//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This pass munges the code in the input function to better prepare it for // SelectionDAG-based code generation. This works around limitations in it's // basic-block-at-a-time approach. It should eventually be removed. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "codegenprepare" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/DenseMap.h" #include "llvm/ADT/SmallSet.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/DominatorInternals.h" #include "llvm/Analysis/Dominators.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/ProfileInfo.h" #include "llvm/Assembly/Writer.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DataLayout.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Function.h" #include "llvm/IR/IRBuilder.h" #include "llvm/IR/InlineAsm.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/IntrinsicInst.h" #include "llvm/Pass.h" #include "llvm/Support/CallSite.h" #include "llvm/Support/CommandLine.h" #include "llvm/Support/Debug.h" #include "llvm/Support/GetElementPtrTypeIterator.h" #include "llvm/Support/PatternMatch.h" #include "llvm/Support/ValueHandle.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Target/TargetLibraryInfo.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/BuildLibCalls.h" #include "llvm/Transforms/Utils/BypassSlowDivision.h" #include "llvm/Transforms/Utils/Local.h" using namespace llvm; using namespace llvm::PatternMatch; STATISTIC(NumBlocksElim, "Number of blocks eliminated"); STATISTIC(NumPHIsElim, "Number of trivial PHIs eliminated"); STATISTIC(NumGEPsElim, "Number of GEPs converted to casts"); STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of " "sunken Cmps"); STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses " "of sunken Casts"); STATISTIC(NumMemoryInsts, "Number of memory instructions whose address " "computations were sunk"); STATISTIC(NumExtsMoved, "Number of [s|z]ext instructions combined with loads"); STATISTIC(NumExtUses, "Number of uses of [s|z]ext instructions optimized"); STATISTIC(NumRetsDup, "Number of return instructions duplicated"); STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved"); STATISTIC(NumSelectsExpanded, "Number of selects turned into branches"); static cl::opt<bool> DisableBranchOpts( "disable-cgp-branch-opts", cl::Hidden, cl::init(false), cl::desc("Disable branch optimizations in CodeGenPrepare")); static cl::opt<bool> DisableSelectToBranch( "disable-cgp-select2branch", cl::Hidden, cl::init(false), cl::desc("Disable select to branch conversion.")); namespace { class CodeGenPrepare : public FunctionPass { /// TLI - Keep a pointer of a TargetLowering to consult for determining /// transformation profitability. const TargetLowering *TLI; const TargetLibraryInfo *TLInfo; DominatorTree *DT; ProfileInfo *PFI; /// CurInstIterator - As we scan instructions optimizing them, this is the /// next instruction to optimize. Xforms that can invalidate this should /// update it. BasicBlock::iterator CurInstIterator; /// Keeps track of non-local addresses that have been sunk into a block. /// This allows us to avoid inserting duplicate code for blocks with /// multiple load/stores of the same address. DenseMap<Value*, Value*> SunkAddrs; /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to /// be updated. bool ModifiedDT; /// OptSize - True if optimizing for size. bool OptSize; public: static char ID; // Pass identification, replacement for typeid explicit CodeGenPrepare(const TargetLowering *tli = 0) : FunctionPass(ID), TLI(tli) { initializeCodeGenPreparePass(*PassRegistry::getPassRegistry()); } bool runOnFunction(Function &F); const char *getPassName() const { return "CodeGen Prepare"; } virtual void getAnalysisUsage(AnalysisUsage &AU) const { AU.addPreserved<DominatorTree>(); AU.addPreserved<ProfileInfo>(); AU.addRequired<TargetLibraryInfo>(); } private: bool EliminateFallThrough(Function &F); bool EliminateMostlyEmptyBlocks(Function &F); bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const; void EliminateMostlyEmptyBlock(BasicBlock *BB); bool OptimizeBlock(BasicBlock &BB); bool OptimizeInst(Instruction *I); bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy); bool OptimizeInlineAsmInst(CallInst *CS); bool OptimizeCallInst(CallInst *CI); bool MoveExtToFormExtLoad(Instruction *I); bool OptimizeExtUses(Instruction *I); bool OptimizeSelectInst(SelectInst *SI); bool DupRetToEnableTailCallOpts(BasicBlock *BB); bool PlaceDbgValues(Function &F); }; } char CodeGenPrepare::ID = 0; INITIALIZE_PASS_BEGIN(CodeGenPrepare, "codegenprepare", "Optimize for code generation", false, false) INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfo) INITIALIZE_PASS_END(CodeGenPrepare, "codegenprepare", "Optimize for code generation", false, false) FunctionPass *llvm::createCodeGenPreparePass(const TargetLowering *TLI) { return new CodeGenPrepare(TLI); } bool CodeGenPrepare::runOnFunction(Function &F) { bool EverMadeChange = false; ModifiedDT = false; TLInfo = &getAnalysis<TargetLibraryInfo>(); DT = getAnalysisIfAvailable<DominatorTree>(); PFI = getAnalysisIfAvailable<ProfileInfo>(); OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize); /// This optimization identifies DIV instructions that can be /// profitably bypassed and carried out with a shorter, faster divide. if (!OptSize && TLI && TLI->isSlowDivBypassed()) { const DenseMap<unsigned int, unsigned int> &BypassWidths = TLI->getBypassSlowDivWidths(); for (Function::iterator I = F.begin(); I != F.end(); I++) EverMadeChange |= bypassSlowDivision(F, I, BypassWidths); } // Eliminate blocks that contain only PHI nodes and an // unconditional branch. EverMadeChange |= EliminateMostlyEmptyBlocks(F); // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. EverMadeChange |= PlaceDbgValues(F); bool MadeChange = true; while (MadeChange) { MadeChange = false; for (Function::iterator I = F.begin(); I != F.end(); ) { BasicBlock *BB = I++; MadeChange |= OptimizeBlock(*BB); } EverMadeChange |= MadeChange; } SunkAddrs.clear(); if (!DisableBranchOpts) { MadeChange = false; SmallPtrSet<BasicBlock*, 8> WorkList; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) { SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); MadeChange |= ConstantFoldTerminator(BB, true); if (!MadeChange) continue; for (SmallVectorImpl<BasicBlock*>::iterator II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_begin(*II) == pred_end(*II)) WorkList.insert(*II); } // Delete the dead blocks and any of their dead successors. MadeChange |= !WorkList.empty(); while (!WorkList.empty()) { BasicBlock *BB = *WorkList.begin(); WorkList.erase(BB); SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB)); DeleteDeadBlock(BB); for (SmallVectorImpl<BasicBlock*>::iterator II = Successors.begin(), IE = Successors.end(); II != IE; ++II) if (pred_begin(*II) == pred_end(*II)) WorkList.insert(*II); } // Merge pairs of basic blocks with unconditional branches, connected by // a single edge. if (EverMadeChange || MadeChange) MadeChange |= EliminateFallThrough(F); if (MadeChange) ModifiedDT = true; EverMadeChange |= MadeChange; } if (ModifiedDT && DT) DT->DT->recalculate(F); return EverMadeChange; } /// EliminateFallThrough - Merge basic blocks which are connected /// by a single edge, where one of the basic blocks has a single successor /// pointing to the other basic block, which has a single predecessor. bool CodeGenPrepare::EliminateFallThrough(Function &F) { bool Changed = false; // Scan all of the blocks in the function, except for the entry block. for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) { BasicBlock *BB = I++; // If the destination block has a single pred, then this is a trivial // edge, just collapse it. BasicBlock *SinglePred = BB->getSinglePredecessor(); // Don't merge if BB's address is