//===- InstCombineShifts.cpp ----------------------------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements the visitShl, visitLShr, and visitAShr functions. // //===----------------------------------------------------------------------===// #include "InstCombine.h" #include "llvm/Analysis/ConstantFolding.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Support/PatternMatch.h" using namespace llvm; using namespace PatternMatch; Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) { assert(I.getOperand(1)->getType() == I.getOperand(0)->getType()); Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); // See if we can fold away this shift. if (SimplifyDemandedInstructionBits(I)) return &I; // Try to fold constant and into select arguments. if (isa<Constant>(Op0)) if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) if (Instruction *R = FoldOpIntoSelect(I, SI)) return R; if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1)) if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I)) return Res; // X shift (A srem B) -> X shift (A and B-1) iff B is a power of 2. // Because shifts by negative values (which could occur if A were negative) // are undefined. Value *A; const APInt *B; if (Op1->hasOneUse() && match(Op1, m_SRem(m_Value(A), m_Power2(B)))) { // FIXME: Should this get moved into SimplifyDemandedBits by saying we don't // demand the sign bit (and many others) here?? Value *Rem = Builder->CreateAnd(A, ConstantInt::get(I.getType(), *B-1), Op1->getName()); I.setOperand(1, Rem); return &I; } return 0; } /// CanEvaluateShifted - See if we can compute the specified value, but shifted /// logically to the left or right by some number of bits. This should return /// true if the expression can be computed for the same cost as the current /// expression tree. This is used to eliminate extraneous shifting from things /// like: /// %C = shl i128 %A, 64 /// %D = shl i128 %B, 96 /// %E = or i128 %C, %D /// %F = lshr i128 %E, 64 /// where the client will ask if E can be computed shifted right by 64-bits. If /// this succeeds, the GetShiftedValue function will be called to produce the /// value. static bool CanEvaluateShifted(Value *V, unsigned NumBits, bool isLeftShift, InstCombiner &IC) { // We can always evaluate constants shifted. if (isa<Constant>(V)) return true; Instruction *I = dyn_cast<Instruction>(V); if (!I) return false; // If this is the opposite shift, we can directly reuse the input of the shift // if the needed bits are already zero in the input. This allows us to reuse // the value which means that we don't care if the shift has multiple uses. // TODO: Handle opposite shift by exact value. ConstantInt *CI = 0; if ((isLeftShift && match(I, m_LShr(m_Value(), m_ConstantInt(CI)))) || (!isLeftShift && match(I, m_Shl(m_Value(), m_ConstantInt(CI))))) { if (CI->getZExtValue() == NumBits) { // TODO: Check that the input bits are already zero with MaskedValueIsZero #if 0 // If this is a truncate of a logical shr, we can truncate it to a smaller // lshr iff we know that the bits we would otherwise be shifting in are // already zeros. uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits(); uint32_t BitWidth = Ty->getScalarSizeInBits(); if (MaskedValueIsZero(I->getOperand(0), APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) && CI->getLimitedValue(BitWidth) < BitWidth) { return CanEvaluateTruncated(I->getOperand(0), Ty); } #endif } } // We can't mutate something that has multiple uses: doing so would // require duplicating the instruction in general, which isn't profitable. if (!I->hasOneUse()) return false; switch (I->getOpcode()) { default: return false; case Instruction::And: case Instruction::Or: case Instruction::Xor: // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. return