//===- X86InstrCompiler.td - Compiler Pseudos and Patterns -*- tablegen -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file describes the various pseudo instructions used by the compiler, // as well as Pat patterns used during instruction selection. // //===----------------------------------------------------------------------===// //===----------------------------------------------------------------------===// // Pattern Matching Support def GetLo32XForm : SDNodeXForm<imm, [{ // Transformation function: get the low 32 bits. return getI32Imm((unsigned)N->getZExtValue()); }]>; def GetLo8XForm : SDNodeXForm<imm, [{ // Transformation function: get the low 8 bits. return getI8Imm((uint8_t)N->getZExtValue()); }]>; //===----------------------------------------------------------------------===// // Random Pseudo Instructions. // PIC base construction. This expands to code that looks like this: // call $next_inst // popl %destreg" let neverHasSideEffects = 1, isNotDuplicable = 1, Uses = [ESP] in def MOVPC32r : Ii32<0xE8, Pseudo, (outs GR32:$reg), (ins i32imm:$label), "", []>; // ADJCALLSTACKDOWN/UP implicitly use/def ESP because they may be expanded into // a stack adjustment and the codegen must know that they may modify the stack // pointer before prolog-epilog rewriting occurs. // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become // sub / add which can clobber EFLAGS. let Defs = [ESP, EFLAGS], Uses = [ESP] in { def ADJCALLSTACKDOWN32 : I<0, Pseudo, (outs), (ins i32imm:$amt), "#ADJCALLSTACKDOWN", [(X86callseq_start timm:$amt)]>, Requires<[In32BitMode]>; def ADJCALLSTACKUP32 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end timm:$amt1, timm:$amt2)]>, Requires<[In32BitMode]>; } // ADJCALLSTACKDOWN/UP implicitly use/def RSP because they may be expanded into // a stack adjustment and the codegen must know that they may modify the stack // pointer before prolog-epilog rewriting occurs. // Pessimistically assume ADJCALLSTACKDOWN / ADJCALLSTACKUP will become // sub / add which can clobber EFLAGS. let Defs = [RSP, EFLAGS], Uses = [RSP] in { def ADJCALLSTACKDOWN64 : I<0, Pseudo, (outs), (ins i32imm:$amt), "#ADJCALLSTACKDOWN", [(X86callseq_start timm:$amt)]>, Requires<[In64BitMode]>; def ADJCALLSTACKUP64 : I<0, Pseudo, (outs), (ins i32imm:$amt1, i32imm:$amt2), "#ADJCALLSTACKUP", [(X86callseq_end timm:$amt1, timm:$amt2)]>, Requires<[In64BitMode]>; } // x86-64 va_start lowering magic. let usesCustomInserter = 1 in { def VASTART_SAVE_XMM_REGS : I<0, Pseudo, (outs), (ins GR8:$al, i64imm:$regsavefi, i64imm:$offset, variable_ops), "#VASTART_SAVE_XMM_REGS $al, $regsavefi, $offset", [(X86vastart_save_xmm_regs GR8:$al, imm:$regsavefi, imm:$offset)]>; // The VAARG_64 pseudo-instruction takes the address of the va_list, // and places the address of the next argument into a register. let Defs = [EFLAGS] in def VAARG_64 : I<0, Pseudo, (outs GR64:$dst), (ins i8mem:$ap, i32imm:$size, i8imm:$mode, i32imm:$align), "#VAARG_64 $dst, $ap, $size, $mode, $align", [(set GR64:$dst, (X86vaarg64 addr:$ap, imm:$size, imm:$mode, imm:$align)), (implicit EFLAGS)]>; // Dynamic stack allocation yields a _chkstk or _alloca call for all Windows // targets. These calls are needed to probe the stack when allocating more than // 4k bytes in one go. Touching the stack at 4K increments is necessary to // ensure that the guard pages used by the OS virtual memory manager are // allocated in correct sequence. // The main point of having separate instruction are extra unmodelled effects // (compared to ordinary calls) like stack pointer change. let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in def WIN_ALLOCA : I<0, Pseudo, (outs), (ins), "# dynamic stack allocation", [(X86WinAlloca)]>; // When using segmented stacks these are lowered into instructions which first // check if the current stacklet has enough free memory. If it does, memory is // allocated by bumping the stack pointer. Otherwise memory is allocated from // the heap. let Defs = [EAX, ESP, EFLAGS], Uses = [ESP] in def SEG_ALLOCA_32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$size), "# variable sized alloca for segmented stacks", [(set GR32:$dst, (X86SegAlloca GR32:$size))]>, Requires<[In32BitMode]>; let Defs = [RAX, RSP, EFLAGS], Uses = [RSP] in def SEG_ALLOCA_64 : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$size), "# variable sized alloca for segmented stacks", [(set GR64:$dst, (X86SegAlloca GR64:$size))]>, Requires<[In64BitMode]>; } // The MSVC runtime contains an _ftol2 routine for converting floating-point // to integer values. It has a strange calling convention: the input is // popped from the x87 stack, and the return value is given in EDX:EAX. No // other registers (aside from flags) are touched. // Microsoft toolchains do not support 80-bit precision, so a WIN_FTOL_80 // variant is unnecessary. let Defs = [EAX, EDX, EFLAGS], FPForm = SpecialFP in { def WIN_FTOL_32 : I<0, Pseudo, (outs), (ins RFP32:$src), "# win32 fptoui", [(X86WinFTOL RFP32:$src)]>, Requires<[In32BitMode]>; def WIN_FTOL_64 : I<0, Pseudo, (outs), (ins RFP64:$src), "# win32 fptoui", [(X86WinFTOL RFP64:$src)]>, Requires<[In32BitMode]>; } //===----------------------------------------------------------------------===// // EH Pseudo Instructions // let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in { def EH_RETURN : I<0xC3, RawFrm, (outs), (ins GR32:$addr), "ret\t#eh_return, addr: $addr", [(X86ehret GR32:$addr)], IIC_RET>; } let isTerminator = 1, isReturn = 1, isBarrier = 1, hasCtrlDep = 1, isCodeGenOnly = 1 in { def EH_RETURN64 : I<0xC3, RawFrm, (outs), (ins GR64:$addr), "ret\t#eh_return, addr: $addr", [(X86ehret GR64:$addr)], IIC_RET>; } let hasSideEffects = 1, isBarrier = 1, isCodeGenOnly = 1, usesCustomInserter = 1 in { def EH_SjLj_SetJmp32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$buf), "#EH_SJLJ_SETJMP32", [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, Requires<[In32BitMode]>; def EH_SjLj_SetJmp64 : I<0, Pseudo, (outs GR32:$dst), (ins i64mem:$buf), "#EH_SJLJ_SETJMP64", [(set GR32:$dst, (X86eh_sjlj_setjmp addr:$buf))]>, Requires<[In64BitMode]>; let isTerminator = 1 in { def EH_SjLj_LongJmp32 : I<0, Pseudo, (outs), (ins i32mem:$buf), "#EH_SJLJ_LONGJMP32", [(X86eh_sjlj_longjmp addr:$buf)]>, Requires<[In32BitMode]>; def EH_SjLj_LongJmp64 : I<0, Pseudo, (outs), (ins i64mem:$buf), "#EH_SJLJ_LONGJMP64", [(X86eh_sjlj_longjmp addr:$buf)]>, Requires<[In64BitMode]>; } } let isBranch = 1, isTerminator = 1, isCodeGenOnly = 1 in { def EH_SjLj_Setup : I<0, Pseudo, (outs), (ins brtarget:$dst), "#EH_SjLj_Setup\t$dst", []>; } //===----------------------------------------------------------------------===// // Pseudo instructions used by segmented stacks. // // This is lowered into a RET instruction by MCInstLower. We need // this so that we don't have to have a MachineBasicBlock which ends // with a RET and also has successors. let isPseudo = 1 in { def MORESTACK_RET: I<0, Pseudo, (outs), (ins), "", []>; // This instruction is lowered to a RET followed by a MOV. The two // instructions are not generated on a higher level since then the // verifier sees a MachineBasicBlock ending with a non-terminator. def MORESTACK_RET_RESTORE_R10 : I<0, Pseudo, (outs), (ins), "", []>; } //===----------------------------------------------------------------------===// // Alias Instructions //===----------------------------------------------------------------------===// // Alias instructions that map movr0 to xor. // FIXME: remove when we can teach regalloc that xor reg, reg is ok. // FIXME: Set encoding to pseudo. let Defs = [EFLAGS], isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1 in { def MOV8r0 : I<0x30, MRMInitReg, (outs GR8 :$dst), (ins), "", [(set GR8:$dst, 0)], IIC_ALU_NONMEM>; // We want to rewrite MOV16r0 in terms of MOV32r0, because it's a smaller // encoding and avoids a partial-register update sometimes, but doing so // at isel time interferes with rematerialization in the current register // allocator. For now, this is rewritten when the instruction is lowered // to an MCInst. def MOV16r0 : I<0x31, MRMInitReg, (outs GR16:$dst), (ins), "", [(set GR16:$dst, 0)], IIC_ALU_NONMEM>, OpSize; // FIXME: Set encoding to pseudo. def MOV32r0 : I<0x31, MRMInitReg, (outs GR32:$dst), (ins), "", [(set GR32:$dst, 0)], IIC_ALU_NONMEM>; } // We want to rewrite MOV64r0 in terms of MOV32r0, because it's sometimes a // smaller encoding, but doing so at isel time interferes with rematerialization // in the current register allocator. For