taken. if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue; BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator()); if (Term && !Term->isConditional()) { Changed = true; DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n"); // Remember if SinglePred was the entry block of the function. // If so, we will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(BB, this); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); // We have erased a block. Update the iterator. I = BB; } } return Changed; } /// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes, /// debug info directives, and an unconditional branch. Passes before isel /// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for /// isel. Start by eliminating these blocks so we can split them the way we /// want them. bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) { bool MadeChange = false; // Note that this intentionally skips the entry block. for (Function::iterator I = ++F.begin(), E = F.end(); I != E; ) { BasicBlock *BB = I++; // If this block doesn't end with an uncond branch, ignore it. BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()); if (!BI || !BI->isUnconditional()) continue; // If the instruction before the branch (skipping debug info) isn't a phi // node, then other stuff is happening here. BasicBlock::iterator BBI = BI; if (BBI != BB->begin()) { --BBI; while (isa<DbgInfoIntrinsic>(BBI)) { if (BBI == BB->begin()) break; --BBI; } if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI)) continue; } // Do not break infinite loops. BasicBlock *DestBB = BI->getSuccessor(0); if (DestBB == BB) continue; if (!CanMergeBlocks(BB, DestBB)) continue; EliminateMostlyEmptyBlock(BB); MadeChange = true; } return MadeChange; } /// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a /// single uncond branch between them, and BB contains no other non-phi /// instructions. bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const { // We only want to eliminate blocks whose phi nodes are used by phi nodes in // the successor. If there are more complex condition (e.g. preheaders), // don't mess around with them. BasicBlock::const_iterator BBI = BB->begin(); while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end(); UI != E; ++UI) { const Instruction *User = cast<Instruction>(*UI); if (User->getParent() != DestBB || !isa<PHINode>(User)) return false; // If User is inside DestBB block and it is a PHINode then check // incoming value. If incoming value is not from BB then this is // a complex condition (e.g. preheaders) we want to avoid here. if (User->getParent() == DestBB) { if (const PHINode *UPN = dyn_cast<PHINode>(User)) for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) { Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I)); if (Insn && Insn->getParent() == BB && Insn->getParent() != UPN->getIncomingBlock(I)) return false; } } } } // If BB and DestBB contain any common predecessors, then the phi nodes in BB // and DestBB may have conflicting incoming values for the block. If so, we // can't merge the block. const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin()); if (!DestBBPN) return true; // no conflict. // Collect the preds of BB. SmallPtrSet<const BasicBlock*, 16> BBPreds; if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { // It is faster to get preds from a PHI than with pred_iterator. for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) BBPreds.insert(BBPN->getIncomingBlock(i)); } else { BBPreds.insert(pred_begin(BB), pred_end(BB)); } // Walk the preds of DestBB. for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) { BasicBlock *Pred = DestBBPN->getIncomingBlock(i); if (BBPreds.count(Pred)) { // Common predecessor? BBI = DestBB->begin(); while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) { const Value *V1 = PN->getIncomingValueForBlock(Pred); const Value *V2 = PN->getIncomingValueForBlock(BB); // If V2 is a phi node in BB, look up what the mapped value will be. if (const PHINode *V2PN = dyn_cast<PHINode>(V2)) if (V2PN->getParent() == BB) V2 = V2PN->getIncomingValueForBlock(Pred); // If there is a conflict, bail out. if (V1 != V2) return false; } } } return true; } /// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and /// an unconditional branch in it. void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) { BranchInst *BI = cast<BranchInst>(BB->getTerminator()); BasicBlock *DestBB = BI->getSuccessor(0); DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB); // If the destination block has a single pred, then this is a trivial edge, // just collapse it. if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) { if (SinglePred != DestBB) { // Remember if SinglePred was the entry block of the function. If so, we // will need to move BB back to the entry position. bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock(); MergeBasicBlockIntoOnlyPred(DestBB, this); if (isEntry && BB != &BB->getParent()->getEntryBlock()) BB->moveBefore(&BB->getParent()->getEntryBlock()); DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); return; } } // Otherwise, we have multiple predecessors of BB. Update the PHIs in DestBB // to handle the new incoming edges it is about to have. PHINode *PN; for (BasicBlock::iterator BBI = DestBB->begin(); (PN = dyn_cast<PHINode>(BBI)); ++BBI) { // Remove the incoming value for BB, and remember it. Value *InVal = PN->removeIncomingValue(BB, false); // Two options: either the InVal is a phi node defined in BB or it is some // value that dominates BB. PHINode *InValPhi = dyn_cast<PHINode>(InVal); if (InValPhi && InValPhi->getParent() == BB) { // Add all of the input values of the input PHI as inputs of this phi. for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InValPhi->getIncomingValue(i), InValPhi->getIncomingBlock(i)); } else { // Otherwise, add one instance of the dominating value for each edge that // we will be adding. if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) { for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i) PN->addIncoming(InVal, BBPN->getIncomingBlock(i)); } else { for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) PN->addIncoming(InVal, *PI); } } } // The PHIs are now updated, change everything that refers to BB to use // DestBB and remove BB. BB->replaceAllUsesWith(DestBB); if (DT && !ModifiedDT) { BasicBlock *BBIDom = DT->getNode(BB)->getIDom()->getBlock(); BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock(); BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom); DT->changeImmediateDominator(DestBB, NewIDom); DT->eraseNode(BB); } if (PFI) { PFI->replaceAllUses(BB, DestBB); PFI->removeEdge(ProfileInfo::getEdge(BB, DestBB)); } BB->eraseFromParent(); ++NumBlocksElim; DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n"); } /// OptimizeNoopCopyExpression - If the specified cast instruction is a noop /// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC), /// sink it into user blocks to reduce the number of virtual /// registers that must be created and coalesced. /// /// Return true if any changes are made. /// static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){ // If this is a noop copy, EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType()); EVT DstVT = TLI.getValueType(CI->getType()); // This is an fp<->int conversion? if (SrcVT.isInteger() != DstVT.isInteger()) return false; // If this is an extension, it will be a zero or sign extension, which // isn't a noop. if (SrcVT.bitsLT(DstVT)) return false; // If these values will be promoted, find out what they will be promoted // to. This helps us consider truncates on PPC as noop copies when they // are. if (TLI.getTypeAction(CI->getContext(), SrcVT) == TargetLowering::TypePromoteInteger) SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT); if (TLI.getTypeAction(CI->getContext(), DstVT) == TargetLowering::TypePromoteInteger) DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT); // If, after