExcept(). MIB.addRegMask(TRI.getCallPreservedMask(CS.getCallingConv())); // Add an implicit use GOT pointer in EBX. if (Subtarget->isPICStyleGOT()) MIB.addReg(X86::EBX, RegState::Implicit); if (Subtarget->is64Bit() && isVarArg && !Subtarget->isTargetWin64()) MIB.addReg(X86::AL, RegState::Implicit); // Add implicit physical register uses to the call. for (unsigned i = 0, e = RegArgs.size(); i != e; ++i) MIB.addReg(RegArgs[i], RegState::Implicit); // Issue CALLSEQ_END unsigned AdjStackUp = TII.getCallFrameDestroyOpcode(); const unsigned NumBytesCallee = computeBytesPoppedByCallee(*Subtarget, CS); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(AdjStackUp)) .addImm(NumBytes).addImm(NumBytesCallee); // Build info for return calling conv lowering code. // FIXME: This is practically a copy-paste from TargetLowering::LowerCallTo. SmallVector<ISD::InputArg, 32> Ins; SmallVector<EVT, 4> RetTys; ComputeValueVTs(TLI, I->getType(), RetTys); for (unsigned i = 0, e = RetTys.size(); i != e; ++i) { EVT VT = RetTys[i]; MVT RegisterVT = TLI.getRegisterType(I->getParent()->getContext(), VT); unsigned NumRegs = TLI.getNumRegisters(I->getParent()->getContext(), VT); for (unsigned j = 0; j != NumRegs; ++j) { ISD::InputArg MyFlags; MyFlags.VT = RegisterVT; MyFlags.Used = !CS.getInstruction()->use_empty(); if (CS.paramHasAttr(0, Attribute::SExt)) MyFlags.Flags.setSExt(); if (CS.paramHasAttr(0, Attribute::ZExt)) MyFlags.Flags.setZExt(); if (CS.paramHasAttr(0, Attribute::InReg)) MyFlags.Flags.setInReg(); Ins.push_back(MyFlags); } } // Now handle call return values. SmallVector<unsigned, 4> UsedRegs; SmallVector<CCValAssign, 16> RVLocs; CCState CCRetInfo(CC, false, *FuncInfo.MF, TM, RVLocs, I->getParent()->getContext()); unsigned ResultReg = FuncInfo.CreateRegs(I->getType()); CCRetInfo.AnalyzeCallResult(Ins, RetCC_X86); for (unsigned i = 0; i != RVLocs.size(); ++i) { EVT CopyVT = RVLocs[i].getValVT(); unsigned CopyReg = ResultReg + i; // If this is a call to a function that returns an fp value on the x87 fp // stack, but where we prefer to use the value in xmm registers, copy it // out as F80 and use a truncate to move it from fp stack reg to xmm reg. if ((RVLocs[i].getLocReg() == X86::ST0 || RVLocs[i].getLocReg() == X86::ST1)) { if (isScalarFPTypeInSSEReg(RVLocs[i].getValVT())) { CopyVT = MVT::f80; CopyReg = createResultReg(&X86::RFP80RegClass); } BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(X86::FpPOP_RETVAL), CopyReg); } else { BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(TargetOpcode::COPY), CopyReg).addReg(RVLocs[i].getLocReg()); UsedRegs.push_back(RVLocs[i].getLocReg()); } if (CopyVT != RVLocs[i].getValVT()) { // Round the F80 the right size, which also moves to the appropriate xmm // register. This is accomplished by storing the F80 value in memory and // then loading it back. Ewww... EVT ResVT = RVLocs[i].getValVT(); unsigned Opc = ResVT == MVT::f32 ? X86::ST_Fp80m32 : X86::ST_Fp80m64; unsigned MemSize = ResVT.getSizeInBits()/8; int FI = MFI.CreateStackObject(MemSize, MemSize, false); addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc)), FI) .addReg(CopyReg); Opc = ResVT == MVT::f32 ? X86::MOVSSrm : X86::MOVSDrm; addFrameReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg + i), FI); } } if (RVLocs.size()) UpdateValueMap(I, ResultReg, RVLocs.size()); // Set