now, this is rewritten when the // instruction is lowered to an MCInst. // FIXME: AddedComplexity gives this a higher priority than MOV64ri32. Remove // when we have a better way to specify isel priority. let Defs = [EFLAGS], isCodeGenOnly=1, AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1 in def MOV64r0 : I<0x31, MRMInitReg, (outs GR64:$dst), (ins), "", [(set GR64:$dst, 0)], IIC_ALU_NONMEM>; // Materialize i64 constant where top 32-bits are zero. This could theoretically // use MOV32ri with a SUBREG_TO_REG to represent the zero-extension, however // that would make it more difficult to rematerialize. let AddedComplexity = 1, isReMaterializable = 1, isAsCheapAsAMove = 1, isCodeGenOnly = 1 in def MOV64ri64i32 : Ii32<0xB8, AddRegFrm, (outs GR64:$dst), (ins i64i32imm:$src), "", [(set GR64:$dst, i64immZExt32:$src)], IIC_ALU_NONMEM>; // Use sbb to materialize carry bit. let Uses = [EFLAGS], Defs = [EFLAGS], isPseudo = 1 in { // FIXME: These are pseudo ops that should be replaced with Pat<> patterns. // However, Pat<> can't replicate the destination reg into the inputs of the // result. def SETB_C8r : I<0, Pseudo, (outs GR8:$dst), (ins), "", [(set GR8:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C16r : I<0, Pseudo, (outs GR16:$dst), (ins), "", [(set GR16:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C32r : I<0, Pseudo, (outs GR32:$dst), (ins), "", [(set GR32:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; def SETB_C64r : I<0, Pseudo, (outs GR64:$dst), (ins), "", [(set GR64:$dst, (X86setcc_c X86_COND_B, EFLAGS))]>; } // isCodeGenOnly def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i64 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C64r)>; def : Pat<(i16 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i64 (sext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C64r)>; // We canonicalize 'setb' to "(and (sbb reg,reg), 1)" on the hope that the and // will be eliminated and that the sbb can be extended up to a wider type. When // this happens, it is great. However, if we are left with an 8-bit sbb and an // and, we might as well just match it as a setb. def : Pat<(and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), (SETBr)>; // (add OP, SETB) -> (adc OP, 0) def : Pat<(add (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR8:$op), (ADC8ri GR8:$op, 0)>; def : Pat<(add (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR32:$op), (ADC32ri8 GR32:$op, 0)>; def : Pat<(add (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1), GR64:$op), (ADC64ri8 GR64:$op, 0)>; // (sub OP, SETB) -> (sbb OP, 0) def : Pat<(sub GR8:$op, (and (i8 (X86setcc_c X86_COND_B, EFLAGS)), 1)), (SBB8ri GR8:$op, 0)>; def : Pat<(sub GR32:$op, (and (i32 (X86setcc_c X86_COND_B, EFLAGS)), 1)), (SBB32ri8 GR32:$op, 0)>; def : Pat<(sub GR64:$op, (and (i64 (X86setcc_c X86_COND_B, EFLAGS)), 1)), (SBB64ri8 GR64:$op, 0)>; // (sub OP, SETCC_CARRY) -> (adc OP, 0) def : Pat<(sub GR8:$op, (i8 (X86setcc_c X86_COND_B, EFLAGS))), (ADC8ri GR8:$op, 0)>; def : Pat<(sub GR32:$op, (i32 (X86setcc_c X86_COND_B, EFLAGS))), (ADC32ri8 GR32:$op, 0)>; def : Pat<(sub GR64:$op, (i64 (X86setcc_c X86_COND_B, EFLAGS))), (ADC64ri8 GR64:$op, 0)>; //===----------------------------------------------------------------------===// // String Pseudo Instructions // let Defs = [ECX,EDI,ESI], Uses = [ECX,EDI,ESI], isCodeGenOnly = 1 in { def REP_MOVSB_32 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", [(X86rep_movs i8)], IIC_REP_MOVS>, REP, Requires<[In32BitMode]>; def REP_MOVSW_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize, Requires<[In32BitMode]>; def REP_MOVSD_32 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", [(X86rep_movs i32)], IIC_REP_MOVS>, REP, Requires<[In32BitMode]>; } let Defs = [RCX,RDI,RSI], Uses = [RCX,RDI,RSI], isCodeGenOnly = 1 in { def REP_MOVSB_64 : I<0xA4, RawFrm, (outs), (ins), "{rep;movsb|rep movsb}", [(X86rep_movs i8)], IIC_REP_MOVS>, REP, Requires<[In64BitMode]>; def REP_MOVSW_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsw|rep movsw}", [(X86rep_movs i16)], IIC_REP_MOVS>, REP, OpSize, Requires<[In64BitMode]>; def REP_MOVSD_64 : I<0xA5, RawFrm, (outs), (ins), "{rep;movsl|rep movsd}", [(X86rep_movs i32)], IIC_REP_MOVS>, REP, Requires<[In64BitMode]>; def REP_MOVSQ_64 : RI<0xA5, RawFrm, (outs), (ins), "{rep;movsq|rep movsq}", [(X86rep_movs i64)], IIC_REP_MOVS>, REP, Requires<[In64BitMode]>; } // FIXME: Should use "(X86rep_stos AL)" as the pattern. let Defs = [ECX,EDI], isCodeGenOnly = 1 in { let Uses = [AL,ECX,EDI] in def REP_STOSB_32 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", [(X86rep_stos i8)], IIC_REP_STOS>, REP, Requires<[In32BitMode]>; let Uses = [AX,ECX,EDI] in def REP_STOSW_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize, Requires<[In32BitMode]>; let Uses = [EAX,ECX,EDI] in def REP_STOSD_32 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", [(X86rep_stos i32)], IIC_REP_STOS>, REP, Requires<[In32BitMode]>; } let Defs = [RCX,RDI], isCodeGenOnly = 1 in { let Uses = [AL,RCX,RDI] in def REP_STOSB_64 : I<0xAA, RawFrm, (outs), (ins), "{rep;stosb|rep stosb}", [(X86rep_stos i8)], IIC_REP_STOS>, REP, Requires<[In64BitMode]>; let Uses = [AX,RCX,RDI] in def REP_STOSW_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosw|rep stosw}", [(X86rep_stos i16)], IIC_REP_STOS>, REP, OpSize, Requires<[In64BitMode]>; let Uses = [RAX,RCX,RDI] in def REP_STOSD_64 : I<0xAB, RawFrm, (outs), (ins), "{rep;stosl|rep stosd}", [(X86rep_stos i32)], IIC_REP_STOS>, REP, Requires<[In64BitMode]>; let Uses = [RAX,RCX,RDI] in def REP_STOSQ_64 : RI<0xAB, RawFrm, (outs), (ins), "{rep;stosq|rep stosq}", [(X86rep_stos i64)], IIC_REP_STOS>, REP, Requires<[In64BitMode]>; } //===----------------------------------------------------------------------===// // Thread Local Storage Instructions // // ELF TLS Support // All calls clobber the non-callee saved registers. ESP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. let Defs = [EAX, ECX, EDX, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [ESP] in { def TLS_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "# TLS_addr32", [(X86tlsaddr tls32addr:$sym)]>, Requires<[In32BitMode]>; def TLS_base_addr32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "# TLS_base_addr32", [(X86tlsbaseaddr tls32baseaddr:$sym)]>, Requires<[In32BitMode]>; } // All calls clobber the non-callee saved registers. RSP is marked as // a use to prevent stack-pointer assignments that appear immediately // before calls from potentially appearing dead. let Defs = [RAX, RCX, RDX, RSI, RDI, R8, R9, R10, R11, FP0, FP1, FP2, FP3, FP4, FP5, FP6, ST0, ST1, MM0, MM1, MM2, MM3, MM4, MM5, MM6, MM7, XMM0, XMM1, XMM2, XMM3, XMM4, XMM5, XMM6, XMM7, XMM8, XMM9, XMM10, XMM11, XMM12, XMM13, XMM14, XMM15, EFLAGS], Uses = [RSP] in { def TLS_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), "# TLS_addr64", [(X86tlsaddr tls64addr:$sym)]>, Requires<[In64BitMode]>; def TLS_base_addr64 : I<0, Pseudo, (outs), (ins i64mem:$sym), "# TLS_base_addr64", [(X86tlsbaseaddr tls64baseaddr:$sym)]>, Requires<[In64BitMode]>; } // Darwin TLS Support // For i386, the address of the thunk is passed on the stack, on return the // address of the variable is in %eax. %ecx is trashed during the function // call. All other registers are preserved. let Defs = [EAX, ECX, EFLAGS], Uses = [ESP], usesCustomInserter = 1 in def TLSCall_32 : I<0, Pseudo, (outs), (ins i32mem:$sym), "# TLSCall_32", [(X86TLSCall addr:$sym)]>, Requires<[In32BitMode]>; // For x86_64, the address of the thunk is passed in %rdi, on return // the address of the variable is in %rax. All other registers are preserved. let Defs = [RAX, EFLAGS], Uses = [RSP, RDI], usesCustomInserter = 1 in def TLSCall_64 : I<0, Pseudo, (outs), (ins i64mem:$sym), "# TLSCall_64", [(X86TLSCall addr:$sym)]>, Requires<[In64BitMode]>; //===----------------------------------------------------------------------===// // Conditional Move Pseudo Instructions // X86 doesn't have 8-bit conditional moves. Use a customInserter to // emit control flow. An alternative to this is to mark i8 SELECT as Promote, // however that requires promoting the operands, and can induce additional // i8 register pressure. let usesCustomInserter = 1, Uses = [EFLAGS] in { def CMOV_GR8 : I<0, Pseudo, (outs GR8:$dst), (ins GR8:$src1, GR8:$src2, i8imm:$cond), "#CMOV_GR8 PSEUDO!", [(set GR8:$dst, (X86cmov GR8:$src1, GR8:$src2, imm:$cond, EFLAGS))]>; let Predicates = [NoCMov] in { def CMOV_GR32 : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2, i8imm:$cond), "#CMOV_GR32* PSEUDO!", [(set