promotion, these are the same types, this is a noop copy. if (SrcVT != DstVT) return false; BasicBlock *DefBB = CI->getParent(); /// InsertedCasts - Only insert a cast in each block once. DenseMap<BasicBlock*, CastInst*> InsertedCasts; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast<Instruction>(*UI); // Figure out which BB this cast is used in. For PHI's this is the // appropriate predecessor block. BasicBlock *UserBB = User->getParent(); if (PHINode *PN = dyn_cast<PHINode>(User)) { UserBB = PN->getIncomingBlock(UI); } // Preincrement use iterator so we don't invalidate it. ++UI; // If this user is in the same block as the cast, don't change the cast. if (UserBB == DefBB) continue; // If we have already inserted a cast into this block, use it. CastInst *&InsertedCast = InsertedCasts[UserBB]; if (!InsertedCast) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedCast = CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "", InsertPt); MadeChange = true; } // Replace a use of the cast with a use of the new cast. TheUse = InsertedCast; ++NumCastUses; } // If we removed all uses, nuke the cast. if (CI->use_empty()) { CI->eraseFromParent(); MadeChange = true; } return MadeChange; } /// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce /// the number of virtual registers that must be created and coalesced. This is /// a clear win except on targets with multiple condition code registers /// (PowerPC), where it might lose; some adjustment may be wanted there. /// /// Return true if any changes are made. static bool OptimizeCmpExpression(CmpInst *CI) { BasicBlock *DefBB = CI->getParent(); /// InsertedCmp - Only insert a cmp in each block once. DenseMap<BasicBlock*, CmpInst*> InsertedCmps; bool MadeChange = false; for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end(); UI != E; ) { Use &TheUse = UI.getUse(); Instruction *User = cast<Instruction>(*UI); // Preincrement use iterator so we don't invalidate it. ++UI; // Don't bother for PHI nodes. if (isa<PHINode>(User)) continue; // Figure out which BB this cmp is used in. BasicBlock *UserBB = User->getParent(); // If this user is in the same block as the cmp, don't change the cmp. if (UserBB == DefBB) continue; // If we have already inserted a cmp into this block, use it. CmpInst *&InsertedCmp = InsertedCmps[UserBB]; if (!InsertedCmp) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedCmp = CmpInst::Create(CI->getOpcode(), CI->getPredicate(), CI->getOperand(0), CI->getOperand(1), "", InsertPt); MadeChange = true; } // Replace a use of the cmp with a use of the new cmp. TheUse = InsertedCmp; ++NumCmpUses; } // If we removed all uses, nuke the cmp. if (CI->use_empty()) CI->eraseFromParent(); return MadeChange; } namespace { class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls { protected: void replaceCall(Value *With) { CI->replaceAllUsesWith(With); CI->eraseFromParent(); } bool isFoldable(unsigned SizeCIOp, unsigned, bool) const { if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp))) return SizeCI->isAllOnesValue(); return false; } }; } // end anonymous namespace bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) { BasicBlock *BB = CI->getParent(); // Lower inline assembly if we can. // If we found an inline asm expession, and if the target knows how to // lower it to normal LLVM code, do so now. if (TLI && isa<InlineAsm>(CI->getCalledValue())) { if (TLI->ExpandInlineAsm(CI)) { // Avoid invalidating the iterator. CurInstIterator = BB->begin(); // Avoid processing instructions out of order, which could cause // reuse before a value is defined. SunkAddrs.clear(); return true; } // Sink address computing for memory operands into the block. if (OptimizeInlineAsmInst(CI)) return true; } // Lower all uses of llvm.objectsize.* IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI); if (II && II->getIntrinsicID() == Intrinsic::objectsize) { bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1); Type *ReturnTy = CI->getType(); Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL); // Substituting this can cause recursive simplifications, which can // invalidate our iterator. Use a WeakVH to hold onto it in case this // happens. WeakVH IterHandle(CurInstIterator); replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : 0, TLInfo, ModifiedDT ? 0 : DT); // If the iterator instruction was recursively deleted, start over at the // start of the block. if (IterHandle != CurInstIterator) { CurInstIterator = BB->begin(); SunkAddrs.clear(); } return true; } if (II && TLI) { SmallVector<Value*, 2> PtrOps; Type *AccessTy; if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy)) while (!PtrOps.empty()) if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy)) return true; } // From here on out we're working with named functions. if (CI->getCalledFunction() == 0) return false; // We'll need DataLayout from here on out. const DataLayout *TD = TLI ? TLI->getDataLayout() : 0; if (!TD) return false; // Lower all default uses of _chk calls. This is very similar // to what InstCombineCalls does, but here we are only lowering calls // that have the default "don't know" as the objectsize. Anything else // should be left alone. CodeGenPrepareFortifiedLibCalls Simplifier; return Simplifier.fold(CI, TD, TLInfo); } /// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return /// instructions to the predecessor to enable tail call optimizations. The /// case it is currently looking for is: /// @code /// bb0: /// %tmp0 = tail call i32 @f0() /// br label %return /// bb1: /// %tmp1 = tail call i32 @f1() /// br label %return /// bb2: /// %tmp2 = tail call i32 @f2() /// br label %return /// return: /// %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ] /// ret i32 %retval /// @endcode /// /// => /// /// @code /// bb0: /// %tmp0 = tail call i32 @f0() /// ret i32 %tmp0 /// bb1: /// %tmp1 = tail call i32 @f1() /// ret i32 %tmp1 /// bb2: /// %tmp2 = tail call i32 @f2() /// ret i32 %tmp2 /// @endcode bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) { if (!TLI) return false; ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); if (!RI) return false; PHINode *PN = 0; BitCastInst *BCI = 0; Value *V = RI->getReturnValue(); if (V) { BCI = dyn_cast<BitCastInst>(V); if (BCI) V = BCI->getOperand(0); PN = dyn_cast<PHINode>(V); if (!PN) return false; } if (PN && PN->getParent() != BB) return false; // It's not safe to eliminate the sign / zero extension of the return value. // See llvm::isInTailCallPosition(). const Function *F = BB->getParent(); AttributeSet CallerAttrs = F->getAttributes(); if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) || CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt)) return false; // Make sure there are no instructions between the PHI and return, or that the // return is the first instruction in the block. if (PN) { BasicBlock::iterator BI = BB->begin(); do { ++BI; } while (isa<DbgInfoIntrinsic>(BI)); if (&*BI == BCI) // Also skip over the bitcast. ++BI; if (&*BI != RI) return false; } else { BasicBlock::iterator BI = BB->begin(); while (isa<DbgInfoIntrinsic>(BI)) ++BI; if (&*BI != RI) return false; } /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail /// call. SmallVector<CallInst*, 4> TailCalls; if (PN) { for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) { CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I)); // Make sure the phi value is indeed produced by the tail call. if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) && TLI->mayBeEmittedAsTailCall(CI)) TailCalls.push_back(CI); } } else { SmallPtrSet<BasicBlock*, 4> VisitedBBs; for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) { if (!VisitedBBs.insert(*PI)) continue; BasicBlock::InstListType &InstList = (*PI)->getInstList(); BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin(); BasicBlock::InstListType::reverse_iterator RE = InstList.rend(); do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI)); if (RI == RE) continue; CallInst *CI = dyn_cast<CallInst>(&*RI); if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI)) TailCalls.push_back(CI); } } bool Changed = false; for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) { CallInst *CI = TailCalls[i]; CallSite CS(CI); // Conservatively require the attributes of the call to match those of the // return. Ignore noalias because it doesn't affect the call sequence. AttributeSet CalleeAttrs = CS.getAttributes(); if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). removeAttribute(Attribute::NoAlias) != AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex). removeAttribute(Attribute::NoAlias)) continue; // Make sure the call instruction is followed by an unconditional branch to // the return block. BasicBlock *CallBB = CI->getParent(); BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator()); if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB) continue; // Duplicate the return into CallBB. (void)FoldReturnIntoUncondBranch(RI, BB, CallBB); ModifiedDT = Changed = true; ++NumRetsDup; } // If we eliminated all predecessors of the block, delete the block now. if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB)) BB->eraseFromParent(); return Changed; } //===----------------------------------------------------------------------===// // Memory Optimization //===----------------------------------------------------------------------===// namespace { /// ExtAddrMode - This is an extended version of TargetLowering::AddrMode /// which holds actual Value*'s for register values. struct ExtAddrMode : public TargetLowering::AddrMode { Value *BaseReg; Value *ScaledReg; ExtAddrMode() : BaseReg(0), ScaledReg(0) {} void print(raw_ostream &OS) const; void dump() const; bool operator==(const ExtAddrMode& O) const { return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) && (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) && (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale); } }; static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) { AM.print(OS); return OS; } void ExtAddrMode::print(raw_ostream &OS) const { bool NeedPlus = false; OS << "["; if (BaseGV) { OS << (NeedPlus ? " + " : "") << "GV:"; WriteAsOperand(OS, BaseGV, /*PrintType=*/false); NeedPlus = true; } if (BaseOffs) OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true; if (BaseReg) { OS << (NeedPlus ? " + " : "") << "Base:"; WriteAsOperand(OS, BaseReg, /*PrintType=*/false); NeedPlus = true; } if (Scale) { OS << (NeedPlus ? " + " : "") << Scale << "*"; WriteAsOperand(OS, ScaledReg, /*PrintType=*/false); NeedPlus = true; } OS << ']'; } #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) void ExtAddrMode::dump() const { print(dbgs()); dbgs() << '\n'; } #endif /// \brief A helper class for matching addressing modes. /// /// This encapsulates the logic for matching the target-legal addressing modes. class AddressingModeMatcher { SmallVectorImpl<Instruction*> &AddrModeInsts; const TargetLowering &TLI; /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and /// the memory instruction that we're computing this address for. Type *AccessTy; Instruction *MemoryInst; /// AddrMode - This is the addressing mode that we're building up. This is /// part of the return value of this addressing mode matching stuff. ExtAddrMode &AddrMode; /// IgnoreProfitability - This is set to true when we should not do /// profitability checks. When true, IsProfitableToFoldIntoAddressingMode /// always returns true. bool IgnoreProfitability; AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI, const TargetLowering &T, Type *AT, Instruction *MI, ExtAddrMode &AM) : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM) { IgnoreProfitability = false; } public: /// Match - Find the maximal addressing mode that a load/store of V can fold, /// give an access type of AccessTy. This returns a list of involved /// instructions in AddrModeInsts. static ExtAddrMode Match(Value *V, Type *AccessTy, Instruction *MemoryInst, SmallVectorImpl<Instruction*> &AddrModeInsts, const TargetLowering &TLI) { ExtAddrMode Result; bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy, MemoryInst, Result).MatchAddr(V, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); return Result; } private: bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth); bool MatchAddr(Value *V, unsigned Depth); bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth); bool IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter); bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2); }; /// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode. /// Return true and update AddrMode if this addr mode is legal for the target, /// false if not. bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth) { // If Scale is 1, then this is the same as adding ScaleReg to the addressing // mode. Just process that directly. if (Scale == 1) return MatchAddr(ScaleReg, Depth); // If the scale is 0, it takes nothing to add this. if (Scale == 0) return true; // If we already have a scale of this value, we can add to it, otherwise, we // need an available scale field. if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg) return false; ExtAddrMode TestAddrMode = AddrMode; // Add scale to turn X*4+X*3 -> X*7. This could also do things like // [A+B + A*7] -> [B+A*8]. TestAddrMode.Scale += Scale; TestAddrMode.ScaledReg = ScaleReg; // If the new address isn't legal, bail out. if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) return false; // It was legal, so commit it. AddrMode = TestAddrMode; // Okay, we decided that we can add ScaleReg+Scale to AddrMode. Check now // to see if ScaleReg is actually X+C. If so, we can turn this into adding // X*Scale + C*Scale to addr mode. ConstantInt *CI = 0; Value *AddLHS = 0; if (isa<Instruction>(ScaleReg) && // not a constant expr. match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) { TestAddrMode.ScaledReg = AddLHS; TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale; // If this addressing mode is legal, commit it and remember that we folded // this instruction. if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) { AddrModeInsts.push_back(cast<Instruction>(ScaleReg)); AddrMode = TestAddrMode; return true; } } // Otherwise, not (x+c)*scale, just return what we have. return true; } /// MightBeFoldableInst - This is a little filter, which returns true if an /// addressing computation involving I might be folded into a load/store /// accessing it. This doesn't need to be perfect, but needs to accept at least /// the set of instructions that MatchOperationAddr can. static bool MightBeFoldableInst(Instruction *I) { switch (I->getOpcode()) { case Instruction::BitCast: // Don't touch identity bitcasts. if (I->getType() == I->getOperand(0)->getType()) return false; return I->getType()->isPointerTy() || I->getType()->isIntegerTy(); case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return true; case Instruction::IntToPtr: // We know the input is intptr_t, so this is foldable. return true; case Instruction::Add: return true; case Instruction::Mul: case Instruction::Shl: // Can only handle X*C and X << C. return isa<ConstantInt>(I->getOperand(1)); case Instruction::GetElementPtr: return true; default: return false; } } /// MatchOperationAddr - Given an instruction or constant expr, see if we can /// fold the operation into the addressing mode. If so, update the addressing /// mode and return true, otherwise return false without modifying AddrMode. bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode, unsigned Depth) { // Avoid exponential behavior on extremely deep expression trees. if (Depth >= 5) return false; switch (Opcode) { case Instruction::PtrToInt: // PtrToInt is always a noop, as we know that the int type is pointer sized. return MatchAddr(AddrInst->getOperand(0), Depth); case Instruction::IntToPtr: // This inttoptr is a no-op if the integer type is pointer sized. if (TLI.getValueType(AddrInst->getOperand(0)->getType()) == TLI.getPointerTy()) return MatchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::BitCast: // BitCast is always a noop, and we can handle it as long as it is // int->int or pointer->pointer (we don't want int<->fp or something). if ((AddrInst->getOperand(0)->getType()->isPointerTy() || AddrInst->getOperand(0)->getType()->isIntegerTy()) && // Don't touch identity bitcasts. These were probably put here by LSR, // and we don't want to mess around with them. Assume it knows what it // is doing. AddrInst->getOperand(0)->getType() != AddrInst->getType()) return MatchAddr(AddrInst->getOperand(0), Depth); return false; case Instruction::Add: { // Check to see if we can merge in the RHS then the LHS. If so, we win. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); if (MatchAddr(AddrInst->getOperand(1), Depth+1) && MatchAddr(AddrInst->getOperand(0), Depth+1)) return true; // Restore the old addr mode info. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); // Otherwise this was over-aggressive. Try merging in the LHS then the RHS. if (MatchAddr(AddrInst->getOperand(0), Depth+1) && MatchAddr(AddrInst->getOperand(1), Depth+1)) return true; // Otherwise we definitely can't merge the ADD in. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); break; } //case Instruction::Or: // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD. //break; case Instruction::Mul: case Instruction::Shl: { // Can only handle X*C and X << C. ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1)); if (!RHS) return false; int64_t Scale = RHS->getSExtValue(); if (Opcode == Instruction::Shl) Scale = 1LL << Scale; return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth); } case Instruction::GetElementPtr: { // Scan the GEP. We check it if it contains constant offsets and at most // one variable offset. int VariableOperand = -1; unsigned VariableScale = 0; int64_t ConstantOffset = 0; const DataLayout *TD = TLI.getDataLayout(); gep_type_iterator GTI = gep_type_begin(AddrInst); for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) { if (StructType *STy = dyn_cast<StructType>(*GTI)) { const StructLayout *SL = TD->getStructLayout(STy); unsigned Idx = cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue(); ConstantOffset += SL->getElementOffset(Idx); } else { uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType()); if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) { ConstantOffset += CI->getSExtValue()*TypeSize; } else if (TypeSize) { // Scales of zero don't do anything. // We only allow one variable index at the moment. if (VariableOperand != -1) return false; // Remember the variable index. VariableOperand = i; VariableScale = TypeSize; } } } // A common case is for the GEP to only do a constant offset. In this case, // just add it to the disp field and check validity. if (VariableOperand == -1) { AddrMode.BaseOffs += ConstantOffset; if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){ // Check to see if we can fold the base pointer in too. if (MatchAddr(AddrInst->getOperand(0), Depth+1)) return true; } AddrMode.BaseOffs -= ConstantOffset; return false; } // Save the valid addressing mode in case we can't match. ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // See if the scale and offset amount is valid for this target. AddrMode.BaseOffs += ConstantOffset; // Match the base operand of the GEP. if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) { // If it couldn't be matched, just stuff the value in a register. if (AddrMode.HasBaseReg) { AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); } // Match the remaining variable portion of the GEP. if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If it couldn't be matched, try stuffing the base into a register // instead of matching it, and retrying the match of the scale. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); if (AddrMode.HasBaseReg) return false; AddrMode.HasBaseReg = true; AddrMode.BaseReg = AddrInst->getOperand(0); AddrMode.BaseOffs += ConstantOffset; if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale, Depth)) { // If even that didn't work, bail. AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); return false; } } return true; } } return false; } /// MatchAddr - If we can, try to add the value of 'Addr' into the current /// addressing mode. If Addr can't be added to AddrMode this returns false and /// leaves AddrMode unmodified. This assumes that Addr is either a pointer type /// or intptr_t for the target. /// bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) { if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) { // Fold in immediates if legal for the target. AddrMode.BaseOffs += CI->getSExtValue(); if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseOffs -= CI->getSExtValue(); } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) { // If this is a global variable, try to fold it into the addressing mode. if (AddrMode.BaseGV == 0) { AddrMode.BaseGV = GV; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.BaseGV = 0; } } else if (Instruction *I = dyn_cast<Instruction>(Addr)) { ExtAddrMode BackupAddrMode = AddrMode; unsigned OldSize = AddrModeInsts.size(); // Check to see if it is possible to fold this operation. if (MatchOperationAddr(I, I->getOpcode(), Depth)) { // Okay, it's possible to fold this. Check to see if it is actually // *profitable* to do so. We use a simple cost model to avoid increasing // register pressure too much. if (I->hasOneUse() || IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) { AddrModeInsts.push_back(I); return true; } // It isn't profitable to do this, roll back. //cerr << "NOT FOLDING: " << *I; AddrMode = BackupAddrMode; AddrModeInsts.resize(OldSize); } } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) { if (MatchOperationAddr(CE, CE->getOpcode(), Depth)) return true; } else if (isa<ConstantPointerNull>(Addr)) { // Null pointer gets folded without affecting the addressing mode. return true; } // Worse case, the target should support [reg] addressing modes. :) if (!AddrMode.HasBaseReg) { AddrMode.HasBaseReg = true; AddrMode.BaseReg = Addr; // Still check for legality in case the target supports [imm] but not [i+r]. if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.HasBaseReg = false; AddrMode.BaseReg = 0; } // If the base register is already taken, see if we can do [r+r]. if (AddrMode.Scale == 0) { AddrMode.Scale = 1; AddrMode.ScaledReg = Addr; if (TLI.isLegalAddressingMode(AddrMode, AccessTy)) return true; AddrMode.Scale = 0; AddrMode.ScaledReg = 0; } // Couldn't match. return false; } /// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified /// inline asm call are due to memory operands. If so, return true, otherwise /// return false. static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal, const TargetLowering &TLI) { TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI)); for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI.ComputeConstraintToUse(OpInfo, SDValue()); // If this asm operand is our Value*, and if it isn't an indirect memory // operand, we can't fold it! if (OpInfo.CallOperandVal == OpVal && (OpInfo.ConstraintType != TargetLowering::C_Memory || !OpInfo.isIndirect)) return false; } return true; } /// FindAllMemoryUses - Recursively walk all the uses of I until we find a /// memory use. If we find an obviously non-foldable instruction, return true. /// Add the ultimately found memory instructions to MemoryUses. static bool FindAllMemoryUses(Instruction *I, SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses, SmallPtrSet<Instruction*, 16> &ConsideredInsts, const TargetLowering &TLI) { // If we already considered