//===- LowerInvoke.cpp - Eliminate Invoke & Unwind instructions -----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This transformation is designed for use by code generators which do not yet // support stack unwinding. This pass supports two models of exception handling // lowering, the 'cheap' support and the 'expensive' support. // // 'Cheap' exception handling support gives the program the ability to execute // any program which does not "throw an exception", by turning 'invoke' // instructions into calls and by turning 'unwind' instructions into calls to // abort(). If the program does dynamically use the unwind instruction, the // program will print a message then abort. // // 'Expensive' exception handling support gives the full exception handling // support to the program at the cost of making the 'invoke' instruction // really expensive. It basically inserts setjmp/longjmp calls to emulate the // exception handling as necessary. // // Because the 'expensive' support slows down programs a lot, and EH is only // used for a subset of the programs, it must be specifically enabled by an // option. // // Note that after this pass runs the CFG is not entirely accurate (exceptional // control flow edges are not correct anymore) so only very simple things should // be done after the lowerinvoke pass has run (like generation of native code). // This should not be used as a general purpose "my LLVM-to-LLVM pass doesn't // support the invoke instruction yet" lowering pass. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "lowerinvoke" #include "llvm/Transforms/Scalar.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/Statistic.h" #include "llvm/IR/Constants.h" #include "llvm/IR/DerivedTypes.h" #include "llvm/IR/Instructions.h" #include "llvm/IR/Intrinsics.h" #include "llvm/IR/LLVMContext.h" #include "llvm/IR/Module.h" #include "llvm/Pass.h" #include "llvm/Support/CommandLine.h" #include "llvm/Target/TargetLowering.h" #include "llvm/Transforms/Utils/BasicBlockUtils.h" #include "llvm/Transforms/Utils/Local.h" #include <csetjmp> #include <set> using namespace llvm; STATISTIC(NumInvokes, "Number of invokes replaced"); STATISTIC(NumSpilled, "Number of registers live across unwind edges"); static cl::opt<bool> ExpensiveEHSupport("enable-correct-eh-support", cl::desc("Make the -lowerinvoke pass insert expensive, but correct, EH code")); namespace { class LowerInvoke : public FunctionPass { // Used for both models. Constant *AbortFn; // Used for expensive EH support. StructType *JBLinkTy; GlobalVariable *JBListHead; Constant *SetJmpFn, *LongJmpFn, *StackSaveFn, *StackRestoreFn; bool useExpensiveEHSupport; // We peek in TLI to grab the target's jmp_buf size and alignment const TargetLowering *TLI; public: static char ID; // Pass identification, replacement for typeid explicit LowerInvoke(const TargetLowering *tli = NULL, bool useExpensiveEHSupport = ExpensiveEHSupport) : FunctionPass(ID), useExpensiveEHSupport(useExpensiveEHSupport), TLI(tli) { initializeLowerInvokePass(*PassRegistry::getPassRegistry()); } bool doInitialization(Module &M); bool runOnFunction(Function &F); virtual void getAnalysisUsage(AnalysisUsage &AU) const { // This is a cluster of orthogonal Transforms AU.addPreserved("mem2reg"); AU.addPreservedID(LowerSwitchID); } private: bool insertCheapEHSupport(Function &F); void splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*>&Invokes); void rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, AllocaInst *InvokeNum, AllocaInst *StackPtr, SwitchInst *CatchSwitch); bool insertExpensiveEHSupport(Function &F); }; } char LowerInvoke::ID = 0; INITIALIZE_PASS(LowerInvoke, "lowerinvoke", "Lower invoke and unwind, for unwindless code generators", false, false) char &llvm::LowerInvokePassID = LowerInvoke::ID; // Public Interface To the LowerInvoke pass. FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI) { return new LowerInvoke(TLI, ExpensiveEHSupport); } FunctionPass *llvm::createLowerInvokePass(const TargetLowering *TLI, bool useExpensiveEHSupport) { return new LowerInvoke(TLI, useExpensiveEHSupport); } // doInitialization - Make sure that there is a prototype for abort in the // current module. bool LowerInvoke::doInitialization(Module &M) { Type *VoidPtrTy = Type::getInt8PtrTy(M.getContext()); if (useExpensiveEHSupport) { // Insert a type for the linked list of jump buffers. unsigned JBSize = TLI ? TLI->getJumpBufSize() : 0; JBSize = JBSize ? JBSize : 200; Type *JmpBufTy = ArrayType::get(VoidPtrTy, JBSize); JBLinkTy = StructType::create(M.getContext(), "llvm.sjljeh.jmpbufty"); Type *Elts[] = { JmpBufTy, PointerType::getUnqual(JBLinkTy) }; JBLinkTy->setBody(Elts); Type *PtrJBList = PointerType::getUnqual(JBLinkTy); // Now that we've done that, insert the jmpbuf list head global, unless it // already exists. if (!