GR32:$dst, (X86cmov GR32:$src1, GR32:$src2, imm:$cond, EFLAGS))]>; def CMOV_GR16 : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2, i8imm:$cond), "#CMOV_GR16* PSEUDO!", [(set GR16:$dst, (X86cmov GR16:$src1, GR16:$src2, imm:$cond, EFLAGS))]>; } // Predicates = [NoCMov] // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no // SSE1. let Predicates = [FPStackf32] in def CMOV_RFP32 : I<0, Pseudo, (outs RFP32:$dst), (ins RFP32:$src1, RFP32:$src2, i8imm:$cond), "#CMOV_RFP32 PSEUDO!", [(set RFP32:$dst, (X86cmov RFP32:$src1, RFP32:$src2, imm:$cond, EFLAGS))]>; // fcmov doesn't handle all possible EFLAGS, provide a fallback if there is no // SSE2. let Predicates = [FPStackf64] in def CMOV_RFP64 : I<0, Pseudo, (outs RFP64:$dst), (ins RFP64:$src1, RFP64:$src2, i8imm:$cond), "#CMOV_RFP64 PSEUDO!", [(set RFP64:$dst, (X86cmov RFP64:$src1, RFP64:$src2, imm:$cond, EFLAGS))]>; def CMOV_RFP80 : I<0, Pseudo, (outs RFP80:$dst), (ins RFP80:$src1, RFP80:$src2, i8imm:$cond), "#CMOV_RFP80 PSEUDO!", [(set RFP80:$dst, (X86cmov RFP80:$src1, RFP80:$src2, imm:$cond, EFLAGS))]>; } // UsesCustomInserter = 1, Uses = [EFLAGS] //===----------------------------------------------------------------------===// // Atomic Instruction Pseudo Instructions //===----------------------------------------------------------------------===// // Pseudo atomic instructions multiclass PSEUDO_ATOMIC_LOAD_BINOP<string mnemonic> { let usesCustomInserter = 1, mayLoad = 1, mayStore = 1 in { let Defs = [EFLAGS, AL] in def NAME#8 : I<0, Pseudo, (outs GR8:$dst), (ins i8mem:$ptr, GR8:$val), !strconcat(mnemonic, "8 PSEUDO!"), []>; let Defs = [EFLAGS, AX] in def NAME#16 : I<0, Pseudo,(outs GR16:$dst), (ins i16mem:$ptr, GR16:$val), !strconcat(mnemonic, "16 PSEUDO!"), []>; let Defs = [EFLAGS, EAX] in def NAME#32 : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$ptr, GR32:$val), !strconcat(mnemonic, "32 PSEUDO!"), []>; let Defs = [EFLAGS, RAX] in def NAME#64 : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$ptr, GR64:$val), !strconcat(mnemonic, "64 PSEUDO!"), []>; } } multiclass PSEUDO_ATOMIC_LOAD_BINOP_PATS<string name, string frag> { def : Pat<(!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val), (!cast<Instruction>(name # "8") addr:$ptr, GR8:$val)>; def : Pat<(!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val), (!cast<Instruction>(name # "16") addr:$ptr, GR16:$val)>; def : Pat<(!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val), (!cast<Instruction>(name # "32") addr:$ptr, GR32:$val)>; def : Pat<(!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val), (!cast<Instruction>(name # "64") addr:$ptr, GR64:$val)>; } // Atomic exchange, and, or, xor defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMAND">; defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMOR">; defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMXOR">; defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMNAND">; defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMAX">; defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMMIN">; defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMAX">; defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP<"#ATOMUMIN">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMAND", "atomic_load_and">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMOR", "atomic_load_or">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMXOR", "atomic_load_xor">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMNAND", "atomic_load_nand">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMAX", "atomic_load_max">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMMIN", "atomic_load_min">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMAX", "atomic_load_umax">; defm : PSEUDO_ATOMIC_LOAD_BINOP_PATS<"ATOMUMIN", "atomic_load_umin">; multiclass PSEUDO_ATOMIC_LOAD_BINOP6432<string mnemonic> { let usesCustomInserter = 1, Defs = [EFLAGS, EAX, EDX], mayLoad = 1, mayStore = 1, hasSideEffects = 0 in def NAME#6432 : I<0, Pseudo, (outs GR32:$dst1, GR32:$dst2), (ins i64mem:$ptr, GR32:$val1, GR32:$val2), !strconcat(mnemonic, "6432 PSEUDO!"), []>; } defm ATOMAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMAND">; defm ATOMOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMOR">; defm ATOMXOR : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMXOR">; defm ATOMNAND : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMNAND">; defm ATOMADD : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMADD">; defm ATOMSUB : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSUB">; defm ATOMMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMAX">; defm ATOMMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMMIN">; defm ATOMUMAX : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMAX">; defm ATOMUMIN : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMUMIN">; defm ATOMSWAP : PSEUDO_ATOMIC_LOAD_BINOP6432<"#ATOMSWAP">; //===----------------------------------------------------------------------===// // Normal-Instructions-With-Lock-Prefix Pseudo Instructions //===----------------------------------------------------------------------===// // FIXME: Use normal instructions and add lock prefix dynamically. // Memory barriers // TODO: Get this to fold the constant into the instruction. let isCodeGenOnly = 1, Defs = [EFLAGS] in def OR32mrLocked : I<0x09, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$zero), "or{l}\t{$zero, $dst|$dst, $zero}", [], IIC_ALU_MEM>, Requires<[In32BitMode]>, LOCK; let hasSideEffects = 1 in def Int_MemBarrier : I<0, Pseudo, (outs), (ins), "#MEMBARRIER", [(X86MemBarrier)]>; // RegOpc corresponds to the mr version of the instruction // ImmOpc corresponds to the mi version of the instruction // ImmOpc8 corresponds to the mi8 version of the instruction // ImmMod corresponds to the instruction format of the mi and mi8 versions multiclass LOCK_ArithBinOp<bits<8> RegOpc, bits<8> ImmOpc, bits<8> ImmOpc8, Format ImmMod, string mnemonic> { let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in { def NAME#8mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 0 }, MRMDestMem, (outs), (ins i8mem:$dst, GR8:$src2), !strconcat(mnemonic, "{b}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, LOCK; def NAME#16mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, MRMDestMem, (outs), (ins i16mem:$dst, GR16:$src2), !strconcat(mnemonic, "{w}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, OpSize, LOCK; def NAME#32mr : I<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, MRMDestMem, (outs), (ins i32mem:$dst, GR32:$src2), !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, LOCK; def NAME#64mr : RI<{RegOpc{7}, RegOpc{6}, RegOpc{5}, RegOpc{4}, RegOpc{3}, RegOpc{2}, RegOpc{1}, 1 }, MRMDestMem, (outs), (ins i64mem:$dst, GR64:$src2), !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_NONMEM>, LOCK; def NAME#8mi : Ii8<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 0 }, ImmMod, (outs), (ins i8mem :$dst, i8imm :$src2), !strconcat(mnemonic, "{b}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; def NAME#16mi : Ii16<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, ImmMod, (outs), (ins i16mem :$dst, i16imm :$src2), !strconcat(mnemonic, "{w}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, OpSize, LOCK; def NAME#32mi : Ii32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, ImmMod, (outs), (ins i32mem :$dst, i32imm :$src2), !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; def NAME#64mi32 : RIi32<{ImmOpc{7}, ImmOpc{6}, ImmOpc{5}, ImmOpc{4}, ImmOpc{3}, ImmOpc{2}, ImmOpc{1}, 1 }, ImmMod, (outs), (ins i64mem :$dst, i64i32imm :$src2), !