this instruction, we're done. if (!ConsideredInsts.insert(I)) return false; // If this is an obviously unfoldable instruction, bail out. if (!MightBeFoldableInst(I)) return true; // Loop over all the uses, recursively processing them. for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { User *U = *UI; if (LoadInst *LI = dyn_cast<LoadInst>(U)) { MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo())); continue; } if (StoreInst *SI = dyn_cast<StoreInst>(U)) { unsigned opNo = UI.getOperandNo(); if (opNo == 0) return true; // Storing addr, not into addr. MemoryUses.push_back(std::make_pair(SI, opNo)); continue; } if (CallInst *CI = dyn_cast<CallInst>(U)) { InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue()); if (!IA) return true; // If this is a memory operand, we're cool, otherwise bail out. if (!IsOperandAMemoryOperand(CI, IA, I, TLI)) return true; continue; } if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts, TLI)) return true; } return false; } /// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at /// the use site that we're folding it into. If so, there is no cost to /// include it in the addressing mode. KnownLive1 and KnownLive2 are two values /// that we know are live at the instruction already. bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1, Value *KnownLive2) { // If Val is either of the known-live values, we know it is live! if (Val == 0 || Val == KnownLive1 || Val == KnownLive2) return true; // All values other than instructions and arguments (e.g. constants) are live. if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true; // If Val is a constant sized alloca in the entry block, it is live, this is // true because it is just a reference to the stack/frame pointer, which is // live for the whole function. if (AllocaInst *AI = dyn_cast<AllocaInst>(Val)) if (AI->isStaticAlloca()) return true; // Check to see if this value is already used in the memory instruction's // block. If so, it's already live into the block at the very least, so we // can reasonably fold it. return Val->isUsedInBasicBlock(MemoryInst->getParent()); } /// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing /// mode of the machine to fold the specified instruction into a load or store /// that ultimately uses it. However, the specified instruction has multiple /// uses. Given this, it may actually increase register pressure to fold it /// into the load. For example, consider this code: /// /// X = ... /// Y = X+1 /// use(Y) -> nonload/store /// Z = Y+1 /// load Z /// /// In this case, Y has multiple uses, and can be folded into the load of Z /// (yielding load [X+2]). However, doing this will cause both "X" and "X+1" to /// be live at the use(Y) line. If we don't fold Y into load Z, we use one /// fewer register. Since Y can't be folded into "use(Y)" we don't increase the /// number of computations either. /// /// Note that this (like most of CodeGenPrepare) is just a rough heuristic. If /// X was live across 'load Z' for other reasons, we actually *would* want to /// fold the addressing mode in the Z case. This would make Y die earlier. bool AddressingModeMatcher:: IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore, ExtAddrMode &AMAfter) { if (IgnoreProfitability) return true; // AMBefore is the addressing mode before this instruction was folded into it, // and AMAfter is the addressing mode after the instruction was folded. Get // the set of registers referenced by AMAfter and subtract out those // referenced by AMBefore: this is the set of values which folding in this // address extends the lifetime of. // // Note that there are only two potential values being referenced here, // BaseReg and ScaleReg (global addresses are always available, as are any // folded immediates). Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg; // If the BaseReg or ScaledReg was referenced by the previous addrmode, their // lifetime wasn't extended by adding this instruction. if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg)) BaseReg = 0; if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg)) ScaledReg = 0; // If folding this instruction (and it's subexprs) didn't extend any live // ranges, we're ok with it. if (BaseReg == 0 && ScaledReg == 0) return true; // If all uses of this instruction are ultimately load/store/inlineasm's, // check to see if their addressing modes will include this instruction. If // so, we can fold it into all uses, so it doesn't matter if it has multiple // uses. SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses; SmallPtrSet<Instruction*, 16> ConsideredInsts; if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI)) return false; // Has a non-memory, non-foldable use! // Now that we know that all uses of this instruction are part of a chain of // computation involving only operations that could theoretically be folded // into a memory use, loop over each of these uses and see if they could // *actually* fold the instruction. SmallVector<Instruction*, 32> MatchedAddrModeInsts; for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) { Instruction *User = MemoryUses[i].first; unsigned OpNo = MemoryUses[i].second; // Get the access type of this use. If the use isn't a pointer, we don't // know what it accesses. Value *Address = User->getOperand(OpNo); if (!Address->getType()->isPointerTy()) return false; Type *AddressAccessTy = cast<PointerType>(Address->getType())->getElementType(); // Do a match against the root of this address, ignoring profitability. This // will tell us if the addressing mode for the memory operation will // *actually* cover the shared instruction. ExtAddrMode Result; AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy, MemoryInst, Result); Matcher.IgnoreProfitability = true; bool Success = Matcher.MatchAddr(Address, 0); (void)Success; assert(Success && "Couldn't select *anything*?"); // If the match didn't cover I, then it won't be shared by it. if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(), I) == MatchedAddrModeInsts.end()) return false; MatchedAddrModeInsts.clear(); } return true; } } // end anonymous namespace /// IsNonLocalValue - Return true if the specified values are defined in a /// different basic block than BB. static bool IsNonLocalValue(Value *V, BasicBlock *BB) { if (Instruction *I = dyn_cast<Instruction>(V)) return I->getParent() != BB; return false; } /// OptimizeMemoryInst - Load and Store Instructions often have /// addressing modes that can do significant amounts of computation. As such, /// instruction selection will try to get the load or store to do as much /// computation as possible for the program. The problem is that isel can only /// see within a single block. As such, we sink as much legal addressing mode /// stuff into the block as possible. /// /// This method is used to optimize both load/store and inline asms with memory /// operands. bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr, Type *AccessTy) { Value *Repl = Addr; // Try to collapse single-value PHI nodes. This is necessary to undo // unprofitable PRE transformations. SmallVector<Value*, 8> worklist; SmallPtrSet<Value*, 16> Visited; worklist.push_back(Addr); // Use a worklist to iteratively look through PHI nodes, and ensure that // the addressing mode obtained from the non-PHI roots of the graph // are equivalent. Value *Consensus = 0; unsigned NumUsesConsensus = 0; bool IsNumUsesConsensusValid = false; SmallVector<Instruction*, 16> AddrModeInsts; ExtAddrMode AddrMode; while (!worklist.empty()) { Value *V = worklist.back(); worklist.pop_back(); // Break use-def graph loops. if (!Visited.insert(V)) { Consensus = 0; break; } // For a PHI node, push all of its incoming values. if (PHINode *P = dyn_cast<PHINode>(V)) { for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) worklist.push_back(P->getIncomingValue(i)); continue; } // For