CanEvaluateShifted(I->getOperand(0), NumBits, isLeftShift, IC) && CanEvaluateShifted(I->getOperand(1), NumBits, isLeftShift, IC); case Instruction::Shl: { // We can often fold the shift into shifts-by-a-constant. CI = dyn_cast<ConstantInt>(I->getOperand(1)); if (CI == 0) return false; // We can always fold shl(c1)+shl(c2) -> shl(c1+c2). if (isLeftShift) return true; // We can always turn shl(c)+shr(c) -> and(c2). if (CI->getValue() == NumBits) return true; unsigned TypeWidth = I->getType()->getScalarSizeInBits(); // We can turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but it isn't // profitable unless we know the and'd out bits are already zero. if (CI->getZExtValue() > NumBits) { unsigned LowBits = TypeWidth - CI->getZExtValue(); if (MaskedValueIsZero(I->getOperand(0), APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits)) return true; } return false; } case Instruction::LShr: { // We can often fold the shift into shifts-by-a-constant. CI = dyn_cast<ConstantInt>(I->getOperand(1)); if (CI == 0) return false; // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2). if (!isLeftShift) return true; // We can always turn lshr(c)+shl(c) -> and(c2). if (CI->getValue() == NumBits) return true; unsigned TypeWidth = I->getType()->getScalarSizeInBits(); // We can always turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but it isn't // profitable unless we know the and'd out bits are already zero. if (CI->getValue().ult(TypeWidth) && CI->getZExtValue() > NumBits) { unsigned LowBits = CI->getZExtValue() - NumBits; if (MaskedValueIsZero(I->getOperand(0), APInt::getLowBitsSet(TypeWidth, NumBits) << LowBits)) return true; } return false; } case Instruction::Select: { SelectInst *SI = cast<SelectInst>(I); return CanEvaluateShifted(SI->getTrueValue(), NumBits, isLeftShift, IC) && CanEvaluateShifted(SI->getFalseValue(), NumBits, isLeftShift, IC); } case Instruction::PHI: { // We can change a phi if we can change all operands. Note that we never // get into trouble with cyclic PHIs here because we only consider // instructions with a single use. PHINode *PN = cast<PHINode>(I); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (!CanEvaluateShifted(PN->getIncomingValue(i), NumBits, isLeftShift,IC)) return false; return true; } } } /// GetShiftedValue - When CanEvaluateShifted returned true for an expression, /// this value inserts the new computation that produces the shifted value. static Value *GetShiftedValue(Value *V, unsigned NumBits, bool isLeftShift, InstCombiner &IC) { // We can always evaluate constants shifted. if (Constant *C = dyn_cast<Constant>(V)) { if (isLeftShift) V = IC.Builder->CreateShl(C, NumBits); else V = IC.Builder->CreateLShr(C, NumBits); // If we got a constantexpr back, try to simplify it with TD info. if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) V = ConstantFoldConstantExpression(CE, IC.getDataLayout(), IC.getTargetLibraryInfo()); return V; } Instruction *I = cast<Instruction>(V); IC.Worklist.Add(I); switch (I->getOpcode()) { default: llvm_unreachable("Inconsistency with CanEvaluateShifted"); case Instruction::And: case Instruction::Or: case Instruction::Xor: // Bitwise operators can all arbitrarily be arbitrarily evaluated shifted. I->setOperand(0, GetShiftedValue(I->getOperand(0), NumBits,isLeftShift,IC)); I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC)); return I; case Instruction::Shl: { BinaryOperator *BO = cast<BinaryOperator>(I); unsigned TypeWidth = BO->getType()->getScalarSizeInBits(); // We only accept shifts-by-a-constant in CanEvaluateShifted. ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); // We can always fold shl(c1)+shl(c2) -> shl(c1+c2). if (isLeftShift) { // If this is oversized composite shift, then unsigned shifts get 0. unsigned NewShAmt = NumBits+CI->getZExtValue(); if (NewShAmt >= TypeWidth) return Constant::getNullValue(I->getType()); BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt)); BO->setHasNoUnsignedWrap(false); BO->setHasNoSignedWrap(false); return I; } // We turn shl(c)+lshr(c) -> and(c2) if the input doesn't already have // zeros. if (CI->getValue() == NumBits) { APInt Mask(APInt::getLowBitsSet(TypeWidth, TypeWidth - NumBits)); V = IC.Builder->CreateAnd(BO->getOperand(0), ConstantInt::get(BO->getContext(), Mask)); if (Instruction *VI = dyn_cast<Instruction>(V)) { VI->moveBefore(BO); VI->takeName(BO); } return V; } // We turn shl(c1)+shr(c2) -> shl(c3)+and(c4), but only when we know that // the and won't be needed. assert(CI->getZExtValue() > NumBits); BO->setOperand(1, ConstantInt::get(BO->getType(), CI->getZExtValue() - NumBits)); BO->setHasNoUnsignedWrap(false); BO->setHasNoSignedWrap(false); return BO; } case Instruction::LShr: { BinaryOperator *BO = cast<BinaryOperator>(I); unsigned TypeWidth = BO->getType()->getScalarSizeInBits(); // We only accept shifts-by-a-constant in CanEvaluateShifted. ConstantInt *CI = cast<ConstantInt>(BO->getOperand(1)); // We can always fold lshr(c1)+lshr(c2) -> lshr(c1+c2). if (!isLeftShift) { // If this is oversized composite shift, then unsigned shifts get 0. unsigned NewShAmt = NumBits+CI->getZExtValue(); if (NewShAmt >= TypeWidth) return Constant::getNullValue(BO->getType()); BO->setOperand(1, ConstantInt::get(BO->getType(), NewShAmt)); BO->setIsExact(false); return I; } // We turn lshr(c)+shl(c) -> and(c2) if the input doesn't already have // zeros. if (CI->getValue() == NumBits) { APInt Mask(APInt::getHighBitsSet(TypeWidth, TypeWidth - NumBits)); V = IC.Builder->CreateAnd(I->getOperand(0), ConstantInt::get(BO->getContext(), Mask)); if (Instruction *VI = dyn_cast<Instruction>(V)) { VI->moveBefore(I); VI->takeName(I); } return V; } // We turn lshr(c1)+shl(c2) -> lshr(c3)+and(c4), but only when we know that // the and won't be needed. assert(CI->getZExtValue() > NumBits); BO->setOperand(1, ConstantInt::get(BO->getType(), CI->getZExtValue() - NumBits)); BO->setIsExact(false); return BO; } case Instruction::Select: I->setOperand(1, GetShiftedValue(I->getOperand(1), NumBits,isLeftShift,IC)); I->setOperand(2, GetShiftedValue(I->getOperand(2), NumBits,isLeftShift,IC)); return I; case Instruction::PHI: { // We can change a phi if we can change all operands. Note that we never // get into trouble with cyclic PHIs here because we only consider // instructions with a single use. PHINode *PN = cast<PHINode>(I); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) PN->setIncomingValue(i, GetShiftedValue(PN->getIncomingValue(i), NumBits, isLeftShift, IC)); return PN; } } } Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1, BinaryOperator &I) { bool isLeftShift = I.getOpcode() == Instruction::Shl; // See if we can propagate this shift into the input, this covers the trivial // cast of lshr(shl(x,c1),c2) as well as other more complex cases. if (I.getOpcode() != Instruction::AShr && CanEvaluateShifted(Op0, Op1->getZExtValue(), isLeftShift, *this)) { DEBUG(dbgs() << "ICE: GetShiftedValue propagating shift through expression" " to eliminate shift:\n IN: " << *Op0 << "\n SH: " << I <<"\n"); return ReplaceInstUsesWith(I, GetShiftedValue(Op0, Op1->getZExtValue(), isLeftShift, *this)); } // See if we can simplify any instructions used by the instruction whose sole // purpose is to compute bits we don't care about. uint32_t TypeBits = Op0->getType()->getScalarSizeInBits(); // shl i32 X, 32 = 0 and srl i8 Y, 9 = 0, ... just don't eliminate // a signed shift. // if (Op1->uge(TypeBits)) { if (I.getOpcode() != Instruction::AShr) return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType())); // ashr i32 X, 32 --> ashr i32 X, 31 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1)); return &I; } // ((X*C1) << C2) == (X * (C1 << C2)) if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0)) if (BO->getOpcode() == Instruction::Mul && isLeftShift) if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1))) return BinaryOperator::CreateMul(BO->getOperand(0), ConstantExpr::getShl(BOOp, Op1)); // Try to fold constant and into select arguments. if (SelectInst *SI = dyn_cast<SelectInst>(Op0)) if (Instruction *R = FoldOpIntoSelect(I, SI)) return R; if (isa<PHINode>(Op0)) if (Instruction *NV = FoldOpIntoPhi(I)) return NV; // Fold shift2(trunc(shift1(x,c1)), c2) -> trunc(shift2(shift1(x,c1),c2)) if (TruncInst *TI = dyn_cast<TruncInst>(Op0)) { Instruction *TrOp = dyn_cast<Instruction>(TI->getOperand(0)); // If 'shift2' is an ashr, we would have to get the sign bit into a funny // place. Don't try to do this transformation in this case. Also, we // require that the input operand is a shift-by-constant so that we have // confidence that the shifts will get folded together. We could do this // xform in more cases, but it is unlikely to be profitable. if (TrOp && I.isLogicalShift() && TrOp->isShift() && isa<ConstantInt>(TrOp->getOperand(1))) { // Okay, we'll do this xform. Make the shift of shift. Constant *ShAmt = ConstantExpr::getZExt(Op1, TrOp->getType()); // (shift2 (shift1 & 0x00FF), c2) Value *NSh = Builder->CreateBinOp(I.getOpcode(), TrOp, ShAmt,I.getName()); // For logical shifts, the truncation has the effect of making the high // part of the register be zeros. Emulate this by inserting an AND to // clear the top bits as needed. This 'and' will usually be zapped by // other xforms later if dead. unsigned SrcSize = TrOp->getType()->getScalarSizeInBits(); unsigned DstSize = TI->getType()->getScalarSizeInBits(); APInt MaskV(APInt::getLowBitsSet(SrcSize, DstSize)); // The mask we constructed says what the trunc would do if occurring // between the shifts. We want to know the effect *after* the second // shift. We know that it is a logical shift by a constant, so adjust the // mask as appropriate. if (I.getOpcode() == Instruction::Shl) MaskV <<= Op1->getZExtValue(); else { assert(I.getOpcode() == Instruction::LShr && "Unknown logical shift"); MaskV = MaskV.lshr(Op1->getZExtValue()); } // shift1 & 0x00FF Value *And = Builder->CreateAnd(NSh, ConstantInt::get(I.getContext(), MaskV), TI->getName()); // Return the value truncated to the interesting size. return new TruncInst(And, I.getType()); } } if (Op0->hasOneUse()) { if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) { // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) Value *V1, *V2; ConstantInt *CC; switch (Op0BO->getOpcode()) { default: break; case Instruction::Add: case Instruction::And: case Instruction::Or: case Instruction::Xor: { // These operators commute. // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() && match(Op0BO->getOperand(1), m_Shr(m_Value(V1), m_Specific(Op1)))) { Value *YS = // (Y << C) Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); // (X + (Y << C)) Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), YS, V1, Op0BO->getOperand(1)->getName()); uint32_t Op1Val = Op1->getLimitedValue(TypeBits); return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); } // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C)) Value *Op0BOOp1 = Op0BO->getOperand(1); if (isLeftShift && Op0BOOp1->hasOneUse() && match(Op0BOOp1, m_And(m_OneUse(m_Shr(m_Value(V1), m_Specific(Op1))), m_ConstantInt(CC)))) { Value *YS = // (Y << C) Builder->CreateShl(Op0BO->getOperand(0), Op1, Op0BO->getName()); // X & (CC << C) Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); return BinaryOperator::Create(Op0BO->getOpcode(), YS, XM); } } // FALL THROUGH. case Instruction::Sub: { // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C) if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_Shr(m_Value(V1), m_Specific(Op1)))) { Value *YS = // (Y << C) Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); // (X + (Y << C)) Value *X = Builder->CreateBinOp(Op0BO->getOpcode(), V1, YS, Op0BO->getOperand(0)->getName()); uint32_t Op1Val = Op1->getLimitedValue(TypeBits); return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val))); } // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C) if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() && match(Op0BO->getOperand(0), m_And(m_OneUse(m_Shr(m_Value(V1), m_Value(V2))), m_ConstantInt(CC))) && V2 == Op1) { Value *YS = // (Y << C) Builder->CreateShl(Op0BO->getOperand(1), Op1, Op0BO->getName()); // X & (CC << C) Value *XM = Builder->CreateAnd(V1, ConstantExpr::getShl(CC, Op1), V1->getName()+".mask"); return BinaryOperator::Create(Op0BO->getOpcode(), XM, YS); } break; } } // If the operand is an bitwise operator with a constant RHS, and the // shift is the only use, we can pull it out of the shift. if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) { bool isValid = true; // Valid only for And, Or, Xor bool highBitSet = false; // Transform if high bit of constant set? switch (Op0BO->getOpcode()) { default: isValid = false; break; // Do not perform transform! case Instruction::Add: isValid = isLeftShift; break; case Instruction::Or: case Instruction::Xor: highBitSet = false; break; case Instruction::And: highBitSet = true; break; } // If this is a signed shift right, and the high bit is modified // by the logical operation, do not perform the transformation. // The highBitSet boolean indicates the value of the high bit of // the constant which would cause it to be modified for this // operation. // if (isValid && I.getOpcode() == Instruction::AShr) isValid = Op0C->getValue()[TypeBits-1] == highBitSet; if (isValid) { Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1); Value *NewShift = Builder->CreateBinOp(I.getOpcode(), Op0BO->getOperand(0), Op1); NewShift->takeName(Op0BO); return BinaryOperator::Create(Op0BO->getOpcode(), NewShift, NewRHS); } } } } // Find out if this is a shift of a shift by a constant. BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0); if (ShiftOp && !ShiftOp->isShift()) ShiftOp = 0; if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) { // This is a constant shift of a constant shift. Be careful about hiding // shl instructions behind bit masks. They are used to represent multiplies // by a constant, and it is important that simple arithmetic expressions // are still recognizable by scalar evolution. // // The transforms applied to shl are very similar to the transforms applied // to mul by constant. We can be more aggressive about optimizing right // shifts. // // Combinations of right and left shifts will still be optimized in // DAGCombine where scalar evolution no longer applies. ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1)); uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits); uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits); assert(ShiftAmt2 != 0 && "Should have been simplified earlier"); if (ShiftAmt1 == 0) return 0; // Will be simplified in the future. Value *X = ShiftOp->getOperand(0); IntegerType *Ty = cast<IntegerType>(I.getType()); // Check for (X << c1) << c2 and (X >> c1) >> c2 if (I.getOpcode() == ShiftOp->getOpcode()) { uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift. // If this is oversized composite shift, then unsigned shifts get 0, ashr // saturates. if (AmtSum >= TypeBits) { if (I.getOpcode() != Instruction::AShr) return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType())); AmtSum = TypeBits-1; // Saturate to 31 for i32 ashr. } return BinaryOperator::Create(I.getOpcode(), X, ConstantInt::get(Ty, AmtSum)); } if (ShiftAmt1 == ShiftAmt2) { // If