(JBListHead = M.getGlobalVariable("llvm.sjljeh.jblist", PtrJBList))) { JBListHead = new GlobalVariable(M, PtrJBList, false, GlobalValue::LinkOnceAnyLinkage, Constant::getNullValue(PtrJBList), "llvm.sjljeh.jblist"); } // VisualStudio defines setjmp as _setjmp #if defined(_MSC_VER) && defined(setjmp) && \ !defined(setjmp_undefined_for_msvc) # pragma push_macro("setjmp") # undef setjmp # define setjmp_undefined_for_msvc #endif SetJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::setjmp); #if defined(_MSC_VER) && defined(setjmp_undefined_for_msvc) // let's return it to _setjmp state # pragma pop_macro("setjmp") # undef setjmp_undefined_for_msvc #endif LongJmpFn = Intrinsic::getDeclaration(&M, Intrinsic::longjmp); StackSaveFn = Intrinsic::getDeclaration(&M, Intrinsic::stacksave); StackRestoreFn = Intrinsic::getDeclaration(&M, Intrinsic::stackrestore); } // We need the 'write' and 'abort' functions for both models. AbortFn = M.getOrInsertFunction("abort", Type::getVoidTy(M.getContext()), (Type *)0); return true; } bool LowerInvoke::insertCheapEHSupport(Function &F) { bool Changed = false; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); // Insert a normal call instruction... CallInst *NewCall = CallInst::Create(II->getCalledValue(), CallArgs, "", II); NewCall->takeName(II); NewCall->setCallingConv(II->getCallingConv()); NewCall->setAttributes(II->getAttributes()); NewCall->setDebugLoc(II->getDebugLoc()); II->replaceAllUsesWith(NewCall); // Insert an unconditional branch to the normal destination. BranchInst::Create(II->getNormalDest(), II); // Remove any PHI node entries from the exception destination. II->getUnwindDest()->removePredecessor(BB); // Remove the invoke instruction now. BB->getInstList().erase(II); ++NumInvokes; Changed = true; } return Changed; } /// rewriteExpensiveInvoke - Insert code and hack the function to replace the /// specified invoke instruction with a call. void LowerInvoke::rewriteExpensiveInvoke(InvokeInst *II, unsigned InvokeNo, AllocaInst *InvokeNum, AllocaInst *StackPtr, SwitchInst *CatchSwitch) { ConstantInt *InvokeNoC = ConstantInt::get(Type::getInt32Ty(II->getContext()), InvokeNo); // If the unwind edge has phi nodes, split the edge. if (isa<PHINode>(II->getUnwindDest()->begin())) { SplitCriticalEdge(II, 1, this); // If there are any phi nodes left, they must have a single predecessor. while (PHINode *PN = dyn_cast<PHINode>(II->getUnwindDest()->begin())) { PN->replaceAllUsesWith(PN->getIncomingValue(0)); PN->eraseFromParent(); } } // Insert a store of the invoke num before the invoke and store zero into the // location afterward. new StoreInst(InvokeNoC, InvokeNum, true, II); // volatile // Insert a store of the stack ptr before the invoke, so we can restore it // later in the exception case. CallInst* StackSaveRet = CallInst::Create(StackSaveFn, "ssret", II); new StoreInst(StackSaveRet, StackPtr, true, II); // volatile BasicBlock::iterator NI = II->getNormalDest()->getFirstInsertionPt(); // nonvolatile. new StoreInst(Constant::getNullValue(Type::getInt32Ty(II->getContext())), InvokeNum, false, NI); Instruction* StackPtrLoad = new LoadInst(StackPtr, "stackptr.restore", true, II->getUnwindDest()->getFirstInsertionPt()); CallInst::Create(StackRestoreFn, StackPtrLoad, "")->insertAfter(StackPtrLoad); // Add a switch case to our unwind block. CatchSwitch->addCase(InvokeNoC, II->getUnwindDest()); // Insert a normal call instruction. SmallVector<Value*,16> CallArgs(II->op_begin(), II->op_end() - 3); CallInst *NewCall = CallInst::Create(II->getCalledValue(), CallArgs, "", II); NewCall->takeName(II); NewCall->setCallingConv(II->getCallingConv()); NewCall->setAttributes(II->getAttributes()); NewCall->setDebugLoc(II->getDebugLoc()); II->replaceAllUsesWith(NewCall); // Replace the invoke with an uncond