non-PHIs, determine the addressing mode being computed. SmallVector<Instruction*, 16> NewAddrModeInsts; ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI); // This check is broken into two cases with very similar code to avoid using // getNumUses() as much as possible. Some values have a lot of uses, so // calling getNumUses() unconditionally caused a significant compile-time // regression. if (!Consensus) { Consensus = V; AddrMode = NewAddrMode; AddrModeInsts = NewAddrModeInsts; continue; } else if (NewAddrMode == AddrMode) { if (!IsNumUsesConsensusValid) { NumUsesConsensus = Consensus->getNumUses(); IsNumUsesConsensusValid = true; } // Ensure that the obtained addressing mode is equivalent to that obtained // for all other roots of the PHI traversal. Also, when choosing one // such root as representative, select the one with the most uses in order // to keep the cost modeling heuristics in AddressingModeMatcher // applicable. unsigned NumUses = V->getNumUses(); if (NumUses > NumUsesConsensus) { Consensus = V; NumUsesConsensus = NumUses; AddrModeInsts = NewAddrModeInsts; } continue; } Consensus = 0; break; } // If the addressing mode couldn't be determined, or if multiple different // ones were determined, bail out now. if (!Consensus) return false; // Check to see if any of the instructions supersumed by this addr mode are // non-local to I's BB. bool AnyNonLocal = false; for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) { if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) { AnyNonLocal = true; break; } } // If all the instructions matched are already in this BB, don't do anything. if (!AnyNonLocal) { DEBUG(dbgs() << "CGP: Found local addrmode: " << AddrMode << "\n"); return false; } // Insert this computation right after this user. Since our caller is // scanning from the top of the BB to the bottom, reuse of the expr are // guaranteed to happen later. IRBuilder<> Builder(MemoryInst); // Now that we determined the addressing expression we want to use and know // that we have to sink it into this block. Check to see if we have already // done this for some other load/store instr in this block. If so, reuse the // computation. Value *&SunkAddr = SunkAddrs[Addr]; if (SunkAddr) { DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for " << *MemoryInst); if (SunkAddr->getType() != Addr->getType()) SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType()); } else { DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for " << *MemoryInst); Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(AccessTy->getContext()); Value *Result = 0; // Start with the base register. Do this first so that subsequent address // matching finds it last, which will prevent it from trying to match it // as the scaled value in case it happens to be a mul. That would be // problematic if we've sunk a different mul for the scale, because then // we'd end up sinking both muls. if (AddrMode.BaseReg) { Value *V = AddrMode.BaseReg; if (V->getType()->isPointerTy()) V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); if (V->getType() != IntPtrTy) V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr"); Result = V; } // Add the scale value. if (AddrMode.Scale) { Value *V = AddrMode.ScaledReg; if (V->getType() == IntPtrTy) { // done. } else if (V->getType()->isPointerTy()) { V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr"); } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() < cast<IntegerType>(V->getType())->getBitWidth()) { V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr"); } else { V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr"); } if (AddrMode.Scale != 1) V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale), "sunkaddr"); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } // Add in the BaseGV if present. if (AddrMode.BaseGV) { Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr"); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } // Add in the Base Offset if present. if (AddrMode.BaseOffs) { Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs); if (Result) Result = Builder.CreateAdd(Result, V, "sunkaddr"); else Result = V; } if (Result == 0) SunkAddr = Constant::getNullValue(Addr->getType()); else SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr"); } MemoryInst->replaceUsesOfWith(Repl, SunkAddr); // If we have no uses, recursively delete the value and all dead instructions // using it. if (Repl->use_empty()) { // This can cause recursive deletion, which can invalidate our iterator. // Use a WeakVH to hold onto it in case this happens. WeakVH IterHandle(CurInstIterator); BasicBlock *BB = CurInstIterator->getParent(); RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo); if (IterHandle != CurInstIterator) { // If the iterator instruction was recursively deleted, start over at the // start of the block. CurInstIterator = BB->begin(); SunkAddrs.clear(); } else { // This address is now available for reassignment, so erase the table // entry; we don't want to match some completely different instruction. SunkAddrs[Addr] = 0; } } ++NumMemoryInsts; return true; } /// OptimizeInlineAsmInst - If there are any memory operands, use /// OptimizeMemoryInst to sink their address computing into the block when /// possible / profitable. bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) { bool MadeChange = false; TargetLowering::AsmOperandInfoVector TargetConstraints = TLI->ParseConstraints(CS); unsigned ArgNo = 0; for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) { TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i]; // Compute the constraint code and ConstraintType to use. TLI->ComputeConstraintToUse(OpInfo, SDValue()); if (OpInfo.ConstraintType == TargetLowering::C_Memory && OpInfo.isIndirect) { Value *OpVal = CS->getArgOperand(ArgNo++); MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType()); } else if (OpInfo.Type == InlineAsm::isInput) ArgNo++; } return MadeChange; } /// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same /// basic block as the load, unless conditions are unfavorable. This allows /// SelectionDAG to fold the extend into the load. /// bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) { // Look for a load being extended. LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0)); if (!LI) return false; // If they're already in the same block, there's nothing to do. if (LI->getParent() == I->getParent()) return false; // If the load has other users and the truncate is not free, this probably // isn't worthwhile. if (!LI->hasOneUse() && TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) || !TLI->isTypeLegal(TLI->getValueType(I->getType()))) && !TLI->isTruncateFree(I->getType(), LI->getType())) return false; // Check whether the target supports casts folded into loads. unsigned LType; if (isa<ZExtInst>(I)) LType = ISD::ZEXTLOAD; else { assert(isa<SExtInst>(I) && "Unexpected ext type!"); LType = ISD::SEXTLOAD; } if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType()))) return false; // Move the extend into the same block as the load, so that SelectionDAG // can fold it. I->removeFromParent(); I->insertAfter(LI); ++NumExtsMoved; return true; } bool CodeGenPrepare::OptimizeExtUses(Instruction *I) { BasicBlock *DefBB = I->getParent(); // If the result of a {s|z}ext and its source are both live out, rewrite all // other uses of the source with result of extension. Value *Src = I->getOperand(0); if (Src->hasOneUse()) return false; // Only do this xform if truncating is free. if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType())) return false; // Only safe to perform the optimization if the source is also defined in // this block. if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent()) return false; bool DefIsLiveOut = false; for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI) { Instruction *User = cast<Instruction>(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; DefIsLiveOut = true; break; } if (!DefIsLiveOut) return false; // Make sure non of the uses are PHI nodes. for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Instruction *User = cast<Instruction>(*UI); BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Be conservative. We don't want this xform to end up introducing // reloads just before load / store instructions. if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User)) return false; } // InsertedTruncs - Only insert one trunc in each block once. DenseMap<BasicBlock*, Instruction*> InsertedTruncs; bool MadeChange = false; for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end(); UI != E; ++UI) { Use &TheUse = UI.getUse(); Instruction *User = cast<Instruction>(*UI); // Figure out which BB this ext is used in. BasicBlock *UserBB = User->getParent(); if (UserBB == DefBB) continue; // Both src and def are live in this block. Rewrite the use. Instruction *&InsertedTrunc = InsertedTruncs[UserBB]; if (!InsertedTrunc) { BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt(); InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt); } // Replace a use of the {s|z}ext source with a use of the result. TheUse = InsertedTrunc; ++NumExtUses; MadeChange = true; } return MadeChange; } /// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be /// turned into an explicit branch. static bool isFormingBranchFromSelectProfitable(SelectInst *SI) { // FIXME: This should use the same heuristics as IfConversion to determine // whether a select is better represented as a branch. This requires that // branch probability metadata is preserved for the select, which is not the // case currently. CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition()); // If the branch is predicted right, an out of order CPU can avoid blocking on // the compare. Emit cmovs on compares with a memory operand as branches to // avoid stalls on the load from memory. If the compare has more than one use // there's probably another cmov or setcc around so it's not worth emitting a // branch. if (!Cmp) return false; Value *CmpOp0 = Cmp->getOperand(0); Value *CmpOp1 = Cmp->getOperand(1); // We check that the memory operand has one use to avoid uses of the loaded // value directly after the compare, making branches unprofitable. return Cmp->hasOneUse() && ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) || (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse())); } /// If we have a SelectInst that will likely profit from branch prediction, /// turn it into a branch. bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) { bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1); // Can we convert the 'select' to CF ? if (DisableSelectToBranch || OptSize || !TLI || VectorCond) return false; TargetLowering::SelectSupportKind SelectKind; if (VectorCond) SelectKind = TargetLowering::VectorMaskSelect; else if (SI->getType()->isVectorTy()) SelectKind = TargetLowering::ScalarCondVectorVal; else SelectKind = TargetLowering::ScalarValSelect; // Do we have efficient codegen support for this kind of 'selects' ? if (TLI->isSelectSupported(SelectKind)) { // We have efficient codegen support for the select instruction. // Check if it is profitable to keep this 'select'. if (!TLI->isPredictableSelectExpensive() || !isFormingBranchFromSelectProfitable(SI)) return false; } ModifiedDT = true; // First, we split the block containing the select into 2 blocks. BasicBlock *StartBlock = SI->getParent(); BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI)); BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end"); // Create a new block serving as the landing pad for the branch. BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid", NextBlock->getParent(), NextBlock); // Move the unconditional branch from the block with the select in it into our // landing pad block. StartBlock->getTerminator()->eraseFromParent(); BranchInst::Create(NextBlock, SmallBlock); // Insert the real conditional branch based on the original condition. BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI); // The select itself is replaced with a PHI Node. PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin()); PN->takeName(SI); PN->addIncoming(SI->getTrueValue(), StartBlock); PN->addIncoming(SI->getFalseValue(), SmallBlock); SI->replaceAllUsesWith(PN); SI->eraseFromParent(); // Instruct OptimizeBlock to skip to the next block. CurInstIterator = StartBlock->end(); ++NumSelectsExpanded; return true; } bool CodeGenPrepare::OptimizeInst(Instruction *I) { if (PHINode *P = dyn_cast<PHINode>(I)) { // It is possible for very late stage optimizations (such as SimplifyCFG) // to introduce PHI nodes too late to be cleaned up. If we detect such a // trivial PHI, go ahead and zap it here. if (Value *V = SimplifyInstruction(P)) { P->replaceAllUsesWith(V); P->eraseFromParent(); ++NumPHIsElim; return true; } return false; } if (CastInst *CI = dyn_cast<CastInst>(I)) { // If the source of the cast is a constant, then this should have // already been constant folded. The only reason NOT to constant fold // it is if something (e.g. LSR) was careful to place the constant // evaluation in a block other than then one that uses it (e.g. to hoist // the address of globals out of a loop). If this is the case, we don't // want to forward-subst the cast. if (isa<Constant>(CI->getOperand(0))) return false; if (TLI && OptimizeNoopCopyExpression(CI, *TLI)) return true; if (isa<ZExtInst>(I) || isa<SExtInst>(I)) { bool MadeChange = MoveExtToFormExtLoad(I); return MadeChange | OptimizeExtUses(I); } return false; } if (CmpInst *CI = dyn_cast<CmpInst>(I)) return OptimizeCmpExpression(CI); if (LoadInst *LI = dyn_cast<LoadInst>(I)) { if (TLI) return OptimizeMemoryInst(I, I->getOperand(0), LI->getType()); return false; } if (StoreInst *SI = dyn_cast<StoreInst>(I)) { if (TLI) return OptimizeMemoryInst(I, SI->getOperand(1), SI->getOperand(0)->getType()); return false; } if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) { if (GEPI->hasAllZeroIndices()) { /// The GEP operand must be a pointer, so must its result -> BitCast Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(), GEPI->getName(), GEPI); GEPI->replaceAllUsesWith(NC); GEPI->eraseFromParent(); ++NumGEPsElim; OptimizeInst(NC); return true; } return false; } if (CallInst *CI = dyn_cast<CallInst>(I)) return OptimizeCallInst(CI); if (SelectInst *SI = dyn_cast<SelectInst>(I)) return OptimizeSelectInst(SI); return false; } // In this pass we look for GEP and cast instructions that are used // across basic blocks and rewrite them to improve basic-block-at-a-time // selection. bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) { SunkAddrs.clear(); bool MadeChange = false; CurInstIterator = BB.begin(); while (CurInstIterator != BB.end()) MadeChange |= OptimizeInst(CurInstIterator++); MadeChange |= DupRetToEnableTailCallOpts(&BB); return MadeChange; } // llvm.dbg.value is far away from the value then iSel may not be able // handle it properly. iSel will drop llvm.dbg.value if it can not // find a node corresponding to the value. bool CodeGenPrepare::PlaceDbgValues(Function &F) { bool MadeChange = false; for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) { Instruction *PrevNonDbgInst = NULL; for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) { Instruction *Insn = BI; ++BI; DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn); if (!DVI) { PrevNonDbgInst = Insn; continue; } Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue()); if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) { DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI); DVI->removeFromParent(); if (isa<PHINode>(VI)) DVI->insertBefore(VI->getParent()->getFirstInsertionPt()); else DVI->insertAfter(VI); MadeChange = true; ++NumDbgValueMoved; } } } return MadeChange; }