we have ((X << C) >>u C), turn this into X & (-1 >>u C). if (I.getOpcode() == Instruction::LShr && ShiftOp->getOpcode() == Instruction::Shl) { APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1)); return BinaryOperator::CreateAnd(X, ConstantInt::get(I.getContext(), Mask)); } } else if (ShiftAmt1 < ShiftAmt2) { uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1; // (X >>?,exact C1) << C2 --> X << (C2-C1) // The inexact version is deferred to DAGCombine so we don't hide shl // behind a bit mask. if (I.getOpcode() == Instruction::Shl && ShiftOp->getOpcode() != Instruction::Shl && ShiftOp->isExact()) { assert(ShiftOp->getOpcode() == Instruction::LShr || ShiftOp->getOpcode() == Instruction::AShr); ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiffCst); NewShl->setHasNoUnsignedWrap(I.hasNoUnsignedWrap()); NewShl->setHasNoSignedWrap(I.hasNoSignedWrap()); return NewShl; } // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2) if (I.getOpcode() == Instruction::LShr && ShiftOp->getOpcode() == Instruction::Shl) { ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); // (X <<nuw C1) >>u C2 --> X >>u (C2-C1) if (ShiftOp->hasNoUnsignedWrap()) { BinaryOperator *NewLShr = BinaryOperator::Create(Instruction::LShr, X, ShiftDiffCst); NewLShr->setIsExact(I.isExact()); return NewLShr; } Value *Shift = Builder->CreateLShr(X, ShiftDiffCst); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::CreateAnd(Shift, ConstantInt::get(I.getContext(),Mask)); } // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However, // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. if (I.getOpcode() == Instruction::AShr && ShiftOp->getOpcode() == Instruction::Shl) { if (ShiftOp->hasNoSignedWrap()) { // (X <<nsw C1) >>s C2 --> X >>s (C2-C1) ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); BinaryOperator *NewAShr = BinaryOperator::Create(Instruction::AShr, X, ShiftDiffCst); NewAShr->setIsExact(I.isExact()); return NewAShr; } } } else { assert(ShiftAmt2 < ShiftAmt1); uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2; // (X >>?exact C1) << C2 --> X >>?exact (C1-C2) // The inexact version is deferred to DAGCombine so we don't hide shl // behind a bit mask. if (I.getOpcode() == Instruction::Shl && ShiftOp->getOpcode() != Instruction::Shl && ShiftOp->isExact()) { ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); BinaryOperator *NewShr = BinaryOperator::Create(ShiftOp->getOpcode(), X, ShiftDiffCst); NewShr->setIsExact(true); return NewShr; } // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2) if (I.getOpcode() == Instruction::LShr && ShiftOp->getOpcode() == Instruction::Shl) { ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); if (ShiftOp->hasNoUnsignedWrap()) { // (X <<nuw C1) >>u C2 --> X <<nuw (C1-C2) BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiffCst); NewShl->setHasNoUnsignedWrap(true); return NewShl; } Value *Shift = Builder->CreateShl(X, ShiftDiffCst); APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2)); return BinaryOperator::CreateAnd(Shift, ConstantInt::get(I.getContext(),Mask)); } // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in. However, // we can handle (X <<nsw C1) >>s C2 since it only shifts in sign bits. if (I.getOpcode() == Instruction::AShr && ShiftOp->getOpcode() == Instruction::Shl) { if (ShiftOp->hasNoSignedWrap()) { // (X <<nsw C1) >>s C2 --> X <<nsw (C1-C2) ConstantInt *ShiftDiffCst = ConstantInt::get(Ty, ShiftDiff); BinaryOperator *NewShl = BinaryOperator::Create(Instruction::Shl, X, ShiftDiffCst); NewShl->setHasNoSignedWrap(true); return NewShl; } } } } return 0; } Instruction *InstCombiner::visitShl(BinaryOperator &I) { if (Value *V = SimplifyShlInst(I.getOperand(0), I.getOperand(1), I.hasNoSignedWrap(), I.hasNoUnsignedWrap(), TD)) return ReplaceInstUsesWith(I, V); if (Instruction *V = commonShiftTransforms(I)) return V; if (ConstantInt *Op1C = dyn_cast<ConstantInt>(I.getOperand(1))) { unsigned ShAmt = Op1C->getZExtValue(); // If the shifted-out value is known-zero, then this is a NUW shift. if (!I.hasNoUnsignedWrap() && MaskedValueIsZero(I.getOperand(0), APInt::getHighBitsSet(Op1C->getBitWidth(), ShAmt))) { I.setHasNoUnsignedWrap(); return &I; } // If the shifted out value is all signbits, this is a NSW shift. if (!I.hasNoSignedWrap() && ComputeNumSignBits(I.getOperand(0)) > ShAmt) { I.setHasNoSignedWrap(); return &I; } } // (C1 << A) << C2 -> (C1 << C2) << A Constant *C1, *C2; Value *A; if (match(I.getOperand(0), m_OneUse(m_Shl(m_Constant(C1), m_Value(A)))) && match(I.getOperand(1), m_Constant(C2))) return BinaryOperator::CreateShl(ConstantExpr::getShl(C1, C2), A); return 0; } Instruction *InstCombiner::visitLShr(BinaryOperator &I) { if (Value *V = SimplifyLShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), TD)) return ReplaceInstUsesWith(I, V); if (Instruction *R = commonShiftTransforms(I)) return R; Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { unsigned ShAmt = Op1C->getZExtValue(); if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op0)) { unsigned BitWidth = Op0->getType()->getScalarSizeInBits(); // ctlz.i32(x)>>5 --> zext(x == 0) // cttz.i32(x)>>5 --> zext(x == 0) // ctpop.i32(x)>>5 --> zext(x == -1) if ((II->getIntrinsicID() == Intrinsic::ctlz || II->getIntrinsicID() == Intrinsic::cttz || II->getIntrinsicID() == Intrinsic::ctpop) && isPowerOf2_32(BitWidth) && Log2_32(BitWidth) == ShAmt) { bool isCtPop = II->getIntrinsicID() == Intrinsic::ctpop; Constant *RHS = ConstantInt::getSigned(Op0->getType(), isCtPop ? -1:0); Value *Cmp = Builder->CreateICmpEQ(II->getArgOperand(0), RHS); return new ZExtInst(Cmp, II->getType()); } } // If the shifted-out value is known-zero, then this is an exact shift. if (!I.isExact() && MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){ I.setIsExact(); return &I; } } return 0; } Instruction *InstCombiner::visitAShr(BinaryOperator &I) { if (Value *V = SimplifyAShrInst(I.getOperand(0), I.getOperand(1), I.isExact(), TD)) return ReplaceInstUsesWith(I, V); if (Instruction *R = commonShiftTransforms(I)) return R; Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1); if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) { unsigned ShAmt = Op1C->getZExtValue(); // If the input is a SHL by the same constant (ashr (shl X, C), C), then we // have a sign-extend idiom. Value *X; if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1)))) { // If the left shift is just shifting out partial signbits, delete the // extension. if (cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()) return ReplaceInstUsesWith(I, X); // If the input is an extension from the shifted amount value, e.g. // %x = zext i8 %A to i32 // %y = shl i32 %x, 24 // %z = ashr %y, 24 // then turn this into "z = sext i8 A to i32". if (ZExtInst *ZI = dyn_cast<ZExtInst>(X)) { uint32_t SrcBits = ZI->getOperand(0)->getType()->getScalarSizeInBits(); uint32_t DestBits = ZI->getType()->getScalarSizeInBits(); if (Op1C->getZExtValue() == DestBits-SrcBits) return new SExtInst(ZI->getOperand(0), ZI->getType()); } } // If the shifted-out value is known-zero, then this is an exact shift. if (!I.isExact() && MaskedValueIsZero(Op0,APInt::getLowBitsSet(Op1C->getBitWidth(),ShAmt))){ I.setIsExact(); return &I; } } // See if we can turn a signed shr into an unsigned shr. if (MaskedValueIsZero(Op0, APInt::getSignBit(I.getType()->getScalarSizeInBits()))) return BinaryOperator::CreateLShr(Op0, Op1); // Arithmetic shifting an all-sign-bit value is a no-op. unsigned NumSignBits = ComputeNumSignBits(Op0); if (NumSignBits == Op0->getType()->getScalarSizeInBits()) return ReplaceInstUsesWith(I, Op0); return 0; }