; RUN: opt < %s -instsimplify -S | FileCheck %s target datalayout = "p:32:32" define i1 @ptrtoint() { ; CHECK: @ptrtoint %a = alloca i8 %tmp = ptrtoint i8* %a to i32 %r = icmp eq i32 %tmp, 0 ret i1 %r ; CHECK: ret i1 false } define i1 @bitcast() { ; CHECK: @bitcast %a = alloca i32 %b = alloca i64 %x = bitcast i32* %a to i8* %y = bitcast i64* %b to i8* %cmp = icmp eq i8* %x, %y ret i1 %cmp ; CHECK-NEXT: ret i1 false } define i1 @gep() { ; CHECK: @gep %a = alloca [3 x i8], align 8 %x = getelementptr inbounds [3 x i8]* %a, i32 0, i32 0 %cmp = icmp eq i8* %x, null ret i1 %cmp ; CHECK-NEXT: ret i1 false } define i1 @gep2() { ; CHECK: @gep2 %a = alloca [3 x i8], align 8 %x = getelementptr inbounds [3 x i8]* %a, i32 0, i32 0 %y = getelementptr inbounds [3 x i8]* %a, i32 0, i32 0 %cmp = icmp eq i8* %x, %y ret i1 %cmp ; CHECK-NEXT: ret i1 true } ; PR11238 %gept = type { i32, i32 } @gepy = global %gept zeroinitializer, align 8 @gepz = extern_weak global %gept define i1 @gep3() { ; CHECK: @gep3 %x = alloca %gept, align 8 %a = getelementptr %gept* %x, i64 0, i32 0 %b = getelementptr %gept* %x, i64 0, i32 1 %equal = icmp eq i32* %a, %b ret i1 %equal ; CHECK-NEXT: ret i1 false } define i1 @gep4() { ; CHECK: @gep4 %x = alloca %gept, align 8 %a = getelementptr %gept* @gepy, i64 0, i32 0 %b = getelementptr %gept* @gepy, i64 0, i32 1 %equal = icmp eq i32* %a, %b ret i1 %equal ; CHECK-NEXT: ret i1 false } define i1 @gep5() { ; CHECK: @gep5 %x = alloca %gept, align 8 %a = getelementptr inbounds %gept* %x, i64 0, i32 1 %b = getelementptr %gept* @gepy, i64 0, i32 0 %equal = icmp eq i32* %a, %b ret i1 %equal ; CHECK-NEXT: ret i1 false } define i1 @gep6(%gept* %x) { ; Same as @gep3 but potentially null. ; CHECK: @gep6 %a = getelementptr %gept* %x, i64 0, i32 0 %b = getelementptr %gept* %x, i64 0, i32 1 %equal = icmp eq i32* %a, %b ret i1 %equal ; CHECK-NEXT: ret i1 false } define i1 @gep7(%gept* %x) { ; CHECK: @gep7 %a = getelementptr %gept* %x, i64 0, i32 0 %b = getelementptr %gept* @gepz, i64 0, i32 0 %equal = icmp eq i32* %a, %b ret i1 %equal ; CHECK: ret i1 %equal } define i1 @gep8(%gept* %x) { ; CHECK: @gep8 %a = getelementptr %gept* %x, i32 1 %b = getelementptr %gept* %x, i32 -1 %equal = icmp ugt %gept* %a, %b ret i1 %equal ; CHECK: ret i1 %equal } define i1 @gep9(i8* %ptr) { ; CHECK: @gep9 ; CHECK-NOT: ret ; CHECK: ret i1 true entry: %first1 = getelementptr inbounds i8* %ptr, i32 0 %first2 = getelementptr inbounds i8* %first1, i32 1 %first3 = getelementptr inbounds i8* %first2, i32 2 %first4 = getelementptr inbounds i8* %first3, i32 4 %last1 = getelementptr inbounds i8* %first2, i32 48 %last2 = getelementptr inbounds i8* %last1, i32 8 %last3 = getelementptr inbounds i8* %last2, i32 -4 %last4 = getelementptr inbounds i8* %last3, i32 -4 %first.int = ptrtoint i8* %first4 to i32 %last.int = ptrtoint i8* %last4 to i32 %cmp = icmp ne i32 %last.int, %first.int ret i1 %cmp } define i1 @gep10(i8* %ptr) { ; CHECK: @gep10 ; CHECK-NOT: ret ; CHECK: ret i1 true entry: %first1 = getelementptr inbounds i8* %ptr, i32 -2 %first2 = getelementptr inbounds i8* %first1, i32 44 %last1 = getelementptr inbounds i8* %ptr, i32 48 %last2 = getelementptr inbounds i8* %last1, i32 -6 %first.int = ptrtoint i8* %first2 to i32 %last.int = ptrtoint i8* %last2 to i32 %cmp = icmp eq i32 %last.int, %first.int ret i1 %cmp } define i1 @gep11(i8* %ptr) { ; CHECK: @gep11 ; CHECK-NOT: ret ; CHECK: ret i1 true entry: %first1 = getelementptr inbounds i8* %ptr, i32 -2 %last1 = getelementptr inbounds i8* %ptr, i32 48 %last2 = getelementptr inbounds i8* %last1, i32 -6 %cmp = icmp ult i8* %first1, %last2 ret i1 %cmp } define i1 @gep12(i8* %ptr) { ; CHECK: @gep12 ; CHECK-NOT: ret ; CHECK: ret i1 %cmp entry: %first1 = getelementptr inbounds i8* %ptr, i32 -2 %last1 = getelementptr inbounds i8* %ptr, i32 48 %last2 = getelementptr inbounds i8* %last1, i32 -6 %cmp = icmp slt i8* %first1, %last2 ret i1 %cmp } define i1 @gep13(i8* %ptr) { ; CHECK: @gep13 ; We can prove this GEP is non-null because it is inbounds. %x = getelementptr inbounds i8* %ptr, i32 1 %cmp = icmp eq i8* %x, null ret i1 %cmp ; CHECK-NEXT: ret i1 false } define i1 @gep14({ {}, i8 }* %ptr) { ; CHECK: @gep14 ; We can't simplify this because the offset of one in the GEP actually doesn't ; move the pointer. %x = getelementptr inbounds { {}, i8 }* %ptr, i32 0, i32 1 %cmp = icmp eq i8* %x, null ret i1 %cmp ; CHECK-NOT: ret i1 false } define i1 @gep15({ {}, [4 x {i8, i8}]}* %ptr, i32 %y) { ; CHECK: @gep15 ; We can prove this GEP is non-null even though there is a user value, as we ; would necessarily violate inbounds on one side or the other. %x = getelementptr inbounds { {}, [4 x {i8, i8}]}* %ptr, i32 0, i32 1, i32 %y, i32 1 %cmp = icmp eq i8* %x, null ret i1 %cmp ; CHECK-NEXT: ret i1 false } define i1 @gep16(i8* %ptr, i32 %a) { ; CHECK: @gep16 ; We can prove this GEP is non-null because it is inbounds and because we know ; %b is non-zero even though we don't know its value. %b = or i32 %a, 1 %x = getelementptr inbounds i8* %ptr, i32 %b %cmp = icmp eq i8* %x, null ret i1 %cmp ; CHECK-NEXT: ret i1 false } define i1 @zext(i32 %x) { ; CHECK: @zext %e1 = zext i32 %x to i64 %e2 = zext i32 %x to i64 %r = icmp eq i64 %e1, %e2 ret i1 %r ; CHECK: ret i1 true } define i1 @zext2(i1 %x) { ; CHECK: @zext2 %e = zext i1 %x to i32 %c = icmp ne i32 %e, 0 ret i1 %c ; CHECK: ret i1 %x } define i1 @zext3() { ; CHECK: @zext3 %e = zext i1 1 to i32 %c = icmp ne i32 %e, 0 ret i1 %c ; CHECK: ret i1 true } define i1 @sext(i32 %x) { ; CHECK: @sext %e1 = sext i32 %x to i64 %e2 = sext i32 %x to i64 %r = icmp eq i64 %e1, %e2 ret i1 %r ; CHECK: ret i1 true } define i1 @sext2(i1 %x) { ; CHECK: @sext2 %e = sext i1 %x to i32 %c = icmp ne i32 %e, 