//===- CodeGenRegisters.cpp - Register and RegisterClass Info -------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This file defines structures to encapsulate information gleaned from the // target register and register class definitions. // //===----------------------------------------------------------------------===// #include "CodeGenRegisters.h" #include "CodeGenTarget.h" #include "llvm/ADT/IntEqClasses.h" #include "llvm/ADT/STLExtras.h" #include "llvm/ADT/SmallVector.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/Twine.h" #include "llvm/TableGen/Error.h" using namespace llvm; //===----------------------------------------------------------------------===// // CodeGenSubRegIndex //===----------------------------------------------------------------------===// CodeGenSubRegIndex::CodeGenSubRegIndex(Record *R, unsigned Enum) : TheDef(R), EnumValue(Enum), LaneMask(0) { Name = R->getName(); if (R->getValue("Namespace")) Namespace = R->getValueAsString("Namespace"); } CodeGenSubRegIndex::CodeGenSubRegIndex(StringRef N, StringRef Nspace, unsigned Enum) : TheDef(0), Name(N), Namespace(Nspace), EnumValue(Enum), LaneMask(0) { } std::string CodeGenSubRegIndex::getQualifiedName() const { std::string N = getNamespace(); if (!N.empty()) N += "::"; N += getName(); return N; } void CodeGenSubRegIndex::updateComponents(CodeGenRegBank &RegBank) { if (!TheDef) return; std::vector<Record*> Comps = TheDef->getValueAsListOfDefs("ComposedOf"); if (!Comps.empty()) { if (Comps.size() != 2) PrintFatalError(TheDef->getLoc(), "ComposedOf must have exactly two entries"); CodeGenSubRegIndex *A = RegBank.getSubRegIdx(Comps[0]); CodeGenSubRegIndex *B = RegBank.getSubRegIdx(Comps[1]); CodeGenSubRegIndex *X = A->addComposite(B, this); if (X) PrintFatalError(TheDef->getLoc(), "Ambiguous ComposedOf entries"); } std::vector<Record*> Parts = TheDef->getValueAsListOfDefs("CoveringSubRegIndices"); if (!Parts.empty()) { if (Parts.size() < 2) PrintFatalError(TheDef->getLoc(), "CoveredBySubRegs must have two or more entries"); SmallVector<CodeGenSubRegIndex*, 8> IdxParts; for (unsigned i = 0, e = Parts.size(); i != e; ++i) IdxParts.push_back(RegBank.getSubRegIdx(Parts[i])); RegBank.addConcatSubRegIndex(IdxParts, this); } } unsigned CodeGenSubRegIndex::computeLaneMask() { // Already computed? if (LaneMask) return LaneMask; // Recursion guard, shouldn't be required. LaneMask = ~0u; // The lane mask is simply the union of all sub-indices. unsigned M = 0; for (CompMap::iterator I = Composed.begin(), E = Composed.end(); I != E; ++I) M |= I->second->computeLaneMask(); assert(M && "Missing lane mask, sub-register cycle?"); LaneMask = M; return LaneMask; } //===----------------------------------------------------------------------===// // CodeGenRegister //===----------------------------------------------------------------------===// CodeGenRegister::CodeGenRegister(Record *R, unsigned Enum) : TheDef(R), EnumValue(Enum), CostPerUse(R->getValueAsInt("CostPerUse")), CoveredBySubRegs(R->getValueAsBit("CoveredBySubRegs")), NumNativeRegUnits(0), SubRegsComplete(false), SuperRegsComplete(false), TopoSig(~0u) {} void CodeGenRegister::buildObjectGraph(CodeGenRegBank &RegBank) { std::vector<Record*> SRIs = TheDef->getValueAsListOfDefs("SubRegIndices"); std::vector<Record*> SRs = TheDef->getValueAsListOfDefs("SubRegs"); if (SRIs.size() != SRs.size()) PrintFatalError(TheDef->getLoc(), "SubRegs and SubRegIndices must have the same size"); for (unsigned i = 0, e = SRIs.size(); i != e; ++i) { ExplicitSubRegIndices.push_back(RegBank.getSubRegIdx(SRIs[i])); ExplicitSubRegs.push_back(RegBank.getReg(SRs[i])); } // Also compute leading super-registers. Each register has a list of // covered-by-subregs super-registers where it appears as the first explicit // sub-register. // // This is used by computeSecondarySubRegs() to find candidates. if (CoveredBySubRegs && !ExplicitSubRegs.empty()) ExplicitSubRegs.front()->LeadingSuperRegs.push_back(this); // Add ad hoc alias links. This is a symmetric relationship between two // registers, so build a symmetric graph by adding links in both ends. std::vector<Record*> Aliases = TheDef->getValueAsListOfDefs("Aliases"); for (unsigned i = 0, e = Aliases.size(); i != e; ++i) { CodeGenRegister *Reg = RegBank.getReg(Aliases[i]); ExplicitAliases.push_back(Reg); Reg->ExplicitAliases.push_back(this); } } const std::string &CodeGenRegister::getName() const { return TheDef->getName(); } namespace { // Iterate over all register units in a set of registers. class RegUnitIterator { CodeGenRegister::Set::const_iterator RegI, RegE; CodeGenRegister::RegUnitList::const_iterator UnitI, UnitE; public: RegUnitIterator(const CodeGenRegister::Set &Regs): RegI(Regs.begin()), RegE(Regs.end()), UnitI(), UnitE() { if (RegI != RegE) { UnitI = (*RegI)->getRegUnits().begin(); UnitE = (*RegI)->getRegUnits().end(); advance(); } } bool isValid() const { return UnitI != UnitE; } unsigned operator* () const { assert(isValid()); return *UnitI; } const CodeGenRegister *getReg() const { assert(isValid()); return *RegI; } /// Preincrement. Move to the next unit. void operator++() { assert(isValid() && "Cannot advance beyond the last operand"); ++UnitI; advance(); } protected: void advance() { while (UnitI == UnitE) { if (++RegI == RegE) break; UnitI = (*RegI)->getRegUnits().begin(); UnitE = (*RegI)->getRegUnits().end(); } } }; } // namespace // Merge two RegUnitLists maintaining the order and removing duplicates. // Overwrites MergedRU in the process. static void mergeRegUnits(CodeGenRegister::RegUnitList &MergedRU, const CodeGenRegister::RegUnitList &RRU) { CodeGenRegister::RegUnitList LRU = MergedRU; MergedRU.clear(); std::set_union(LRU.begin(), LRU.end(), RRU.begin(), RRU.end(), std::back_inserter(MergedRU)); } // Return true of this unit appears in RegUnits. static bool hasRegUnit(CodeGenRegister::RegUnitList &RegUnits, unsigned Unit) { return std::count(RegUnits.begin(), RegUnits.end(), Unit); } // Inherit register units from subregisters. // Return true if the RegUnits changed. bool CodeGenRegister::inheritRegUnits(CodeGenRegBank &RegBank) { unsigned OldNumUnits = RegUnits.size(); for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I) { CodeGenRegister *SR = I->second; // Merge the subregister's units into this register's RegUnits. mergeRegUnits(RegUnits, SR->RegUnits); } return OldNumUnits != RegUnits.size(); } const CodeGenRegister::SubRegMap & CodeGenRegister::computeSubRegs(CodeGenRegBank &RegBank) { // Only compute this map once. if (SubRegsComplete) return SubRegs; SubRegsComplete = true; // First insert the explicit subregs and make sure they are fully indexed. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; CodeGenSubRegIndex *Idx = ExplicitSubRegIndices[i]; if (!SubRegs.insert(std::make_pair(Idx, SR)).second) PrintFatalError(TheDef->getLoc(), "SubRegIndex " + Idx->getName() + " appears twice in Register " + getName()); // Map explicit sub-registers first, so the names take precedence. // The inherited sub-registers are mapped below. SubReg2Idx.insert(std::make_pair(SR, Idx)); } // Keep track of inherited subregs and how they can be reached. SmallPtrSet<CodeGenRegister*, 8> Orphans; // Clone inherited subregs and place duplicate entries in Orphans. // Here the order is important - earlier subregs take precedence. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; const SubRegMap &Map = SR->computeSubRegs(RegBank); for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; ++SI) { if (!SubRegs.insert(*SI).second) Orphans.insert(SI->second); } } // Expand any composed subreg indices. // If dsub_2 has ComposedOf = [qsub_1, dsub_0], and this register has a // qsub_1 subreg, add a dsub_2 subreg. Keep growing Indices and process // expanded subreg indices recursively. SmallVector<CodeGenSubRegIndex*, 8> Indices = ExplicitSubRegIndices; for (unsigned i = 0; i != Indices.size(); ++i) { CodeGenSubRegIndex *Idx = Indices[i]; const CodeGenSubRegIndex::CompMap &Comps = Idx->getComposites(); CodeGenRegister *SR = SubRegs[Idx]; const SubRegMap &Map = SR->computeSubRegs(RegBank); // Look at the possible compositions of Idx. // They may not all be supported by SR. for (CodeGenSubRegIndex::CompMap::const_iterator I = Comps.begin(), E = Comps.end(); I != E; ++I) { SubRegMap::const_iterator SRI = Map.find(I->first); if (SRI == Map.end()) continue; // Idx + I->first doesn't exist in SR. // Add I->second as a name for the subreg SRI->second, assuming it is // orphaned, and the name isn't already used for something else. if (SubRegs.count(I->second) || !Orphans.erase(SRI->second)) continue; // We found a new name for the orphaned sub-register. SubRegs.insert(std::make_pair(I->second, SRI->second)); Indices.push_back(I->second); } } // Now Orphans contains the inherited subregisters without a direct index. // Create inferred indexes for all missing entries. // Work backwards in the Indices vector in order to compose subregs bottom-up. // Consider this subreg sequence: // // qsub_1 -> dsub_0 -> ssub_0 // // The qsub_1 -> dsub_0 composition becomes dsub_2, so the ssub_0 register // can be reached in two different ways: // // qsub_1 -> ssub_0 // dsub_2 -> ssub_0 // // We pick the latter composition because another register may have [dsub_0, // dsub_1, dsub_2] subregs without necessarily having a qsub_1 subreg. The // dsub_2 -> ssub_0 composition can be shared. while (!Indices.empty() && !Orphans.empty()) { CodeGenSubRegIndex *Idx = Indices.pop_back_val(); CodeGenRegister *SR = SubRegs[Idx]; const SubRegMap &Map = SR->computeSubRegs(RegBank); for (SubRegMap::const_iterator SI = Map.begin(), SE = Map.end(); SI != SE; ++SI) if (Orphans.erase(SI->second)) SubRegs[RegBank.getCompositeSubRegIndex(Idx, SI->first)] = SI->second; } // Compute the inverse SubReg -> Idx map. for (SubRegMap::const_iterator SI = SubRegs.begin(), SE = SubRegs.end(); SI != SE; ++SI) { if (SI->second == this) { ArrayRef<SMLoc> Loc; if (TheDef) Loc = TheDef->getLoc(); PrintFatalError(Loc, "Register " + getName() + " has itself as a sub-register"); } // Ensure that every sub-register has a unique name. DenseMap<const CodeGenRegister*, CodeGenSubRegIndex*>::iterator Ins = SubReg2Idx.insert(std::make_pair(SI->second, SI->first)).first; if (Ins->second == SI->first) continue; // Trouble: Two different names for SI->second. ArrayRef<SMLoc> Loc; if (TheDef) Loc = TheDef->getLoc(); PrintFatalError(Loc, "Sub-register can't have two names: " + SI->second->getName() + " available as " + SI->first->getName() + " and " + Ins->second->getName()); } // Derive possible names for sub-register concatenations from any explicit // sub-registers. By doing this before computeSecondarySubRegs(), we ensure // that getConcatSubRegIndex() won't invent any concatenated indices that the // user already specified. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; if (!SR->CoveredBySubRegs || SR->ExplicitSubRegs.size() <= 1) continue; // SR is composed of multiple sub-regs. Find their names in this register. SmallVector<CodeGenSubRegIndex*, 8> Parts; for (unsigned j = 0, e = SR->ExplicitSubRegs.size(); j != e; ++j) Parts.push_back(getSubRegIndex(SR->ExplicitSubRegs[j])); // Offer this as an existing spelling for the concatenation of Parts. RegBank.addConcatSubRegIndex(Parts, ExplicitSubRegIndices[i]); } // Initialize RegUnitList. Because getSubRegs is called recursively, this // processes the register hierarchy in postorder. // // Inherit all sub-register units. It is good enough to look at the explicit // sub-registers, the other registers won't contribute any more units. for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; // Explicit sub-registers are usually disjoint, so this is a good way of // computing the union. We may pick up a few duplicates that will be // eliminated below. unsigned N = RegUnits.size(); RegUnits.append(SR->RegUnits.begin(), SR->RegUnits.end()); std::inplace_merge(RegUnits.begin(), RegUnits.begin() + N, RegUnits.end()); } RegUnits.erase(std::unique(RegUnits.begin(), RegUnits.end()), RegUnits.end()); // Absent any ad hoc aliasing, we create one register unit per leaf register. // These units correspond to the maximal cliques in the register overlap // graph which is optimal. // // When there is ad hoc aliasing, we simply create one unit per edge in the // undirected ad hoc aliasing graph. Technically, we could do better by // identifying