branch. BranchInst::Create(II->getNormalDest(), NewCall->getParent()); II->eraseFromParent(); } /// MarkBlocksLiveIn - Insert BB and all of its predescessors into LiveBBs until /// we reach blocks we've already seen. static void MarkBlocksLiveIn(BasicBlock *BB, std::set<BasicBlock*> &LiveBBs) { if (!LiveBBs.insert(BB).second) return; // already been here. for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) MarkBlocksLiveIn(*PI, LiveBBs); } // First thing we need to do is scan the whole function for values that are // live across unwind edges. Each value that is live across an unwind edge // we spill into a stack location, guaranteeing that there is nothing live // across the unwind edge. This process also splits all critical edges // coming out of invoke's. void LowerInvoke:: splitLiveRangesLiveAcrossInvokes(SmallVectorImpl<InvokeInst*> &Invokes) { // First step, split all critical edges from invoke instructions. for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { InvokeInst *II = Invokes[i]; SplitCriticalEdge(II, 0, this); SplitCriticalEdge(II, 1, this); assert(!isa<PHINode>(II->getNormalDest()) && !isa<PHINode>(II->getUnwindDest()) && "critical edge splitting left single entry phi nodes?"); } Function *F = Invokes.back()->getParent()->getParent(); // To avoid having to handle incoming arguments specially, we lower each arg // to a copy instruction in the entry block. This ensures that the argument // value itself cannot be live across the entry block. BasicBlock::iterator AfterAllocaInsertPt = F->begin()->begin(); while (isa<AllocaInst>(AfterAllocaInsertPt) && isa<ConstantInt>(cast<AllocaInst>(AfterAllocaInsertPt)->getArraySize())) ++AfterAllocaInsertPt; for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E; ++AI) { Type *Ty = AI->getType(); // Aggregate types can't be cast, but are legal argument types, so we have // to handle them differently. We use an extract/insert pair as a // lightweight method to achieve the same goal. if (isa<StructType>(Ty) || isa<ArrayType>(Ty) || isa<VectorType>(Ty)) { Instruction *EI = ExtractValueInst::Create(AI, 0, "",AfterAllocaInsertPt); Instruction *NI = InsertValueInst::Create(AI, EI, 0); NI->insertAfter(EI); AI->replaceAllUsesWith(NI); // Set the operand of the instructions back to the AllocaInst. EI->setOperand(0, AI); NI->setOperand(0, AI); } else { // This is always a no-op cast because we're casting AI to AI->getType() // so src and destination types are identical. BitCast is the only // possibility. CastInst *NC = new BitCastInst( AI, AI->getType(), AI->getName()+".tmp", AfterAllocaInsertPt); AI->replaceAllUsesWith(NC); // Set the operand of the cast instruction back to the AllocaInst. // Normally it's forbidden to replace a CastInst's operand because it // could cause the opcode to reflect an illegal conversion. However, // we're replacing it here with the same value it was constructed with. // We do this because the above replaceAllUsesWith() clobbered the // operand, but we want this one to remain. NC->setOperand(0, AI); } } // Finally, scan the code looking for instructions with bad live ranges. for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB) for (BasicBlock::iterator II = BB->begin(), E = BB->end(); II != E; ++II) { // Ignore obvious cases we don't have to handle. In particular, most // instructions either have no uses or only have a single use inside the // current block. Ignore them quickly. Instruction *Inst = II; if (Inst->use_empty()) continue; if (Inst->hasOneUse() && cast<Instruction>(Inst->use_back())->getParent() == BB && !isa<PHINode>(Inst->use_back())) continue; // If this is an alloca in the entry block, it's not a real register // value. if (AllocaInst *AI = dyn_cast<AllocaInst>(Inst)) if (isa<ConstantInt>(AI->getArraySize()) && BB == F->begin()) continue; // Avoid iterator invalidation by copying users to a temporary vector. SmallVector<Instruction*,16> Users; for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end(); UI != E; ++UI) { Instruction *User = cast<Instruction>(*UI); if (User->getParent() != BB || isa<PHINode>(User)) Users.push_back(User); } // Scan all of the uses and see if the live range is live across an unwind // edge. If we find a use live across an invoke edge, create an alloca // and spill the value. std::set<InvokeInst*> InvokesWithStoreInserted; // Find all of the blocks that