0 ret i1 %c ; CHECK: ret i1 %x } define i1 @sext3() { ; CHECK: @sext3 %e = sext i1 1 to i32 %c = icmp ne i32 %e, 0 ret i1 %c ; CHECK: ret i1 true } define i1 @add(i32 %x, i32 %y) { ; CHECK: @add %l = lshr i32 %x, 1 %q = lshr i32 %y, 1 %r = or i32 %q, 1 %s = add i32 %l, %r %c = icmp eq i32 %s, 0 ret i1 %c ; CHECK: ret i1 false } define i1 @add2(i8 %x, i8 %y) { ; CHECK: @add2 %l = or i8 %x, 128 %r = or i8 %y, 129 %s = add i8 %l, %r %c = icmp eq i8 %s, 0 ret i1 %c ; CHECK: ret i1 false } define i1 @add3(i8 %x, i8 %y) { ; CHECK: @add3 %l = zext i8 %x to i32 %r = zext i8 %y to i32 %s = add i32 %l, %r %c = icmp eq i32 %s, 0 ret i1 %c ; CHECK: ret i1 %c } define i1 @add4(i32 %x, i32 %y) { ; CHECK: @add4 %z = add nsw i32 %y, 1 %s1 = add nsw i32 %x, %y %s2 = add nsw i32 %x, %z %c = icmp slt i32 %s1, %s2 ret i1 %c ; CHECK: ret i1 true } define i1 @add5(i32 %x, i32 %y) { ; CHECK: @add5 %z = add nuw i32 %y, 1 %s1 = add nuw i32 %x, %z %s2 = add nuw i32 %x, %y %c = icmp ugt i32 %s1, %s2 ret i1 %c ; CHECK: ret i1 true } define i1 @add6(i64 %A, i64 %B) { ; CHECK: @add6 %s1 = add i64 %A, %B %s2 = add i64 %B, %A %cmp = icmp eq i64 %s1, %s2 ret i1 %cmp ; CHECK: ret i1 true } define i1 @addpowtwo(i32 %x, i32 %y) { ; CHECK: @addpowtwo %l = lshr i32 %x, 1 %r = shl i32 1, %y %s = add i32 %l, %r %c = icmp eq i32 %s, 0 ret i1 %c ; CHECK: ret i1 false } define i1 @or(i32 %x) { ; CHECK: @or %o = or i32 %x, 1 %c = icmp eq i32 %o, 0 ret i1 %c ; CHECK: ret i1 false } define i1 @shl(i32 %x) { ; CHECK: @shl %s = shl i32 1, %x %c = icmp eq i32 %s, 0 ret i1 %c ; CHECK: ret i1 false } define i1 @lshr1(i32 %x) { ; CHECK: @lshr1 %s = lshr i32 -1, %x %c = icmp eq i32 %s, 0 ret i1 %c ; CHECK: ret i1 false } define i1 @lshr2(i32 %x) { ; CHECK: @lshr2 %s = lshr i32 %x, 30 %c = icmp ugt i32 %s, 8 ret i1 %c ; CHECK: ret i1 false } define i1 @ashr1(i32 %x) { ; CHECK: @ashr1 %s = ashr i32 -1, %x %c = icmp eq i32 %s, 0 ret i1 %c ; CHECK: ret i1 false } define i1 @ashr2(i32 %x) { ; CHECK: @ashr2 %s = ashr i32 %x, 30 %c = icmp slt i32 %s, -5 ret i1 %c ; CHECK: ret i1 false } define i1 @select1(i1 %cond) { ; CHECK: @select1 %s = select i1 %cond, i32 1, i32 0 %c = icmp eq i32 %s, 1 ret i1 %c ; CHECK: ret i1 %cond } define i1 @select2(i1 %cond) { ; CHECK: @select2 %x = zext i1 %cond to i32 %s = select i1 %cond, i32 %x, i32 0 %c = icmp ne i32 %s, 0 ret i1 %c ; CHECK: ret i1 %cond } define i1 @select3(i1 %cond) { ; CHECK: @select3 %x = zext i1 %cond to i32 %s = select i1 %cond, i32 1, i32 %x %c = icmp ne i32 %s, 0 ret i1 %c ; CHECK: ret i1 %cond } define i1 @select4(i1 %cond) { ; CHECK: @select4 %invert = xor i1 %cond, 1 %s = select i1 %invert, i32 0, i32 1 %c = icmp ne i32 %s, 0 ret i1 %c ; CHECK: ret i1 %cond } define i1 @select5(i32 %x) { ; CHECK: @select5 %c = icmp eq i32 %x, 0 %s = select i1 %c, i32 1, i32 %x %c2 = icmp eq i32 %s, 0 ret i1 %c2 ; CHECK: ret i1 false } define i1 @select6(i32 %x) { ; CHECK: @select6 %c = icmp sgt i32 %x, 0 %s = select i1 %c, i32 %x, i32 4 %c2 = icmp eq i32 %s, 0 ret i1 %c2 ; CHECK: ret i1 %c2 } define i1 @urem1(i32 %X, i32 %Y) { ; CHECK: @urem1 %A = urem i32 %X, %Y %B = icmp ult i32 %A, %Y ret i1 %B ; CHECK: ret i1 true } define i1 @urem2(i32 %X, i32 %Y) { ; CHECK: @urem2 %A = urem i32 %X, %Y %B = icmp eq i32 %A, %Y ret i1 %B ; CHECK: ret i1 false } define i1 @urem3(i32 %X) { ; CHECK: @urem3 %A = urem i32 %X, 10 %B = icmp ult i32 %A, 15 ret i1 %B ; CHECK: ret i1 true } define i1 @urem4(i32 %X) { ; CHECK: @urem4 %A = urem i32 %X, 15 %B = icmp ult i32 %A, 10 ret i1 %B ; CHECK: ret i1 %B } define i1 @urem5(i16 %X, i32 %Y) { ; CHECK: @urem5 %A = zext i16 %X to i32 %B = urem i32 %A, %Y %C = icmp slt i32 %B, %Y ret i1 %C ; CHECK: ret i1 true } define i1 @urem6(i32 %X, i32 %Y) { ; CHECK: @urem6 %A = urem i32 %X, %Y %B = icmp ugt i32 %Y, %A ret i1 %B ; CHECK: ret i1 true } define i1 @srem1(i32 %X) { ; CHECK: @srem1 %A = srem i32 %X, -5 %B = icmp sgt i32 %A, 5 ret i1 %B ; CHECK: ret i1 false } ; PR9343 #15 ; CHECK: @srem2 ; CHECK: ret i1 false define i1 @srem2(i16 %X, i32 %Y) { %A = zext i16 %X to i32 %B = add nsw i32 %A, 1 %C = srem i32 %B, %Y %D = icmp slt i32 %C, 0 ret i1 %D } ; CHECK: @srem3 ; CHECK-NEXT: ret i1 false define i1 @srem3(i16 %X, i32 %Y) { %A = zext i16 %X to i32 %B = or i32 2147483648, %A %C = sub nsw i32 1, %B %D = srem i32 %C, %Y %E = icmp slt i32 %D, 0 ret i1 %E } define i1 @udiv1(i32 %X) { ; CHECK: @udiv1 %A = udiv i32 %X, 1000000 %B = icmp ult i32 %A, 5000 ret i1 %B ; CHECK: ret i1 true } define i1 @udiv2(i32 %X, i32 %Y, i32 %Z) { ; CHECK: @udiv2 %A = udiv exact i32 10, %Z %B = udiv exact i32 20, %Z %C = icmp ult i32 %A, %B ret i1 %C ; CHECK: ret i1 true } define i1 @udiv3(i32 %X, i32 %Y) { ; CHECK: @udiv3 %A = udiv i32 %X, %Y %C = icmp ugt i32 %A, %X ret i1 %C ; CHECK: ret i1 false } define i1 @udiv4(i32 %X, i32 %Y) { ; CHECK: @udiv4 %A = udiv i32 %X, %Y %C = icmp ule i32 %A, %X ret i1 %C ; CHECK: ret i1 true } define i1 @udiv5(i32 %X) { ; CHECK: @udiv5 %A = udiv i32 123, %X %C = icmp ugt i32 %A, 124 ret i1 %C ; CHECK: ret i1 false } ; PR11340 define i1 @udiv6(i32 %X) nounwind { ; CHECK: @udiv6 %A = udiv i32 1, %X %C = icmp eq i32 %A, 0 ret i1 %C ; CHECK: ret i1 %C } define i1 @sdiv1(i32 %X) { ; CHECK: @sdiv1 %A = sdiv i32 %X, 1000000 %B = icmp slt i32 %A, 3000 ret i1 %B ; CHECK: ret i1 true } define i1 @or1(i32 %X) { ; CHECK: @or1 %A = or i32 %X, 62 %B = icmp ult i32 %A, 50 ret i1 %B ; CHECK: ret i1 false } define i1 @and1(i32 %X) { ; CHECK: @and1 %A = and i32 %X, 62 %B = icmp ugt i32 %A, 70 ret i1 %B ; CHECK: ret i1 false } define i1 @mul1(i32 %X) { ; CHECK: @mul1 ; Square of a non-zero number is non-zero if there is no overflow. %Y = or i32 %X, 1 %M = mul nuw i32 %Y, %Y %C = icmp eq i32 %M, 0 ret i1 %C ; CHECK: ret i1 false } define i1 @mul2(i32 %X) { ; CHECK: @mul2 ; Square of a non-zero number is positive if there is no signed overflow. %Y = or i32 %X, 1 %M = mul nsw i32 %Y, %Y %C = icmp sgt i32 %M, 0 ret i1 %C ; CHECK: ret i1 true } define i1 @mul3(i32 %X, i32 %Y) { ; CHECK: @mul3 ; Product of non-negative numbers is non-negative if there is no signed overflow. %XX = mul nsw i32 %X, %X %YY = mul nsw i32 %Y, %Y %M = mul nsw i32 %XX, %YY %C = icmp sge i32 %M, 0 ret i1 %C ; CHECK: ret i1 true } define <2 x i1> @vectorselect1(<2 x i1> %cond) { ; CHECK: @vectorselect1 %invert = xor <2 x i1> %cond, <i1 1, i1 1> %s = select <2 x i1> %invert, <2 x i32> <i32 0, i32 0>, <2 x i32> <i32 1, i32 1> %c = icmp ne <2 x i32> %s, <i32 0, i32 0> ret <2 x i1> %c ; CHECK: ret <2 x i1> %cond } ; PR11948 define <2 x i1> @vectorselectcrash(i32 %arg1) { %tobool40 = icmp ne i32 %arg1, 0 %cond43 = select i1 %tobool40, <2 x i16> <i16 -5, i16 66>, <2 x i16> <i16 46, i16 1> %cmp45 = icmp ugt <2 x i16> %cond43, <i16 73, i16 21> ret <2 x i1> %cmp45 } ; PR12013 define i1 @alloca_compare(i64 %idx) { %sv = alloca { i32, i32, [124 x i32] } %1 = getelementptr inbounds { i32, i32, [124 x i32] }* %sv, i32 0, i32 2, i64 %idx %2 = icmp eq i32* %1, null ret i1 %2 ; CHECK: alloca_compare ; CHECK: ret i1 false } ; PR12075 define i1 @infinite_gep() { ret i1 1 unreachableblock: %X = getelementptr i32 *%X, i32 1 %Y = icmp eq i32* %X, null ret i1 %Y } ; It's not valid to fold a comparison of an argument with an alloca, even though ; that's tempting. An argument can't *alias* an alloca, however the aliasing rule ; relies on restrictions against guessing an object's address and dereferencing. ; There are no restrictions against guessing an object's address and comparing. define i1 @alloca_argument_compare(i64* %arg) { %alloc = alloca i64 %cmp = icmp eq i64* %arg, %alloc ret i1 %cmp ; CHECK: alloca_argument_compare ; CHECK: ret i1 %cmp } ; As above, but with the operands reversed. define i1 @alloca_argument_compare_swapped(i64* %arg) { %alloc = alloca i64 %cmp = icmp eq i64* %alloc, %arg ret i1 %cmp ; CHECK: alloca_argument_compare_swapped ; CHECK: ret i1 %cmp } ; Don't assume that a noalias argument isn't equal to a global variable's ; address. This is an example where AliasAnalysis' NoAlias concept is ; different from actual pointer inequality. @y = external global i32 define zeroext i1 @external_compare(i32* noalias %x) { %cmp = icmp eq i32* %x, @y ret i1 %cmp ; CHECK: external_compare ; CHECK: ret i1 %cmp } define i1 @alloca_gep(i64 %a, i64 %b) { ; CHECK: @alloca_gep ; We can prove this GEP is non-null because it is inbounds and the pointer ; is non-null. %strs = alloca [1000 x [1001 x i8]], align 16 %x = getelementptr inbounds [1000 x [1001 x i8]]* %strs, i64 0, i64 %a, i64 %b %cmp = icmp eq i8* %x, null ret i1 %cmp ; CHECK-NEXT: ret i1 false }