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; def NAME#16mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, ImmMod, (outs), (ins i16mem :$dst, i16i8imm :$src2), !strconcat(mnemonic, "{w}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, OpSize, LOCK; def NAME#32mi8 : Ii8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, ImmMod, (outs), (ins i32mem :$dst, i32i8imm :$src2), !strconcat(mnemonic, "{l}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; def NAME#64mi8 : RIi8<{ImmOpc8{7}, ImmOpc8{6}, ImmOpc8{5}, ImmOpc8{4}, ImmOpc8{3}, ImmOpc8{2}, ImmOpc8{1}, 1 }, ImmMod, (outs), (ins i64mem :$dst, i64i8imm :$src2), !strconcat(mnemonic, "{q}\t", "{$src2, $dst|$dst, $src2}"), [], IIC_ALU_MEM>, LOCK; } } defm LOCK_ADD : LOCK_ArithBinOp<0x00, 0x80, 0x83, MRM0m, "add">; defm LOCK_SUB : LOCK_ArithBinOp<0x28, 0x80, 0x83, MRM5m, "sub">; defm LOCK_OR : LOCK_ArithBinOp<0x08, 0x80, 0x83, MRM1m, "or">; defm LOCK_AND : LOCK_ArithBinOp<0x20, 0x80, 0x83, MRM4m, "and">; defm LOCK_XOR : LOCK_ArithBinOp<0x30, 0x80, 0x83, MRM6m, "xor">; // Optimized codegen when the non-memory output is not used. multiclass LOCK_ArithUnOp<bits<8> Opc8, bits<8> Opc, Format Form, string mnemonic> { let Defs = [EFLAGS], mayLoad = 1, mayStore = 1, isCodeGenOnly = 1 in { def NAME#8m : I<Opc8, Form, (outs), (ins i8mem :$dst), !strconcat(mnemonic, "{b}\t$dst"), [], IIC_UNARY_MEM>, LOCK; def NAME#16m : I<Opc, Form, (outs), (ins i16mem:$dst), !strconcat(mnemonic, "{w}\t$dst"), [], IIC_UNARY_MEM>, OpSize, LOCK; def NAME#32m : I<Opc, Form, (outs), (ins i32mem:$dst), !strconcat(mnemonic, "{l}\t$dst"), [], IIC_UNARY_MEM>, LOCK; def NAME#64m : RI<Opc, Form, (outs), (ins i64mem:$dst), !strconcat(mnemonic, "{q}\t$dst"), [], IIC_UNARY_MEM>, LOCK; } } defm LOCK_INC : LOCK_ArithUnOp<0xFE, 0xFF, MRM0m, "inc">; defm LOCK_DEC : LOCK_ArithUnOp<0xFE, 0xFF, MRM1m, "dec">; // Atomic compare and swap. multiclass LCMPXCHG_UnOp<bits<8> Opc, Format Form, string mnemonic, SDPatternOperator frag, X86MemOperand x86memop, InstrItinClass itin> { let isCodeGenOnly = 1 in { def NAME : I<Opc, Form, (outs), (ins x86memop:$ptr), !strconcat(mnemonic, "\t$ptr"), [(frag addr:$ptr)], itin>, TB, LOCK; } } multiclass LCMPXCHG_BinOp<bits<8> Opc8, bits<8> Opc, Format Form, string mnemonic, SDPatternOperator frag, InstrItinClass itin8, InstrItinClass itin> { let isCodeGenOnly = 1 in { let Defs = [AL, EFLAGS], Uses = [AL] in def NAME#8 : I<Opc8, Form, (outs), (ins i8mem:$ptr, GR8:$swap), !strconcat(mnemonic, "{b}\t{$swap, $ptr|$ptr, $swap}"), [(frag addr:$ptr, GR8:$swap, 1)], itin8>, TB, LOCK; let Defs = [AX, EFLAGS], Uses = [AX] in def NAME#16 : I<Opc, Form, (outs), (ins i16mem:$ptr, GR16:$swap), !strconcat(mnemonic, "{w}\t{$swap, $ptr|$ptr, $swap}"), [(frag addr:$ptr, GR16:$swap, 2)], itin>, TB, OpSize, LOCK; let Defs = [EAX, EFLAGS], Uses = [EAX] in def NAME#32 : I<Opc, Form, (outs), (ins i32mem:$ptr, GR32:$swap), !strconcat(mnemonic, "{l}\t{$swap, $ptr|$ptr, $swap}"), [(frag addr:$ptr, GR32:$swap, 4)], itin>, TB, LOCK; let Defs = [RAX, EFLAGS], Uses = [RAX] in def NAME#64 : RI<Opc, Form, (outs), (ins i64mem:$ptr, GR64:$swap), !strconcat(mnemonic, "{q}\t{$swap, $ptr|$ptr, $swap}"), [(frag addr:$ptr, GR64:$swap, 8)], itin>, TB, LOCK; } } let Defs = [EAX, EDX, EFLAGS], Uses = [EAX, EBX, ECX, EDX] in { defm LCMPXCHG8B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg8b", X86cas8, i64mem, IIC_CMPX_LOCK_8B>; } let Defs = [RAX, RDX, EFLAGS], Uses = [RAX, RBX, RCX, RDX], Predicates = [HasCmpxchg16b] in { defm LCMPXCHG16B : LCMPXCHG_UnOp<0xC7, MRM1m, "cmpxchg16b", X86cas16, i128mem, IIC_CMPX_LOCK_16B>, REX_W; } defm LCMPXCHG : LCMPXCHG_BinOp<0xB0, 0xB1, MRMDestMem, "cmpxchg", X86cas, IIC_CMPX_LOCK_8, IIC_CMPX_LOCK>; // Atomic exchange and add multiclass ATOMIC_LOAD_BINOP<bits<8> opc8, bits<8> opc, string mnemonic, string frag, InstrItinClass itin8, InstrItinClass itin> { let Constraints = "$val = $dst", Defs = [EFLAGS], isCodeGenOnly = 1 in { def NAME#8 : I<opc8, MRMSrcMem, (outs GR8:$dst), (ins GR8:$val, i8mem:$ptr), !strconcat(mnemonic, "{b}\t{$val, $ptr|$ptr, $val}"), [(set GR8:$dst, (!cast<PatFrag>(frag # "_8") addr:$ptr, GR8:$val))], itin8>; def NAME#16 : I<opc, MRMSrcMem, (outs GR16:$dst), (ins GR16:$val, i16mem:$ptr), !strconcat(mnemonic, "{w}\t{$val, $ptr|$ptr, $val}"), [(set GR16:$dst, (!cast<PatFrag>(frag # "_16") addr:$ptr, GR16:$val))], itin>, OpSize; def NAME#32 : I<opc, MRMSrcMem, (outs GR32:$dst), (ins GR32:$val, i32mem:$ptr), !strconcat(mnemonic, "{l}\t{$val, $ptr|$ptr, $val}"), [(set GR32:$dst, (!cast<PatFrag>(frag # "_32") addr:$ptr, GR32:$val))], itin>; def NAME#64 : RI<opc, MRMSrcMem, (outs GR64:$dst), (ins GR64:$val, i64mem:$ptr), !strconcat(mnemonic, "{q}\t{$val, $ptr|$ptr, $val}"), [(set GR64:$dst, (!cast<PatFrag>(frag # "_64") addr:$ptr, GR64:$val))], itin>; } } defm LXADD : ATOMIC_LOAD_BINOP<0xc0, 0xc1, "xadd", "atomic_load_add", IIC_XADD_LOCK_MEM8, IIC_XADD_LOCK_MEM>, TB, LOCK; def ACQUIRE_MOV8rm : I<0, Pseudo, (outs GR8 :$dst), (ins i8mem :$src), "#ACQUIRE_MOV PSEUDO!", [(set GR8:$dst, (atomic_load_8 addr:$src))]>; def ACQUIRE_MOV16rm : I<0, Pseudo, (outs GR16:$dst), (ins i16mem:$src), "#ACQUIRE_MOV PSEUDO!", [(set GR16:$dst, (atomic_load_16 addr:$src))]>; def ACQUIRE_MOV32rm : I<0, Pseudo, (outs GR32:$dst), (ins i32mem:$src), "#ACQUIRE_MOV PSEUDO!", [(set GR32:$dst, (atomic_load_32 addr:$src))]>; def ACQUIRE_MOV64rm : I<0, Pseudo, (outs GR64:$dst), (ins i64mem:$src), "#ACQUIRE_MOV PSEUDO!", [(set GR64:$dst, (atomic_load_64 addr:$src))]>; def RELEASE_MOV8mr : I<0, Pseudo, (outs), (ins i8mem :$dst, GR8 :$src), "#RELEASE_MOV PSEUDO!", [(atomic_store_8 addr:$dst, GR8 :$src)]>; def RELEASE_MOV16mr : I<0, Pseudo, (outs), (ins i16mem:$dst, GR16:$src), "#RELEASE_MOV PSEUDO!", [(atomic_store_16 addr:$dst, GR16:$src)]>; def RELEASE_MOV32mr : I<0, Pseudo, (outs), (ins i32mem:$dst, GR32:$src), "#RELEASE_MOV PSEUDO!", [(atomic_store_32 addr:$dst, GR32:$src)]>; def RELEASE_MOV64mr : I<0, Pseudo, (outs), (ins i64mem:$dst, GR64:$src), "#RELEASE_MOV PSEUDO!", [(atomic_store_64 addr:$dst, GR64:$src)]>; //===----------------------------------------------------------------------===// // Conditional Move Pseudo Instructions. //===----------------------------------------------------------------------===// // CMOV* - Used to implement the SSE SELECT DAG operation. Expanded after // instruction selection into a branch sequence. let Uses = [EFLAGS], usesCustomInserter = 1 in { def CMOV_FR32 : I<0, Pseudo, (outs FR32:$dst), (ins FR32:$t, FR32:$f, i8imm:$cond), "#CMOV_FR32 PSEUDO!", [(set FR32:$dst, (X86cmov FR32:$t, FR32:$f, imm:$cond, EFLAGS))]>; def CMOV_FR64 : I<0, Pseudo, (outs FR64:$dst), (ins FR64:$t, FR64:$f, i8imm:$cond), "#CMOV_FR64 PSEUDO!", [(set FR64:$dst, (X86cmov FR64:$t, FR64:$f, imm:$cond, EFLAGS))]>; def CMOV_V4F32 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V4F32 PSEUDO!", [(set VR128:$dst, (v4f32 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V2F64 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V2F64 PSEUDO!", [(set VR128:$dst, (v2f64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V2I64 : I<0, Pseudo, (outs VR128:$dst), (ins VR128:$t, VR128:$f, i8imm:$cond), "#CMOV_V2I64 PSEUDO!", [(set VR128:$dst, (v2i64 (X86cmov VR128:$t, VR128:$f, imm:$cond, EFLAGS)))]>; def CMOV_V8F32 : I<0, Pseudo, (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), "#CMOV_V8F32 PSEUDO!", [(set VR256:$dst, (v8f32 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)))]>; def CMOV_V4F64 : I<0, Pseudo, (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), "#CMOV_V4F64 PSEUDO!", [(set VR256:$dst, (v4f64 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)))]>; def CMOV_V4I64 : I<0, Pseudo, (outs VR256:$dst), (ins VR256:$t, VR256:$f, i8imm:$cond), "#CMOV_V4I64 PSEUDO!", [(set VR256:$dst, (v4i64 (X86cmov VR256:$t, VR256:$f, imm:$cond, EFLAGS)))]>; } //===----------------------------------------------------------------------===// // DAG Pattern Matching Rules //===----------------------------------------------------------------------===// // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable def : Pat<(i32 (X86Wrapper tconstpool :$dst)), (MOV32ri tconstpool :$dst)>; def : Pat<(i32 (X86Wrapper tjumptable :$dst)), (MOV32ri tjumptable :$dst)>; def : Pat<(i32 (X86Wrapper tglobaltlsaddr:$dst)),(MOV32ri tglobaltlsaddr:$dst)>; def : Pat<(i32 (X86Wrapper tglobaladdr :$dst)), (MOV32ri tglobaladdr :$dst)>; def : Pat<(i32 (X86Wrapper texternalsym:$dst)), (MOV32ri texternalsym:$dst)>; def : Pat<(i32 (X86Wrapper tblockaddress:$dst)), (MOV32ri tblockaddress:$dst)>; def : Pat<(add GR32:$src1, (X86Wrapper tconstpool:$src2)), (ADD32ri GR32:$src1, tconstpool:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tjumptable:$src2)), (ADD32ri GR32:$src1, tjumptable:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tglobaladdr :$src2)), (ADD32ri GR32:$src1, tglobaladdr:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper texternalsym:$src2)), (ADD32ri GR32:$src1, texternalsym:$src2)>; def : Pat<(add GR32:$src1, (X86Wrapper tblockaddress:$src2)), (ADD32ri GR32:$src1, tblockaddress:$src2)>; def : Pat<(store (i32 (X86Wrapper tglobaladdr:$src)), addr:$dst), (MOV32mi addr:$dst, tglobaladdr:$src)>; def : Pat<(store (i32 (X86Wrapper texternalsym:$src)), addr:$dst), (MOV32mi addr:$dst, texternalsym:$src)>; def : Pat<(store (i32 (X86Wrapper tblockaddress:$src)), addr:$dst), (MOV32mi addr:$dst, tblockaddress:$src)>; // ConstantPool GlobalAddress, ExternalSymbol, and JumpTable when not in small // code model mode, should use 'movabs'. FIXME: This is really a hack, the // 'movabs' predicate should handle this sort of thing. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri tconstpool :$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri tjumptable :$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri tglobaladdr :$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri texternalsym:$dst)>, Requires<[FarData]>; def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), (MOV64ri tblockaddress:$dst)>, Requires<[FarData]>; // In static codegen with small code model, we can get the address of a label // into a register with 'movl'. FIXME: This is a hack, the 'imm' predicate of // the MOV64ri64i32 should accept these. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri64i32 tconstpool :$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri64i32 tjumptable :$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri64i32 tglobaladdr :$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri64i32 texternalsym:$dst)>, Requires<[SmallCode]>; def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), (MOV64ri64i32 tblockaddress:$dst)>, Requires<[SmallCode]>; // In kernel code model, we can get the address of a label // into a register with 'movq'. FIXME: This is a hack, the 'imm' predicate of // the MOV64ri32 should accept these. def : Pat<(i64 (X86Wrapper tconstpool :$dst)), (MOV64ri32 tconstpool :$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper tjumptable :$dst)), (MOV64ri32 tjumptable :$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper tglobaladdr :$dst)), (MOV64ri32 tglobaladdr :$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper texternalsym:$dst)), (MOV64ri32 texternalsym:$dst)>, Requires<[KernelCode]>; def : Pat<(i64 (X86Wrapper tblockaddress:$dst)), (MOV64ri32 tblockaddress:$dst)>, Requires<[KernelCode]>; // If we have small model and -static mode, it is safe to store global addresses // directly as immediates. FIXME: This is really a hack, the 'imm' predicate // for MOV64mi32 should handle this sort of thing. def : Pat<(store (i64 (X86Wrapper tconstpool:$src)), addr:$dst), (MOV64mi32 addr:$dst, tconstpool:$src)>, Requires<[NearData, IsStatic]>; def : Pat<(store (i64 (X86Wrapper tjumptable:$src)), addr:$dst), (MOV64mi32 addr:$dst, tjumptable:$src)>, Requires<[NearData, IsStatic]>; def : Pat<(store (i64 (X86Wrapper tglobaladdr:$src)), addr:$dst), (MOV64mi32 addr:$dst, tglobaladdr:$src)>, Requires<[NearData, IsStatic]>; def : Pat<(store (i64 (X86Wrapper texternalsym:$src)), addr:$dst), (MOV64mi32 addr:$dst, texternalsym:$src)>, Requires<[NearData, IsStatic]>; def : Pat<(store (i64 (X86Wrapper tblockaddress:$src)), addr:$dst), (MOV64mi32 addr:$dst, tblockaddress:$src)>, Requires<[NearData, IsStatic]>; // Calls // tls has some funny stuff here... // This corresponds to movabs $foo@tpoff, %rax def : Pat<(i64 (X86Wrapper tglobaltlsaddr :$dst)), (MOV64ri tglobaltlsaddr :$dst)>; // This corresponds to add $foo@tpoff, %rax def : Pat<(add GR64:$src1, (X86Wrapper tglobaltlsaddr :$dst)), (ADD64ri32 GR64:$src1, tglobaltlsaddr :$dst)>; // This corresponds to mov foo@tpoff(%rbx), %eax def : Pat<(load (i64 (X86Wrapper tglobaltlsaddr :$dst))), (MOV64rm tglobaltlsaddr :$dst)>; // Direct PC relative function call for small code model. 32-bit displacement // sign extended to 64-bit. def : Pat<(X86call (i64 tglobaladdr:$dst)), (CALL64pcrel32 tglobaladdr:$dst)>; def : Pat<(X86call (i64 texternalsym:$dst)), (CALL64pcrel32 texternalsym:$dst)>; // Tailcall stuff. The TCRETURN instructions execute after the epilog, so they // can never use callee-saved registers. That is the purpose of the GR64_TC // register classes. // // The only volatile register that is never used by the calling convention is // %r11. This happens when calling a vararg function with 6 arguments. // // Match an X86tcret that uses less than 7 volatile registers. def X86tcret_6regs : PatFrag<(ops node:$ptr, node:$off), (X86tcret node:$ptr, node:$off), [{ // X86tcret args: (*chain, ptr, imm, regs..., glue) unsigned NumRegs = 0; for (unsigned i = 3, e = N->getNumOperands(); i != e; ++i) if (isa<RegisterSDNode>(N->getOperand(i)) && ++NumRegs > 6) return false; return true; }]>; def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), (TCRETURNri ptr_rc_tailcall:$dst, imm:$off)>, Requires<[In32BitMode]>; // FIXME: This is disabled for 32-bit PIC mode because the global base // register which is part of the address mode may be assigned a // callee-saved register. def : Pat<(X86tcret (load addr:$dst), imm:$off), (TCRETURNmi addr:$dst, imm:$off)>, Requires<[In32BitMode, IsNotPIC]>; def : Pat<(X86tcret (i32 tglobaladdr:$dst), imm:$off), (TCRETURNdi texternalsym:$dst, imm:$off)>, Requires<[In32BitMode]>; def : Pat<(X86tcret (i32 texternalsym:$dst), imm:$off), (TCRETURNdi texternalsym:$dst, imm:$off)>, Requires<[In32BitMode]>; def : Pat<(X86tcret ptr_rc_tailcall:$dst, imm:$off), (TCRETURNri64 ptr_rc_tailcall:$dst, imm:$off)>, Requires<[In64BitMode]>; // Don't fold loads into X86tcret requiring more than 6 regs. // There wouldn't be enough scratch registers for base+index. def : Pat<(X86tcret_6regs (load addr:$dst), imm:$off), (TCRETURNmi64 addr:$dst, imm:$off)>, Requires<[In64BitMode]>; def : Pat<(X86tcret (i64 tglobaladdr:$dst), imm:$off), (TCRETURNdi64 tglobaladdr:$dst, imm:$off)>, Requires<[In64BitMode]>; def : Pat<(X86tcret (i64 texternalsym:$dst), imm:$off), (TCRETURNdi64 texternalsym:$dst, imm:$off)>, Requires<[In64BitMode]>; // Normal calls, with various flavors of addresses. def : Pat<(X86call (i32 tglobaladdr:$dst)), (CALLpcrel32 tglobaladdr:$dst)>; def : Pat<(X86call (i32 texternalsym:$dst)), (CALLpcrel32 texternalsym:$dst)>; def : Pat<(X86call (i32 imm:$dst)), (CALLpcrel32 imm:$dst)>, Requires<[CallImmAddr]>; // Comparisons. // TEST R,R is smaller than CMP R,0 def : Pat<(X86cmp GR8:$src1, 0), (TEST8rr GR8:$src1, GR8:$src1)>; def : Pat<(X86cmp GR16:$src1, 0), (TEST16rr GR16:$src1, GR16:$src1)>; def : Pat<(X86cmp GR32:$src1, 0), (TEST32rr GR32:$src1, GR32:$src1)>; def : Pat<(X86cmp GR64:$src1, 0), (TEST64rr GR64:$src1, GR64:$src1)>; // Conditional moves with folded loads with operands swapped and conditions // inverted. multiclass CMOVmr<PatLeaf InvertedCond, Instruction Inst16, Instruction Inst32, Instruction Inst64> { let Predicates = [HasCMov] in { def : Pat<(X86cmov (loadi16 addr:$src1), GR16:$src2, InvertedCond, EFLAGS), (Inst16 GR16:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi32 addr:$src1), GR32:$src2, InvertedCond, EFLAGS), (Inst32 GR32:$src2, addr:$src1)>; def : Pat<(X86cmov (loadi64 addr:$src1), GR64:$src2, InvertedCond, EFLAGS), (Inst64 GR64:$src2, addr:$src1)>; } } defm : CMOVmr<X86_COND_B , CMOVAE16rm, CMOVAE32rm, CMOVAE64rm>; defm : CMOVmr<X86_COND_AE, CMOVB16rm , CMOVB32rm , CMOVB64rm>; defm : CMOVmr<X86_COND_E , CMOVNE16rm, CMOVNE32rm, CMOVNE64rm>; defm : CMOVmr<X86_COND_NE, CMOVE16rm , CMOVE32rm , CMOVE64rm>; defm : CMOVmr<X86_COND_BE, CMOVA16rm , CMOVA32rm , CMOVA64rm>; defm : CMOVmr<X86_COND_A , CMOVBE16rm, CMOVBE32rm, CMOVBE64rm>; defm : CMOVmr<X86_COND_L , CMOVGE16rm, CMOVGE32rm, CMOVGE64rm>; defm : CMOVmr<X86_COND_GE, CMOVL16rm , CMOVL32rm , CMOVL64rm>; defm : CMOVmr<X86_COND_LE, CMOVG16rm , CMOVG32rm , CMOVG64rm>; defm : CMOVmr<X86_COND_G , CMOVLE16rm, CMOVLE32rm, CMOVLE64rm>; defm : CMOVmr<X86_COND_P , CMOVNP16rm, CMOVNP32rm, CMOVNP64rm>; defm : CMOVmr<X86_COND_NP, CMOVP16rm , CMOVP32rm , CMOVP64rm>; defm : CMOVmr<X86_COND_S , CMOVNS16rm, CMOVNS32rm, CMOVNS64rm>; defm : CMOVmr<X86_COND_NS, CMOVS16rm , CMOVS32rm , CMOVS64rm>; defm : CMOVmr<X86_COND_O , CMOVNO16rm, CMOVNO32rm, CMOVNO64rm>; defm : CMOVmr<X86_COND_NO, CMOVO16rm , CMOVO32rm , CMOVO64rm>; // zextload bool -> zextload byte def : Pat<(zextloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(zextloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>; // extload bool -> extload byte // When extloading from 16-bit and smaller memory locations into 64-bit // registers, use zero-extending loads so that the entire 64-bit register is // defined, avoiding partial-register updates. def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>; def : Pat<(extloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(extloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi16i8 addr:$src), (MOVZX16rm8 addr:$src)>; def : Pat<(extloadi32i8 addr:$src), (MOVZX32rm8 