this value is live in. std::set<BasicBlock*> LiveBBs; LiveBBs.insert(Inst->getParent()); while (!Users.empty()) { Instruction *U = Users.back(); Users.pop_back(); if (!isa<PHINode>(U)) { MarkBlocksLiveIn(U->getParent(), LiveBBs); } else { // Uses for a PHI node occur in their predecessor block. PHINode *PN = cast<PHINode>(U); for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) if (PN->getIncomingValue(i) == Inst) MarkBlocksLiveIn(PN->getIncomingBlock(i), LiveBBs); } } // Now that we know all of the blocks that this thing is live in, see if // it includes any of the unwind locations. bool NeedsSpill = false; for (unsigned i = 0, e = Invokes.size(); i != e; ++i) { BasicBlock *UnwindBlock = Invokes[i]->getUnwindDest(); if (UnwindBlock != BB && LiveBBs.count(UnwindBlock)) { NeedsSpill = true; } } // If we decided we need a spill, do it. if (NeedsSpill) { ++NumSpilled; DemoteRegToStack(*Inst, true); } } } bool LowerInvoke::insertExpensiveEHSupport(Function &F) { SmallVector<ReturnInst*,16> Returns; SmallVector<InvokeInst*,16> Invokes; UnreachableInst* UnreachablePlaceholder = 0; for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) { // Remember all return instructions in case we insert an invoke into this // function. Returns.push_back(RI); } else if (InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator())) { Invokes.push_back(II); } if (Invokes.empty()) return false; NumInvokes += Invokes.size(); // TODO: This is not an optimal way to do this. In particular, this always // inserts setjmp calls into the entries of functions with invoke instructions // even though there are possibly paths through the function that do not // execute any invokes. In particular, for functions with early exits, e.g. // the 'addMove' method in hexxagon, it would be nice to not have to do the // setjmp stuff on the early exit path. This requires a bit of dataflow, but // would not be too hard to do. // If we have an invoke instruction, insert a setjmp that dominates all // invokes. After the setjmp, use a cond branch that goes to the original // code path on zero, and to a designated 'catch' block of nonzero. Value *OldJmpBufPtr = 0; if (!Invokes.empty()) { // First thing we need to do is scan the whole function for values that are // live across unwind edges. Each value that is live across an unwind edge // we spill into a stack location, guaranteeing that there is nothing live // across the unwind edge. This process also splits all critical edges // coming out of invoke's. splitLiveRangesLiveAcrossInvokes(Invokes); BasicBlock *EntryBB = F.begin(); // Create an alloca for the incoming jump buffer ptr and the new jump buffer // that needs to be restored on all exits from the function. This is an // alloca because the value needs to be live across invokes. unsigned Align = TLI ? TLI->getJumpBufAlignment() : 0; AllocaInst *JmpBuf = new AllocaInst(JBLinkTy, 0, Align, "jblink", F.begin()->begin()); Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), ConstantInt::get(Type::getInt32Ty(F.getContext()), 1) }; OldJmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "OldBuf", EntryBB->getTerminator()); // Copy the JBListHead to the alloca. Value *OldBuf = new LoadInst(JBListHead, "oldjmpbufptr", true, EntryBB->getTerminator()); new StoreInst(OldBuf, OldJmpBufPtr, true, EntryBB->getTerminator()); // Add the new jumpbuf to the list. new StoreInst(JmpBuf, JBListHead, true, EntryBB->getTerminator()); // Create the catch block. The catch block is basically a big switch // statement that goes to all of the invoke catch blocks. BasicBlock *CatchBB = BasicBlock::Create(F.getContext(), "setjmp.catch", &F); // Create an alloca which keeps track of the stack pointer before every // invoke, this allows us to properly restore the stack pointer after // long jumping. AllocaInst *StackPtr = new AllocaInst(Type::getInt8PtrTy(F.getContext()), 0, "stackptr", EntryBB->begin()); // Create an alloca which keeps track of which invoke is currently // executing. For normal calls it contains zero. AllocaInst *InvokeNum = new AllocaInst(Type::getInt32Ty(F.getContext()), 0, "invokenum",EntryBB->begin()); new StoreInst(ConstantInt::get(Type::getInt32Ty(F.getContext()), 0), InvokeNum, true, EntryBB->getTerminator()); // Insert a load in the Catch block, and a switch on its value. By default, // we