all unused physreg defs as dead. static_cast<MachineInstr *>(MIB)->setPhysRegsDeadExcept(UsedRegs, TRI); return true; } bool X86FastISel::TargetSelectInstruction(const Instruction *I) { switch (I->getOpcode()) { default: break; case Instruction::Load: return X86SelectLoad(I); case Instruction::Store: return X86SelectStore(I); case Instruction::Ret: return X86SelectRet(I); case Instruction::ICmp: case Instruction::FCmp: return X86SelectCmp(I); case Instruction::ZExt: return X86SelectZExt(I); case Instruction::Br: return X86SelectBranch(I); case Instruction::Call: return X86SelectCall(I); case Instruction::LShr: case Instruction::AShr: case Instruction::Shl: return X86SelectShift(I); case Instruction::Select: return X86SelectSelect(I); case Instruction::Trunc: return X86SelectTrunc(I); case Instruction::FPExt: return X86SelectFPExt(I); case Instruction::FPTrunc: return X86SelectFPTrunc(I); case Instruction::IntToPtr: // Deliberate fall-through. case Instruction::PtrToInt: { EVT SrcVT = TLI.getValueType(I->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(I->getType()); if (DstVT.bitsGT(SrcVT)) return X86SelectZExt(I); if (DstVT.bitsLT(SrcVT)) return X86SelectTrunc(I); unsigned Reg = getRegForValue(I->getOperand(0)); if (Reg == 0) return false; UpdateValueMap(I, Reg); return true; } } return false; } unsigned X86FastISel::TargetMaterializeConstant(const Constant *C) { MVT VT; if (!isTypeLegal(C->getType(), VT)) return 0; // Can't handle alternate code models yet. if (TM.getCodeModel() != CodeModel::Small) return 0; // Get opcode and regclass of the output for the given load instruction. unsigned Opc = 0; const TargetRegisterClass *RC = NULL; switch (VT.SimpleTy) { default: return 0; case MVT::i8: Opc = X86::MOV8rm; RC = &X86::GR8RegClass; break; case MVT::i16: Opc = X86::MOV16rm; RC = &X86::GR16RegClass; break; case MVT::i32: Opc = X86::MOV32rm; RC = &X86::GR32RegClass; break; case MVT::i64: // Must be in x86-64 mode. Opc = X86::MOV64rm; RC = &X86::GR64RegClass; break; case MVT::f32: if (X86ScalarSSEf32) { Opc = Subtarget->hasAVX() ? X86::VMOVSSrm : X86::MOVSSrm; RC = &X86::FR32RegClass; } else { Opc = X86::LD_Fp32m; RC = &X86::RFP32RegClass; } break; case MVT::f64: if (X86ScalarSSEf64) { Opc = Subtarget->hasAVX() ? X86::VMOVSDrm : X86::MOVSDrm; RC = &X86::FR64RegClass; } else { Opc = X86::LD_Fp64m; RC = &X86::RFP64RegClass; } break; case MVT::f80: // No f80 support yet. return 0; } // Materialize addresses with LEA instructions. if (isa<GlobalValue>(C)) { X86AddressMode AM; if (X86SelectAddress(C, AM)) { // If the expression is just a basereg, then we're done, otherwise we need // to emit an LEA. if (AM.BaseType == X86AddressMode::RegBase && AM.IndexReg == 0 && AM.Disp == 0 && AM.GV == 0) return AM.Base.Reg; Opc = TLI.getPointerTy() == MVT::i32 ? X86::LEA32r : X86::LEA64r; unsigned ResultReg = createResultReg(RC); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg), AM); return ResultReg; } return 0; } // MachineConstantPool wants an explicit alignment. unsigned Align = TD.getPrefTypeAlignment(C->getType()); if (Align == 0) { // Alignment of vector types. FIXME! Align = TD.getTypeAllocSize(C->getType()); } // x86-32 PIC requires a PIC base register for constant pools. unsigned PICBase = 0; unsigned char OpFlag = 0; if (Subtarget->isPICStyleStubPIC()) { // Not dynamic-no-pic OpFlag = X86II::MO_PIC_BASE_OFFSET; PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); } else if (Subtarget->isPICStyleGOT()) { OpFlag = X86II::MO_GOTOFF; PICBase = getInstrInfo()->getGlobalBaseReg(FuncInfo.MF); } else if (Subtarget->isPICStyleRIPRel() && TM.getCodeModel() == CodeModel::Small) { PICBase = X86::RIP; } // Create the load from the constant pool. unsigned MCPOffset = MCP.getConstantPoolIndex(C, Align); unsigned ResultReg = createResultReg(RC); addConstantPoolReference(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg), MCPOffset, PICBase, OpFlag); return ResultReg; } unsigned X86FastISel::TargetMaterializeAlloca(const AllocaInst *C) { // Fail on dynamic allocas. At this point, getRegForValue has already // checked its CSE maps, so if we're here trying to handle a dynamic // alloca, we're not going to succeed. X86SelectAddress has a // check for dynamic allocas, because it's called directly from // various places, but TargetMaterializeAlloca also needs a check // in order to avoid recursion between getRegForValue, // X86SelectAddrss, and TargetMaterializeAlloca. if (!FuncInfo.StaticAllocaMap.count(C)) return 0; X86AddressMode AM; if (!X86SelectAddress(C, AM)) return 0; unsigned Opc = Subtarget->is64Bit() ? X86::LEA64r : X86::LEA32r; const TargetRegisterClass* RC = TLI.getRegClassFor(TLI.getPointerTy()); unsigned ResultReg = createResultReg(RC); addFullAddress(BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg), AM); return ResultReg; } unsigned X86FastISel::TargetMaterializeFloatZero(const ConstantFP *CF) { MVT VT; if (!isTypeLegal(CF->getType(), VT)) return 0; // Get opcode and regclass for the given zero. unsigned Opc = 0; const TargetRegisterClass *RC = NULL; switch (VT.SimpleTy) { default: return 0; case MVT::f32: if (X86ScalarSSEf32) { Opc = X86::FsFLD0SS; RC = &X86::FR32RegClass; } else { Opc = X86::LD_Fp032; RC = &X86::RFP32RegClass; } break; case MVT::f64: if (X86ScalarSSEf64) { Opc = X86::FsFLD0SD; RC = &X86::FR64RegClass; } else { Opc = X86::LD_Fp064; RC = &X86::RFP64RegClass; } break; case MVT::f80: // No f80 support yet. return 0; } unsigned ResultReg = createResultReg(RC); BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, DL, TII.get(Opc), ResultReg); return ResultReg; } /// TryToFoldLoad - The specified machine instr operand is a vreg, and that /// vreg is being provided by the specified load instruction. If possible, /// try to fold the load as an operand to the instruction, returning true if /// possible. bool X86FastISel::TryToFoldLoad(MachineInstr *MI, unsigned OpNo, const LoadInst *LI) { X86AddressMode AM; if (!X86SelectAddress(LI->getOperand(0), AM)) return false; const X86InstrInfo &XII = (const X86InstrInfo&)TII; unsigned Size = TD.getTypeAllocSize(LI->getType()); unsigned Alignment = LI->getAlignment(); SmallVector<MachineOperand, 8> AddrOps; AM.getFullAddress(AddrOps); MachineInstr *Result = XII.foldMemoryOperandImpl(*FuncInfo.MF, MI, OpNo, AddrOps, Size, Alignment); if (Result == 0) return false; FuncInfo.MBB->insert(FuncInfo.InsertPt, Result); MI->eraseFromParent(); return true; } namespace llvm { FastISel *X86::createFastISel(FunctionLoweringInfo &funcInfo, const TargetLibraryInfo *libInfo) { return new X86FastISel(funcInfo, libInfo); } }