addr:$src)>; def : Pat<(extloadi32i16 addr:$src), (MOVZX32rm16 addr:$src)>; def : Pat<(extloadi64i1 addr:$src), (MOVZX64rm8 addr:$src)>; def : Pat<(extloadi64i8 addr:$src), (MOVZX64rm8 addr:$src)>; def : Pat<(extloadi64i16 addr:$src), (MOVZX64rm16 addr:$src)>; // For other extloads, use subregs, since the high contents of the register are // defined after an extload. def : Pat<(extloadi64i32 addr:$src), (SUBREG_TO_REG (i64 0), (MOV32rm addr:$src), sub_32bit)>; // anyext. Define these to do an explicit zero-extend to // avoid partial-register updates. def : Pat<(i16 (anyext GR8 :$src)), (EXTRACT_SUBREG (MOVZX32rr8 GR8 :$src), sub_16bit)>; def : Pat<(i32 (anyext GR8 :$src)), (MOVZX32rr8 GR8 :$src)>; // Except for i16 -> i32 since isel expect i16 ops to be promoted to i32. def : Pat<(i32 (anyext GR16:$src)), (INSERT_SUBREG (i32 (IMPLICIT_DEF)), GR16:$src, sub_16bit)>; def : Pat<(i64 (anyext GR8 :$src)), (MOVZX64rr8 GR8 :$src)>; def : Pat<(i64 (anyext GR16:$src)), (MOVZX64rr16 GR16 :$src)>; def : Pat<(i64 (anyext GR32:$src)), (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; // Any instruction that defines a 32-bit result leaves the high half of the // register. Truncate can be lowered to EXTRACT_SUBREG. CopyFromReg may // be copying from a truncate. And x86's cmov doesn't do anything if the // condition is false. But any other 32-bit operation will zero-extend // up to 64 bits. def def32 : PatLeaf<(i32 GR32:$src), [{ return N->getOpcode() != ISD::TRUNCATE && N->getOpcode() != TargetOpcode::EXTRACT_SUBREG && N->getOpcode() != ISD::CopyFromReg && N->getOpcode() != X86ISD::CMOV; }]>; // In the case of a 32-bit def that is known to implicitly zero-extend, // we can use a SUBREG_TO_REG. def : Pat<(i64 (zext def32:$src)), (SUBREG_TO_REG (i64 0), GR32:$src, sub_32bit)>; //===----------------------------------------------------------------------===// // Pattern match OR as ADD //===----------------------------------------------------------------------===// // If safe, we prefer to pattern match OR as ADD at isel time. ADD can be // 3-addressified into an LEA instruction to avoid copies. However, we also // want to finally emit these instructions as an or at the end of the code // generator to make the generated code easier to read. To do this, we select // into "disjoint bits" pseudo ops. // Treat an 'or' node is as an 'add' if the or'ed bits are known to be zero. def or_is_add : PatFrag<(ops node:$lhs, node:$rhs), (or node:$lhs, node:$rhs),[{ if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(N->getOperand(1))) return CurDAG->MaskedValueIsZero(N->getOperand(0), CN->getAPIntValue()); APInt KnownZero0, KnownOne0; CurDAG->ComputeMaskedBits(N->getOperand(0), KnownZero0, KnownOne0, 0); APInt KnownZero1, KnownOne1; CurDAG->ComputeMaskedBits(N->getOperand(1), KnownZero1, KnownOne1, 0); return (~KnownZero0 & ~KnownZero1) == 0; }]>; // (or x1, x2) -> (add x1, x2) if two operands are known not to share bits. let AddedComplexity = 5 in { // Try this before the selecting to OR let isConvertibleToThreeAddress = 1, Constraints = "$src1 = $dst", Defs = [EFLAGS] in { let isCommutable = 1 in { def ADD16rr_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, GR16:$src2), "", // orw/addw REG, REG [(set GR16:$dst, (or_is_add GR16:$src1, GR16:$src2))]>; def ADD32rr_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, GR32:$src2), "", // orl/addl REG, REG [(set GR32:$dst, (or_is_add GR32:$src1, GR32:$src2))]>; def ADD64rr_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, GR64:$src2), "", // orq/addq REG, REG [(set GR64:$dst, (or_is_add GR64:$src1, GR64:$src2))]>; } // isCommutable // NOTE: These are order specific, we want the ri8 forms to be listed // first so that they are slightly preferred to the ri forms. def ADD16ri8_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16i8imm:$src2), "", // orw/addw REG, imm8 [(set GR16:$dst,(or_is_add GR16:$src1,i16immSExt8:$src2))]>; def ADD16ri_DB : I<0, Pseudo, (outs GR16:$dst), (ins GR16:$src1, i16imm:$src2), "", // orw/addw REG, imm [(set GR16:$dst, (or_is_add GR16:$src1, imm:$src2))]>; def ADD32ri8_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32i8imm:$src2), "", // orl/addl REG, imm8 [(set GR32:$dst,(or_is_add GR32:$src1,i32immSExt8:$src2))]>; def ADD32ri_DB : I<0, Pseudo, (outs GR32:$dst), (ins GR32:$src1, i32imm:$src2), "", // orl/addl REG, imm [(set GR32:$dst, (or_is_add GR32:$src1, imm:$src2))]>; def ADD64ri8_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, i64i8imm:$src2), "", // orq/addq REG, imm8 [(set GR64:$dst, (or_is_add GR64:$src1, i64immSExt8:$src2))]>; def ADD64ri32_DB : I<0, Pseudo, (outs GR64:$dst), (ins GR64:$src1, i64i32imm:$src2), "", // orq/addq REG, imm [(set GR64:$dst, (or_is_add GR64:$src1, i64immSExt32:$src2))]>; } } // AddedComplexity //===----------------------------------------------------------------------===// // Some peepholes //===----------------------------------------------------------------------===// // Odd encoding trick: -128 fits into an 8-bit immediate field while // +128 doesn't, so in this special case use a sub instead of an add. def : Pat<(add GR16:$src1, 128), (SUB16ri8 GR16:$src1, -128)>; def : Pat<(store (add (loadi16 addr:$dst), 128), addr:$dst), (SUB16mi8 addr:$dst, -128)>; def : Pat<(add GR32:$src1, 128), (SUB32ri8 GR32:$src1, -128)>; def : Pat<(store (add (loadi32 addr:$dst), 128), addr:$dst), (SUB32mi8 addr:$dst, -128)>; def : Pat<(add GR64:$src1, 128), (SUB64ri8 GR64:$src1, -128)>; def : Pat<(store (add (loadi64 addr:$dst), 128), addr:$dst), (SUB64mi8 addr:$dst, -128)>; // The same trick applies for 32-bit immediate fields in 64-bit // instructions. def : Pat<(add GR64:$src1, 0x0000000080000000), (SUB64ri32 GR64:$src1, 0xffffffff80000000)>; def : Pat<(store (add (loadi64 addr:$dst), 0x00000000800000000), addr:$dst), (SUB64mi32 addr:$dst, 0xffffffff80000000)>; // To avoid needing to materialize an immediate in a register, use a 32-bit and // with implicit zero-extension instead of a 64-bit and if the immediate has at // least 32 bits of leading zeros. If in addition the last 32 bits can be // represented with a sign extension of a 8 bit constant, use that. def : Pat<(and GR64:$src, i64immZExt32SExt8:$imm), (SUBREG_TO_REG (i64 0), (AND32ri8 (EXTRACT_SUBREG GR64:$src, sub_32bit), (i32 (GetLo8XForm imm:$imm))), sub_32bit)>; def : Pat<(and GR64:$src, i64immZExt32:$imm), (SUBREG_TO_REG (i64 0), (AND32ri (EXTRACT_SUBREG GR64:$src, sub_32bit), (i32 (GetLo32XForm imm:$imm))), sub_32bit)>; // r & (2^16-1) ==> movz def : Pat<(and GR32:$src1, 0xffff), (MOVZX32rr16 (EXTRACT_SUBREG GR32:$src1, sub_16bit))>; // r & (2^8-1) ==> movz def : Pat<(and GR32:$src1, 0xff), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src1, GR32_ABCD)), sub_8bit))>, Requires<[In32BitMode]>; // r & (2^8-1) ==> movz def : Pat<(and GR16:$src1, 0xff), (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src1, GR16_ABCD)), sub_8bit)), sub_16bit)>, Requires<[In32BitMode]>; // r & (2^32-1) ==> movz def : Pat<(and GR64:$src, 0x00000000FFFFFFFF), (MOVZX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; // r & (2^16-1) ==> movz def : Pat<(and GR64:$src, 0xffff), (MOVZX64rr16 (i16 (EXTRACT_SUBREG GR64:$src, sub_16bit)))>; // r & (2^8-1) ==> movz def : Pat<(and GR64:$src, 0xff), (MOVZX64rr8 (i8 (EXTRACT_SUBREG GR64:$src, sub_8bit)))>; // r & (2^8-1) ==> movz def : Pat<(and GR32:$src1, 0xff), (MOVZX32rr8 (EXTRACT_SUBREG GR32:$src1, sub_8bit))>, Requires<[In64BitMode]>; // r & (2^8-1) ==> movz def : Pat<(and GR16:$src1, 0xff), (EXTRACT_SUBREG (MOVZX32rr8 (i8 (EXTRACT_SUBREG GR16:$src1, sub_8bit))), sub_16bit)>, Requires<[In64BitMode]>; // sext_inreg patterns def : Pat<(sext_inreg GR32:$src, i16), (MOVSX32rr16 (EXTRACT_SUBREG GR32:$src, sub_16bit))>; def : Pat<(sext_inreg GR32:$src, i8), (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit))>, Requires<[In32BitMode]>; def : Pat<(sext_inreg GR16:$src, i8), (EXTRACT_SUBREG (i32 (MOVSX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit))), sub_16bit)>, Requires<[In32BitMode]>; def : Pat<(sext_inreg GR64:$src, i32), (MOVSX64rr32 (EXTRACT_SUBREG GR64:$src, sub_32bit))>; def : Pat<(sext_inreg GR64:$src, i16), (MOVSX64rr16 (EXTRACT_SUBREG GR64:$src, sub_16bit))>; def : Pat<(sext_inreg GR64:$src, i8), (MOVSX64rr8 (EXTRACT_SUBREG GR64:$src, sub_8bit))>; def : Pat<(sext_inreg GR32:$src, i8), (MOVSX32rr8 (EXTRACT_SUBREG GR32:$src, sub_8bit))>, Requires<[In64BitMode]>; def : Pat<(sext_inreg GR16:$src, i8), (EXTRACT_SUBREG (MOVSX32rr8 (EXTRACT_SUBREG