go to a block that just does an unwind (which is the correct action // for a standard call). We insert an unreachable instruction here and // modify the block to jump to the correct unwinding pad later. BasicBlock *UnwindBB = BasicBlock::Create(F.getContext(), "unwindbb", &F); UnreachablePlaceholder = new UnreachableInst(F.getContext(), UnwindBB); Value *CatchLoad = new LoadInst(InvokeNum, "invoke.num", true, CatchBB); SwitchInst *CatchSwitch = SwitchInst::Create(CatchLoad, UnwindBB, Invokes.size(), CatchBB); // Now that things are set up, insert the setjmp call itself. // Split the entry block to insert the conditional branch for the setjmp. BasicBlock *ContBlock = EntryBB->splitBasicBlock(EntryBB->getTerminator(), "setjmp.cont"); Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 0); Value *JmpBufPtr = GetElementPtrInst::Create(JmpBuf, Idx, "TheJmpBuf", EntryBB->getTerminator()); JmpBufPtr = new BitCastInst(JmpBufPtr, Type::getInt8PtrTy(F.getContext()), "tmp", EntryBB->getTerminator()); Value *SJRet = CallInst::Create(SetJmpFn, JmpBufPtr, "sjret", EntryBB->getTerminator()); // Compare the return value to zero. Value *IsNormal = new ICmpInst(EntryBB->getTerminator(), ICmpInst::ICMP_EQ, SJRet, Constant::getNullValue(SJRet->getType()), "notunwind"); // Nuke the uncond branch. EntryBB->getTerminator()->eraseFromParent(); // Put in a new condbranch in its place. BranchInst::Create(ContBlock, CatchBB, IsNormal, EntryBB); // At this point, we are all set up, rewrite each invoke instruction. for (unsigned i = 0, e = Invokes.size(); i != e; ++i) rewriteExpensiveInvoke(Invokes[i], i+1, InvokeNum, StackPtr, CatchSwitch); } // We know that there is at least one unwind. // Create three new blocks, the block to load the jmpbuf ptr and compare // against null, the block to do the longjmp, and the error block for if it // is null. Add them at the end of the function because they are not hot. BasicBlock *UnwindHandler = BasicBlock::Create(F.getContext(), "dounwind", &F); BasicBlock *UnwindBlock = BasicBlock::Create(F.getContext(), "unwind", &F); BasicBlock *TermBlock = BasicBlock::Create(F.getContext(), "unwinderror", &F); // If this function contains an invoke, restore the old jumpbuf ptr. Value *BufPtr; if (OldJmpBufPtr) { // Before the return, insert a copy from the saved value to the new value. BufPtr = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", UnwindHandler); new StoreInst(BufPtr, JBListHead, UnwindHandler); } else { BufPtr = new LoadInst(JBListHead, "ehlist", UnwindHandler); } // Load the JBList, if it's null, then there was no catch! Value *NotNull = new ICmpInst(*UnwindHandler, ICmpInst::ICMP_NE, BufPtr, Constant::getNullValue(BufPtr->getType()), "notnull"); BranchInst::Create(UnwindBlock, TermBlock, NotNull, UnwindHandler); // Create the block to do the longjmp. // Get a pointer to the jmpbuf and longjmp. Value *Idx[] = { Constant::getNullValue(Type::getInt32Ty(F.getContext())), ConstantInt::get(Type::getInt32Ty(F.getContext()), 0) }; Idx[0] = GetElementPtrInst::Create(BufPtr, Idx, "JmpBuf", UnwindBlock); Idx[0] = new BitCastInst(Idx[0], Type::getInt8PtrTy(F.getContext()), "tmp", UnwindBlock); Idx[1] = ConstantInt::get(Type::getInt32Ty(F.getContext()), 1); CallInst::Create(LongJmpFn, Idx, "", UnwindBlock); new UnreachableInst(F.getContext(), UnwindBlock); // Set up the term block ("throw without a catch"). new UnreachableInst(F.getContext(), TermBlock); // Insert a call to abort() CallInst::Create(AbortFn, "", TermBlock->getTerminator())->setTailCall(); // Replace the inserted unreachable with a branch to the unwind handler. if (UnreachablePlaceholder) { BranchInst::Create(UnwindHandler, UnreachablePlaceholder); UnreachablePlaceholder->eraseFromParent(); } // Finally, for any returns from this function, if this function contains an // invoke, restore the old jmpbuf pointer to its input value. if (OldJmpBufPtr) { for (unsigned i = 0, e = Returns.size(); i != e; ++i) { ReturnInst *R = Returns[i]; // Before the return, insert a copy from the saved value to the new value. Value *OldBuf = new LoadInst(OldJmpBufPtr, "oldjmpbufptr", true, R); new StoreInst(OldBuf, JBListHead, true, R); } } return true; } bool LowerInvoke::runOnFunction(Function &F) { if (useExpensiveEHSupport) return insertExpensiveEHSupport(F); else return insertCheapEHSupport(F); }