//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file implements some loop unrolling utilities. It does not define any // actual pass or policy, but provides a single function to perform loop // unrolling. // // The process of unrolling can produce extraneous basic blocks linked with // unconditional branches. This will be corrected in the future. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "loop-unroll" #include "llvm/Transforms/Utils/UnrollLoop.h" #include "llvm/ADT/Statistic.h" #include "llvm/Analysis/InstructionSimplify.h" #include "llvm/Analysis/LoopIterator.h" #include "llvm/Analysis/LoopPass.h" #include "llvm/Analysis/ScalarEvolution.h" #include "llvm/IR/BasicBlock.h" #include "llvm/Support/Debug.h" #include "llvm/Support/raw_ostream.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Cloning.h" #include "llvm/Transforms/Utils/Local.h" #include "llvm/Transforms/Utils/SimplifyIndVar.h" using namespace llvm; // TODO: Should these be here or in LoopUnroll? STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled"); STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)"); /// RemapInstruction - Convert the instruction operands from referencing the /// current values into those specified by VMap. static inline void RemapInstruction(Instruction *I, ValueToValueMapTy &VMap) { for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) { Value *Op = I->getOperand(op); ValueToValueMapTy::iterator It = VMap.find(Op); if (It != VMap.end()) I->setOperand(op, It->second); } if (PHINode *PN = dyn_cast<PHINode>(I)) { for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) { ValueToValueMapTy::iterator It = VMap.find(PN->getIncomingBlock(i)); if (It != VMap.end()) PN->setIncomingBlock(i, cast<BasicBlock>(It->second)); } } } /// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it /// only has one predecessor, and that predecessor only has one successor. /// The LoopInfo Analysis that is passed will be kept consistent. /// Returns the new combined block. static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI, LPPassManager *LPM) { // Merge basic blocks into their predecessor if there is only one distinct // pred, and if there is only one distinct successor of the predecessor, and // if there are no PHI nodes. BasicBlock *OnlyPred = BB->getSinglePredecessor(); if (!OnlyPred) return 0; if (OnlyPred->getTerminator()->getNumSuccessors() != 1) return 0; DEBUG(dbgs() << "Merging: " << *BB << "into: " << *OnlyPred); // Resolve any PHI nodes at the start of the block. They are all // guaranteed to have exactly one entry if they exist, unless there are // multiple duplicate (but guaranteed to be equal) entries for the // incoming edges. This occurs when there are multiple edges from // OnlyPred to OnlySucc. FoldSingleEntryPHINodes(BB); // Delete the unconditional branch from the predecessor... OnlyPred->getInstList().pop_back(); // Make all PHI nodes that referred to BB now refer to Pred as their // source... BB->replaceAllUsesWith(OnlyPred); // Move all definitions in the successor to the predecessor... OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList()); std::string OldName = BB->getName(); // Erase basic block from the function... // ScalarEvolution holds references to loop exit blocks. if (LPM) { if (ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>()) { if (Loop *L = LI->getLoopFor(BB)) SE->forgetLoop(L); } } LI->removeBlock(BB); BB->eraseFromParent(); // Inherit predecessor's name if it exists... if (!OldName.empty() && !OnlyPred->hasName()) OnlyPred->setName(OldName); return OnlyPred; } /// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true /// if unrolling was successful, or false if the loop was unmodified. Unrolling /// can only fail when the loop's latch block is not terminated by a conditional /// branch instruction. However, if the trip count (and multiple) are not known, /// loop unrolling will mostly produce more code that is no faster. /// /// TripCount is generally defined as the number of times the loop header /// executes. UnrollLoop relaxes the definition to permit early exits: here /// TripCount is the iteration on which control exits LatchBlock if no early /// exits were taken. Note that UnrollLoop assumes that the loop counter test /// terminates LatchBlock in order to remove unnecesssary instances of the /// test. In other words, control may exit the loop prior to TripCount /// iterations via an early branch, but control may not exit the loop from the /// LatchBlock's terminator prior to TripCount iterations. /// /// Similarly, TripMultiple divides the number of times that the LatchBlock may /// execute without exiting the loop. /// /// The LoopInfo Analysis that is passed will be kept consistent. /// /// If a LoopPassManager is passed in, and the loop is fully removed, it will be /// removed from the LoopPassManager as well. LPM can also be NULL. /// /// This utility preserves LoopInfo. If DominatorTree or ScalarEvolution are /// available it must also preserve those analyses. bool llvm::UnrollLoop(Loop *L, unsigned Count, unsigned TripCount, bool AllowRuntime, unsigned TripMultiple, LoopInfo *LI, LPPassManager *LPM) { BasicBlock *Preheader = L->getLoopPreheader(); if (!Preheader) { DEBUG(dbgs() << " Can't unroll; loop preheader-insertion failed.