GR16:$src, sub_8bit)), sub_16bit)>, Requires<[In64BitMode]>; // sext, sext_load, zext, zext_load def: Pat<(i16 (sext GR8:$src)), (EXTRACT_SUBREG (MOVSX32rr8 GR8:$src), sub_16bit)>; def: Pat<(sextloadi16i8 addr:$src), (EXTRACT_SUBREG (MOVSX32rm8 addr:$src), sub_16bit)>; def: Pat<(i16 (zext GR8:$src)), (EXTRACT_SUBREG (MOVZX32rr8 GR8:$src), sub_16bit)>; def: Pat<(zextloadi16i8 addr:$src), (EXTRACT_SUBREG (MOVZX32rm8 addr:$src), sub_16bit)>; // trunc patterns def : Pat<(i16 (trunc GR32:$src)), (EXTRACT_SUBREG GR32:$src, sub_16bit)>; def : Pat<(i8 (trunc GR32:$src)), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit)>, Requires<[In32BitMode]>; def : Pat<(i8 (trunc GR16:$src)), (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit)>, Requires<[In32BitMode]>; def : Pat<(i32 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, sub_32bit)>; def : Pat<(i16 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, sub_16bit)>; def : Pat<(i8 (trunc GR64:$src)), (EXTRACT_SUBREG GR64:$src, sub_8bit)>; def : Pat<(i8 (trunc GR32:$src)), (EXTRACT_SUBREG GR32:$src, sub_8bit)>, Requires<[In64BitMode]>; def : Pat<(i8 (trunc GR16:$src)), (EXTRACT_SUBREG GR16:$src, sub_8bit)>, Requires<[In64BitMode]>; // h-register tricks def : Pat<(i8 (trunc (srl_su GR16:$src, (i8 8)))), (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)>, Requires<[In32BitMode]>; def : Pat<(i8 (trunc (srl_su GR32:$src, (i8 8)))), (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi)>, Requires<[In32BitMode]>; def : Pat<(srl GR16:$src, (i8 8)), (EXTRACT_SUBREG (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_16bit)>, Requires<[In32BitMode]>; def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), (MOVZX32rr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), (MOVZX32rr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In32BitMode]>; // h-register tricks. // For now, be conservative on x86-64 and use an h-register extract only if the // value is immediately zero-extended or stored, which are somewhat common // cases. This uses a bunch of code to prevent a register requiring a REX prefix // from being allocated in the same instruction as the h register, as there's // currently no way to describe this requirement to the register allocator. // h-register extract and zero-extend. def : Pat<(and (srl_su GR64:$src, (i8 8)), (i64 255)), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), sub_8bit_hi)), sub_32bit)>; def : Pat<(and (srl_su GR32:$src, (i8 8)), (i32 255)), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(srl (and_su GR32:$src, 0xff00), (i8 8)), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(srl GR16:$src, (i8 8)), (EXTRACT_SUBREG (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_16bit)>, Requires<[In64BitMode]>; def : Pat<(i32 (zext (srl_su GR16:$src, (i8 8)))), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(i32 (anyext (srl_su GR16:$src, (i8 8)))), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(i64 (zext (srl_su GR16:$src, (i8 8)))), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_32bit)>; def : Pat<(i64 (anyext (srl_su GR16:$src, (i8 8)))), (SUBREG_TO_REG (i64 0), (MOVZX32_NOREXrr8 (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi)), sub_32bit)>; // h-register extract and store. def : Pat<(store (i8 (trunc_su (srl_su GR64:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (i64 (COPY_TO_REGCLASS GR64:$src, GR64_ABCD)), sub_8bit_hi))>; def : Pat<(store (i8 (trunc_su (srl_su GR32:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (i32 (COPY_TO_REGCLASS GR32:$src, GR32_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; def : Pat<(store (i8 (trunc_su (srl_su GR16:$src, (i8 8)))), addr:$dst), (MOV8mr_NOREX addr:$dst, (EXTRACT_SUBREG (i16 (COPY_TO_REGCLASS GR16:$src, GR16_ABCD)), sub_8bit_hi))>, Requires<[In64BitMode]>; // (shl x, 1) ==> (add x, x) // Note that if x is undef (immediate or otherwise), we could theoretically // end up with the two uses of x getting different values, producing a result // where the least significant bit is not 0. However, the probability of this // happening is considered low enough that this is officially not a // "real problem". def : Pat<(shl GR8 :$src1, (i8 1)), (ADD8rr GR8 :$src1, GR8 :$src1)>; def : Pat<(shl GR16:$src1, (i8 1)), (ADD16rr GR16:$src1, GR16:$src1)>; def : Pat<(shl GR32:$src1, (i8 1)), (ADD32rr GR32:$src1, GR32:$src1)>; def : Pat<(shl GR64:$src1, (i8 1)), (ADD64rr GR64:$src1, GR64:$src1)>; // Helper imms that check if a mask doesn't change significant shift bits. def immShift32 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 5; }]>; def immShift64 : ImmLeaf<i8, [{ return CountTrailingOnes_32(Imm) >= 6; }]>; // (shl x (and y, 31)) ==> (shl x, y) def : Pat<(shl GR8:$src1, (and CL, immShift32)), (SHL8rCL GR8:$src1)>; def : Pat<(shl GR16:$src1, (and CL, immShift32)), (SHL16rCL GR16:$src1)>; def : Pat<(shl GR32:$src1, (and CL, immShift32)), (SHL32rCL GR32:$src1)>; def : Pat<(store (shl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), (SHL8mCL addr:$dst)>; def : Pat<(store (shl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), (SHL16mCL addr:$dst)>; def : Pat<(store (shl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), (SHL32mCL addr:$dst)>; def : Pat<(srl GR8:$src1, (and CL, immShift32)), (SHR8rCL GR8:$src1)>; def : Pat<(srl GR16:$src1, (and CL, immShift32)), (SHR16rCL GR16:$src1)>; def : Pat<(srl GR32:$src1, (and CL, immShift32)), (SHR32rCL GR32:$src1)>; def : Pat<(store (srl (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), (SHR8mCL addr:$dst)>; def : Pat<(store (srl (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), (SHR16mCL addr:$dst)>; def : Pat<(store (srl (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), (SHR32mCL addr:$dst)>; def : Pat<(sra GR8:$src1, (and CL, immShift32)), (SAR8rCL GR8:$src1)>; def : Pat<(sra GR16:$src1, (and CL, immShift32)), (SAR16rCL GR16:$src1)>; def : Pat<(sra GR32:$src1, (and CL, immShift32)), (SAR32rCL GR32:$src1)>; def : Pat<(store (sra (loadi8 addr:$dst), (and CL, immShift32)), addr:$dst), (SAR8mCL addr:$dst)>; def : Pat<(store (sra (loadi16 addr:$dst), (and CL, immShift32)), addr:$dst), (SAR16mCL addr:$dst)>; def : Pat<(store (sra (loadi32 addr:$dst), (and CL, immShift32)), addr:$dst), (SAR32mCL addr:$dst)>; // (shl x (and y, 63)) ==> (shl x, y) def : Pat<(shl GR64:$src1, (and CL, immShift64)), (SHL64rCL GR64:$src1)>; def : Pat<(store (shl (loadi64 addr:$dst), (and CL, 63)), addr:$dst), (SHL64mCL addr:$dst)>; def : Pat<(srl GR64:$src1, (and CL, immShift64)), (SHR64rCL GR64:$src1)>; def : Pat<(store (srl (loadi64 addr:$dst), (and CL, 63)), addr:$dst), (SHR64mCL addr:$dst)>; def : Pat<(sra GR64:$src1, (and CL, immShift64)), (SAR64rCL GR64:$src1)>; def : Pat<(store (sra (loadi64 addr:$dst), (and CL, 63)), addr:$dst), (SAR64mCL addr:$dst)>; // (anyext (setcc_carry)) -> (setcc_carry) def : Pat<(i16 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C16r)>; def : Pat<(i32 (anyext (i8 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; def : Pat<(i32 (anyext (i16 (X86setcc_c X86_COND_B, EFLAGS)))), (SETB_C32r)>; //===----------------------------------------------------------------------===// // EFLAGS-defining Patterns //===----------------------------------------------------------------------===// // add reg, reg def : Pat<(add GR8 :$src1, GR8 :$src2), (ADD8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(add GR16:$src1, GR16:$src2), (ADD16rr GR16:$src1, GR16:$src2)>; def : Pat<(add GR32:$src1, GR32:$src2), (ADD32rr GR32:$src1, GR32:$src2)>; // add reg, mem def : Pat<(add GR8:$src1, (loadi8 addr:$src2)), (ADD8rm GR8:$src1, addr:$src2)>; def : Pat<(add GR16:$src1, (loadi16 addr:$src2)), (ADD16rm GR16:$src1, addr:$src2)>; def : Pat<(add GR32:$src1, (loadi32 addr:$src2)), (ADD32rm GR32:$src1, addr:$src2)>; // add reg, imm def : Pat<(add GR8 :$src1, imm:$src2), (ADD8ri GR8:$src1 , imm:$src2)>; def : Pat<(add GR16:$src1, imm:$src2), (ADD16ri GR16:$src1, imm:$src2)>; def : Pat<(add GR32:$src1, imm:$src2), (ADD32ri GR32:$src1, imm:$src2)>; def : Pat<(add GR16:$src1, i16immSExt8:$src2), (ADD16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(add GR32:$src1, i32immSExt8:$src2), (ADD32ri8 GR32:$src1, i32immSExt8:$src2)>; // sub reg, reg def : Pat<(sub GR8 :$src1, GR8 :$src2), (SUB8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(sub GR16:$src1, GR16:$src2), (SUB16rr GR16:$src1, GR16:$src2)>; def : Pat<(sub GR32:$src1, GR32:$src2), (SUB32rr GR32:$src1, GR32:$src2)>; // sub reg, mem def : Pat<(sub GR8:$src1, (loadi8 