\n"); return false; } BasicBlock *LatchBlock = L->getLoopLatch(); if (!LatchBlock) { DEBUG(dbgs() << " Can't unroll; loop exit-block-insertion failed.\n"); return false; } // Loops with indirectbr cannot be cloned. if (!L->isSafeToClone()) { DEBUG(dbgs() << " Can't unroll; Loop body cannot be cloned.\n"); return false; } BasicBlock *Header = L->getHeader(); BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator()); if (!BI || BI->isUnconditional()) { // The loop-rotate pass can be helpful to avoid this in many cases. DEBUG(dbgs() << " Can't unroll; loop not terminated by a conditional branch.\n"); return false; } if (Header->hasAddressTaken()) { // The loop-rotate pass can be helpful to avoid this in many cases. DEBUG(dbgs() << " Won't unroll loop: address of header block is taken.\n"); return false; } if (TripCount != 0) DEBUG(dbgs() << " Trip Count = " << TripCount << "\n"); if (TripMultiple != 1) DEBUG(dbgs() << " Trip Multiple = " << TripMultiple << "\n"); // Effectively "DCE" unrolled iterations that are beyond the tripcount // and will never be executed. if (TripCount != 0 && Count > TripCount) Count = TripCount; // Don't enter the unroll code if there is nothing to do. This way we don't // need to support "partial unrolling by 1". if (TripCount == 0 && Count < 2) return false; assert(Count > 0); assert(TripMultiple > 0); assert(TripCount == 0 || TripCount % TripMultiple == 0); // Are we eliminating the loop control altogether? bool CompletelyUnroll = Count == TripCount; // We assume a run-time trip count if the compiler cannot // figure out the loop trip count and the unroll-runtime // flag is specified. bool RuntimeTripCount = (TripCount == 0 && Count > 0 && AllowRuntime); if (RuntimeTripCount && !UnrollRuntimeLoopProlog(L, Count, LI, LPM)) return false; // Notify ScalarEvolution that the loop will be substantially changed, // if not outright eliminated. if (LPM) { ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); if (SE) SE->forgetLoop(L); } // If we know the trip count, we know the multiple... unsigned BreakoutTrip = 0; if (TripCount != 0) { BreakoutTrip = TripCount % Count; TripMultiple = 0; } else { // Figure out what multiple to use. BreakoutTrip = TripMultiple = (unsigned)GreatestCommonDivisor64(Count, TripMultiple); } if (CompletelyUnroll) { DEBUG(dbgs() << "COMPLETELY UNROLLING loop %" << Header->getName() << " with trip count " << TripCount << "!\n"); } else { DEBUG(dbgs() << "UNROLLING loop %" << Header->getName() << " by " << Count); if (TripMultiple == 0 || BreakoutTrip != TripMultiple) { DEBUG(dbgs() << " with a breakout at trip " << BreakoutTrip); } else if (TripMultiple != 1) { DEBUG(dbgs() << " with " << TripMultiple << " trips per branch"); } else if (RuntimeTripCount) { DEBUG(dbgs() << " with run-time trip count"); } DEBUG(dbgs() << "!\n"); } std::vector<BasicBlock*> LoopBlocks = L->getBlocks(); bool ContinueOnTrue = L->contains(BI->getSuccessor(0)); BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue); // For the first iteration of the loop, we should use the precloned values for // PHI nodes. Insert associations now. ValueToValueMapTy LastValueMap; std::vector<PHINode*> OrigPHINode; for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) { OrigPHINode.push_back(cast<PHINode>(I)); } std::vector<BasicBlock*> Headers; std::vector<BasicBlock*> Latches; Headers.push_back(Header); Latches.push_back(LatchBlock); // The current on-the-fly SSA update requires blocks to be processed in // reverse postorder so that LastValueMap contains the correct value at each // exit. LoopBlocksDFS DFS(L); DFS.perform(LI); // Stash the DFS iterators before adding blocks to the loop. LoopBlocksDFS::RPOIterator BlockBegin = DFS.beginRPO(); LoopBlocksDFS::RPOIterator BlockEnd = DFS.endRPO(); for (unsigned It = 1; It != Count; ++It) { std::vector<BasicBlock*> NewBlocks; for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) { ValueToValueMapTy VMap; BasicBlock *New = CloneBasicBlock(*BB, VMap, "." + Twine(It)); Header->getParent()->getBasicBlockList().push_back(New); // Loop over all of the PHI nodes in the block, changing them to use the // incoming values from the previous block. if (*BB == Header) for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { PHINode *NewPHI = cast<PHINode>(VMap[OrigPHINode[i]]); Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock); if (Instruction *InValI = dyn_cast<Instruction>(InVal)) if (It > 1 && L->contains(InValI)) InVal = LastValueMap[InValI]; VMap[OrigPHINode[i]] = InVal; New->getInstList().erase(NewPHI); } // Update our running map of newest clones LastValueMap[*BB] = New; for (ValueToValueMapTy::iterator VI = VMap.begin(), VE = VMap.end(); VI != VE; ++VI) LastValueMap[VI->first] = VI->second; L->addBasicBlockToLoop(New, LI->getBase()); // Add phi entries for newly created values to all exit