addr:$src2)), (SUB8rm GR8:$src1, addr:$src2)>; def : Pat<(sub GR16:$src1, (loadi16 addr:$src2)), (SUB16rm GR16:$src1, addr:$src2)>; def : Pat<(sub GR32:$src1, (loadi32 addr:$src2)), (SUB32rm GR32:$src1, addr:$src2)>; // sub reg, imm def : Pat<(sub GR8:$src1, imm:$src2), (SUB8ri GR8:$src1, imm:$src2)>; def : Pat<(sub GR16:$src1, imm:$src2), (SUB16ri GR16:$src1, imm:$src2)>; def : Pat<(sub GR32:$src1, imm:$src2), (SUB32ri GR32:$src1, imm:$src2)>; def : Pat<(sub GR16:$src1, i16immSExt8:$src2), (SUB16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(sub GR32:$src1, i32immSExt8:$src2), (SUB32ri8 GR32:$src1, i32immSExt8:$src2)>; // sub 0, reg def : Pat<(X86sub_flag 0, GR8 :$src), (NEG8r GR8 :$src)>; def : Pat<(X86sub_flag 0, GR16:$src), (NEG16r GR16:$src)>; def : Pat<(X86sub_flag 0, GR32:$src), (NEG32r GR32:$src)>; def : Pat<(X86sub_flag 0, GR64:$src), (NEG64r GR64:$src)>; // mul reg, reg def : Pat<(mul GR16:$src1, GR16:$src2), (IMUL16rr GR16:$src1, GR16:$src2)>; def : Pat<(mul GR32:$src1, GR32:$src2), (IMUL32rr GR32:$src1, GR32:$src2)>; // mul reg, mem def : Pat<(mul GR16:$src1, (loadi16 addr:$src2)), (IMUL16rm GR16:$src1, addr:$src2)>; def : Pat<(mul GR32:$src1, (loadi32 addr:$src2)), (IMUL32rm GR32:$src1, addr:$src2)>; // mul reg, imm def : Pat<(mul GR16:$src1, imm:$src2), (IMUL16rri GR16:$src1, imm:$src2)>; def : Pat<(mul GR32:$src1, imm:$src2), (IMUL32rri GR32:$src1, imm:$src2)>; def : Pat<(mul GR16:$src1, i16immSExt8:$src2), (IMUL16rri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(mul GR32:$src1, i32immSExt8:$src2), (IMUL32rri8 GR32:$src1, i32immSExt8:$src2)>; // reg = mul mem, imm def : Pat<(mul (loadi16 addr:$src1), imm:$src2), (IMUL16rmi addr:$src1, imm:$src2)>; def : Pat<(mul (loadi32 addr:$src1), imm:$src2), (IMUL32rmi addr:$src1, imm:$src2)>; def : Pat<(mul (loadi16 addr:$src1), i16immSExt8:$src2), (IMUL16rmi8 addr:$src1, i16immSExt8:$src2)>; def : Pat<(mul (loadi32 addr:$src1), i32immSExt8:$src2), (IMUL32rmi8 addr:$src1, i32immSExt8:$src2)>; // Patterns for nodes that do not produce flags, for instructions that do. // addition def : Pat<(add GR64:$src1, GR64:$src2), (ADD64rr GR64:$src1, GR64:$src2)>; def : Pat<(add GR64:$src1, i64immSExt8:$src2), (ADD64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(add GR64:$src1, i64immSExt32:$src2), (ADD64ri32 GR64:$src1, i64immSExt32:$src2)>; def : Pat<(add GR64:$src1, (loadi64 addr:$src2)), (ADD64rm GR64:$src1, addr:$src2)>; // subtraction def : Pat<(sub GR64:$src1, GR64:$src2), (SUB64rr GR64:$src1, GR64:$src2)>; def : Pat<(sub GR64:$src1, (loadi64 addr:$src2)), (SUB64rm GR64:$src1, addr:$src2)>; def : Pat<(sub GR64:$src1, i64immSExt8:$src2), (SUB64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(sub GR64:$src1, i64immSExt32:$src2), (SUB64ri32 GR64:$src1, i64immSExt32:$src2)>; // Multiply def : Pat<(mul GR64:$src1, GR64:$src2), (IMUL64rr GR64:$src1, GR64:$src2)>; def : Pat<(mul GR64:$src1, (loadi64 addr:$src2)), (IMUL64rm GR64:$src1, addr:$src2)>; def : Pat<(mul GR64:$src1, i64immSExt8:$src2), (IMUL64rri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(mul GR64:$src1, i64immSExt32:$src2), (IMUL64rri32 GR64:$src1, i64immSExt32:$src2)>; def : Pat<(mul (loadi64 addr:$src1), i64immSExt8:$src2), (IMUL64rmi8 addr:$src1, i64immSExt8:$src2)>; def : Pat<(mul (loadi64 addr:$src1), i64immSExt32:$src2), (IMUL64rmi32 addr:$src1, i64immSExt32:$src2)>; // Increment reg. def : Pat<(add GR8 :$src, 1), (INC8r GR8 :$src)>; def : Pat<(add GR16:$src, 1), (INC16r GR16:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR16:$src, 1), (INC64_16r GR16:$src)>, Requires<[In64BitMode]>; def : Pat<(add GR32:$src, 1), (INC32r GR32:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR32:$src, 1), (INC64_32r GR32:$src)>, Requires<[In64BitMode]>; def : Pat<(add GR64:$src, 1), (INC64r GR64:$src)>; // Decrement reg. def : Pat<(add GR8 :$src, -1), (DEC8r GR8 :$src)>; def : Pat<(add GR16:$src, -1), (DEC16r GR16:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR16:$src, -1), (DEC64_16r GR16:$src)>, Requires<[In64BitMode]>; def : Pat<(add GR32:$src, -1), (DEC32r GR32:$src)>, Requires<[In32BitMode]>; def : Pat<(add GR32:$src, -1), (DEC64_32r GR32:$src)>, Requires<[In64BitMode]>; def : Pat<(add GR64:$src, -1), (DEC64r GR64:$src)>; // or reg/reg. def : Pat<(or GR8 :$src1, GR8 :$src2), (OR8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(or GR16:$src1, GR16:$src2), (OR16rr GR16:$src1, GR16:$src2)>; def : Pat<(or GR32:$src1, GR32:$src2), (OR32rr GR32:$src1, GR32:$src2)>; def : Pat<(or GR64:$src1, GR64:$src2), (OR64rr GR64:$src1, GR64:$src2)>; // or reg/mem def : Pat<(or GR8:$src1, (loadi8 addr:$src2)), (OR8rm GR8:$src1, addr:$src2)>; def : Pat<(or GR16:$src1, (loadi16 addr:$src2)), (OR16rm GR16:$src1, addr:$src2)>; def : Pat<(or GR32:$src1, (loadi32 addr:$src2)), (OR32rm GR32:$src1, addr:$src2)>; def : Pat<(or GR64:$src1, (loadi64 addr:$src2)), (OR64rm GR64:$src1, addr:$src2)>; // or reg/imm def : Pat<(or GR8:$src1 , imm:$src2), (OR8ri GR8 :$src1, imm:$src2)>; def : Pat<(or GR16:$src1, imm:$src2), (OR16ri GR16:$src1, imm:$src2)>; def : Pat<(or GR32:$src1, imm:$src2), (OR32ri GR32:$src1, imm:$src2)>; def : Pat<(or GR16:$src1, i16immSExt8:$src2), (OR16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(or GR32:$src1, i32immSExt8:$src2), (OR32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(or GR64:$src1, i64immSExt8:$src2), (OR64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(or GR64:$src1, i64immSExt32:$src2), (OR64ri32 GR64:$src1, i64immSExt32:$src2)>; // xor reg/reg def : Pat<(xor GR8 :$src1, GR8 :$src2), (XOR8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(xor GR16:$src1, GR16:$src2), (XOR16rr GR16:$src1, GR16:$src2)>; def : Pat<(xor GR32:$src1, GR32:$src2), (XOR32rr GR32:$src1, GR32:$src2)>; def : Pat<(xor GR64:$src1, GR64:$src2), (XOR64rr GR64:$src1, GR64:$src2)>; // xor reg/mem def : Pat<(xor GR8:$src1, (loadi8 addr:$src2)), (XOR8rm GR8:$src1, addr:$src2)>; def : Pat<(xor GR16:$src1, (loadi16 addr:$src2)), (XOR16rm GR16:$src1, addr:$src2)>; def : Pat<(xor GR32:$src1, (loadi32 addr:$src2)), (XOR32rm GR32:$src1, addr:$src2)>; def : Pat<(xor GR64:$src1, (loadi64 addr:$src2)), (XOR64rm GR64:$src1, addr:$src2)>; // xor reg/imm def : Pat<(xor GR8:$src1, imm:$src2), (XOR8ri GR8:$src1, imm:$src2)>; def : Pat<(xor GR16:$src1, imm:$src2), (XOR16ri GR16:$src1, imm:$src2)>; def : Pat<(xor GR32:$src1, imm:$src2), (XOR32ri GR32:$src1, imm:$src2)>; def : Pat<(xor GR16:$src1, i16immSExt8:$src2), (XOR16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(xor GR32:$src1, i32immSExt8:$src2), (XOR32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(xor GR64:$src1, i64immSExt8:$src2), (XOR64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(xor GR64:$src1, i64immSExt32:$src2), (XOR64ri32 GR64:$src1, i64immSExt32:$src2)>; // and reg/reg def : Pat<(and GR8 :$src1, GR8 :$src2), (AND8rr GR8 :$src1, GR8 :$src2)>; def : Pat<(and GR16:$src1, GR16:$src2), (AND16rr GR16:$src1, GR16:$src2)>; def : Pat<(and GR32:$src1, GR32:$src2), (AND32rr GR32:$src1, GR32:$src2)>; def : Pat<(and GR64:$src1, GR64:$src2), (AND64rr GR64:$src1, GR64:$src2)>; // and reg/mem def : Pat<(and GR8:$src1, (loadi8 addr:$src2)), (AND8rm GR8:$src1, addr:$src2)>; def : Pat<(and GR16:$src1, (loadi16 addr:$src2)), (AND16rm GR16:$src1, addr:$src2)>; def : Pat<(and GR32:$src1, (loadi32 addr:$src2)), (AND32rm GR32:$src1, addr:$src2)>; def : Pat<(and GR64:$src1, (loadi64 addr:$src2)), (AND64rm GR64:$src1, addr:$src2)>; // and reg/imm def : Pat<(and GR8:$src1, imm:$src2), (AND8ri GR8:$src1, imm:$src2)>; def : Pat<(and GR16:$src1, imm:$src2), (AND16ri GR16:$src1, imm:$src2)>; def : Pat<(and GR32:$src1, imm:$src2), (AND32ri GR32:$src1, imm:$src2)>; def : Pat<(and GR16:$src1, i16immSExt8:$src2), (AND16ri8 GR16:$src1, i16immSExt8:$src2)>; def : Pat<(and GR32:$src1, i32immSExt8:$src2), (AND32ri8 GR32:$src1, i32immSExt8:$src2)>; def : Pat<(and GR64:$src1, i64immSExt8:$src2), (AND64ri8 GR64:$src1, i64immSExt8:$src2)>; def : Pat<(and GR64:$src1, i64immSExt32:$src2), (AND64ri32 GR64:$src1, i64immSExt32:$src2)>; // Bit scan instruction patterns to match explicit zero-undef behavior. def : Pat<(cttz_zero_undef GR16:$src), (BSF16rr GR16:$src)>; def : Pat<(cttz_zero_undef GR32:$src), (BSF32rr GR32:$src)>; def : Pat<(cttz_zero_undef GR64:$src), (BSF64rr GR64:$src)>; def : Pat<(cttz_zero_undef (loadi16 addr:$src)), (BSF16rm addr:$src)>; def : Pat<(cttz_zero_undef (loadi32 addr:$src)), (BSF32rm addr:$src)>; def : Pat<(cttz_zero_undef (loadi64 addr:$src)), (BSF64rm addr:$src)>;