blocks. for (succ_iterator SI = succ_begin(*BB), SE = succ_end(*BB); SI != SE; ++SI) { if (L->contains(*SI)) continue; for (BasicBlock::iterator BBI = (*SI)->begin(); PHINode *phi = dyn_cast<PHINode>(BBI); ++BBI) { Value *Incoming = phi->getIncomingValueForBlock(*BB); ValueToValueMapTy::iterator It = LastValueMap.find(Incoming); if (It != LastValueMap.end()) Incoming = It->second; phi->addIncoming(Incoming, New); } } // Keep track of new headers and latches as we create them, so that // we can insert the proper branches later. if (*BB == Header) Headers.push_back(New); if (*BB == LatchBlock) Latches.push_back(New); NewBlocks.push_back(New); } // Remap all instructions in the most recent iteration for (unsigned i = 0; i < NewBlocks.size(); ++i) for (BasicBlock::iterator I = NewBlocks[i]->begin(), E = NewBlocks[i]->end(); I != E; ++I) ::RemapInstruction(I, LastValueMap); } // Loop over the PHI nodes in the original block, setting incoming values. for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) { PHINode *PN = OrigPHINode[i]; if (CompletelyUnroll) { PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader)); Header->getInstList().erase(PN); } else if (Count > 1) { Value *InVal = PN->removeIncomingValue(LatchBlock, false); // If this value was defined in the loop, take the value defined by the // last iteration of the loop. if (Instruction *InValI = dyn_cast<Instruction>(InVal)) { if (L->contains(InValI)) InVal = LastValueMap[InVal]; } assert(Latches.back() == LastValueMap[LatchBlock] && "bad last latch"); PN->addIncoming(InVal, Latches.back()); } } // Now that all the basic blocks for the unrolled iterations are in place, // set up the branches to connect them. for (unsigned i = 0, e = Latches.size(); i != e; ++i) { // The original branch was replicated in each unrolled iteration. BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); // The branch destination. unsigned j = (i + 1) % e; BasicBlock *Dest = Headers[j]; bool NeedConditional = true; if (RuntimeTripCount && j != 0) { NeedConditional = false; } // For a complete unroll, make the last iteration end with a branch // to the exit block. if (CompletelyUnroll && j == 0) { Dest = LoopExit; NeedConditional = false; } // If we know the trip count or a multiple of it, we can safely use an // unconditional branch for some iterations. if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) { NeedConditional = false; } if (NeedConditional) { // Update the conditional branch's successor for the following // iteration. Term->setSuccessor(!ContinueOnTrue, Dest); } else { // Remove phi operands at this loop exit if (Dest != LoopExit) { BasicBlock *BB = Latches[i]; for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB); SI != SE; ++SI) { if (*SI == Headers[i]) continue; for (BasicBlock::iterator BBI = (*SI)->begin(); PHINode *Phi = dyn_cast<PHINode>(BBI); ++BBI) { Phi->removeIncomingValue(BB, false); } } } // Replace the conditional branch with an unconditional one. BranchInst::Create(Dest, Term); Term->eraseFromParent(); } } // Merge adjacent basic blocks, if possible. for (unsigned i = 0, e = Latches.size(); i != e; ++i) { BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator()); if (Term->isUnconditional()) { BasicBlock *Dest = Term->getSuccessor(0); if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI, LPM)) std::replace(Latches.begin(), Latches.end(), Dest, Fold); } } if (LPM) { // FIXME: Reconstruct dom info, because it is not preserved properly. // Incrementally updating domtree after loop unrolling would be easy. if (DominatorTree *DT = LPM->getAnalysisIfAvailable<DominatorTree>()) DT->runOnFunction(*L->getHeader()->getParent()); // Simplify any new induction variables in the partially unrolled loop. ScalarEvolution *SE = LPM->getAnalysisIfAvailable<ScalarEvolution>(); if (SE && !CompletelyUnroll) { SmallVector<WeakVH, 16> DeadInsts; simplifyLoopIVs(L, SE, LPM, DeadInsts); // Aggressively clean up dead instructions that simplifyLoopIVs already // identified. Any remaining should be cleaned up below. while (!DeadInsts.empty()) if (Instruction *Inst = dyn_cast_or_null<Instruction>(&*DeadInsts.pop_back_val())) RecursivelyDeleteTriviallyDeadInstructions(Inst); } } // At this point, the code is well formed. We now do a quick sweep over the // inserted code, doing constant propagation and dead code elimination as we // go. const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks(); for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(), BBE = NewLoopBlocks.end(); BB != BBE; ++BB) for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) { Instruction *Inst = I++; if (isInstructionTriviallyDead(Inst)) (*BB)->getInstList().erase(Inst); else if (Value *V = SimplifyInstruction(Inst)) if (LI->replacementPreservesLCSSAForm(Inst, V)) { Inst->replaceAllUsesWith(V); (*BB)->getInstList().erase(Inst); } } NumCompletelyUnrolled += CompletelyUnroll; ++NumUnrolled; // Remove the loop from the LoopPassManager if it's completely removed. if (CompletelyUnroll && LPM != NULL) LPM->deleteLoopFromQueue(L); return true; }