maximal cliques in the ad hoc graph, but cliques larger than 2 // are extremely rare anyway (I've never seen one), so we don't bother with // the added complexity. for (unsigned i = 0, e = ExplicitAliases.size(); i != e; ++i) { CodeGenRegister *AR = ExplicitAliases[i]; // Only visit each edge once. if (AR->SubRegsComplete) continue; // Create a RegUnit representing this alias edge, and add it to both // registers. unsigned Unit = RegBank.newRegUnit(this, AR); RegUnits.push_back(Unit); AR->RegUnits.push_back(Unit); } // Finally, create units for leaf registers without ad hoc aliases. Note that // a leaf register with ad hoc aliases doesn't get its own unit - it isn't // necessary. This means the aliasing leaf registers can share a single unit. if (RegUnits.empty()) RegUnits.push_back(RegBank.newRegUnit(this)); // We have now computed the native register units. More may be adopted later // for balancing purposes. NumNativeRegUnits = RegUnits.size(); return SubRegs; } // In a register that is covered by its sub-registers, try to find redundant // sub-registers. For example: // // QQ0 = {Q0, Q1} // Q0 = {D0, D1} // Q1 = {D2, D3} // // We can infer that D1_D2 is also a sub-register, even if it wasn't named in // the register definition. // // The explicitly specified registers form a tree. This function discovers // sub-register relationships that would force a DAG. // void CodeGenRegister::computeSecondarySubRegs(CodeGenRegBank &RegBank) { // Collect new sub-registers first, add them later. SmallVector<SubRegMap::value_type, 8> NewSubRegs; // Look at the leading super-registers of each sub-register. Those are the // candidates for new sub-registers, assuming they are fully contained in // this register. for (SubRegMap::iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I){ const CodeGenRegister *SubReg = I->second; const CodeGenRegister::SuperRegList &Leads = SubReg->LeadingSuperRegs; for (unsigned i = 0, e = Leads.size(); i != e; ++i) { CodeGenRegister *Cand = const_cast<CodeGenRegister*>(Leads[i]); // Already got this sub-register? if (Cand == this || getSubRegIndex(Cand)) continue; // Check if each component of Cand is already a sub-register. // We know that the first component is I->second, and is present with the // name I->first. SmallVector<CodeGenSubRegIndex*, 8> Parts(1, I->first); assert(!Cand->ExplicitSubRegs.empty() && "Super-register has no sub-registers"); for (unsigned j = 1, e = Cand->ExplicitSubRegs.size(); j != e; ++j) { if (CodeGenSubRegIndex *Idx = getSubRegIndex(Cand->ExplicitSubRegs[j])) Parts.push_back(Idx); else { // Sub-register doesn't exist. Parts.clear(); break; } } // If some Cand sub-register is not part of this register, or if Cand only // has one sub-register, there is nothing to do. if (Parts.size() <= 1) continue; // Each part of Cand is a sub-register of this. Make the full Cand also // a sub-register with a concatenated sub-register index. CodeGenSubRegIndex *Concat= RegBank.getConcatSubRegIndex(Parts); NewSubRegs.push_back(std::make_pair(Concat, Cand)); } } // Now add all the new sub-registers. for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { // Don't add Cand if another sub-register is already using the index. if (!SubRegs.insert(NewSubRegs[i]).second) continue; CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; CodeGenRegister *NewSubReg = NewSubRegs[i].second; SubReg2Idx.insert(std::make_pair(NewSubReg, NewIdx)); } // Create sub-register index composition maps for the synthesized indices. for (unsigned i = 0, e = NewSubRegs.size(); i != e; ++i) { CodeGenSubRegIndex *NewIdx = NewSubRegs[i].first; CodeGenRegister *NewSubReg = NewSubRegs[i].second; for (SubRegMap::const_iterator SI = NewSubReg->SubRegs.begin(), SE = NewSubReg->SubRegs.end(); SI != SE; ++SI) { CodeGenSubRegIndex *SubIdx = getSubRegIndex(SI->second); if (!SubIdx) PrintFatalError(TheDef->getLoc(), "No SubRegIndex for " + SI->second->getName() + " in " + getName()); NewIdx->addComposite(SI->first, SubIdx); } } } void CodeGenRegister::computeSuperRegs(CodeGenRegBank &RegBank) { // Only visit each register once. if (SuperRegsComplete) return; SuperRegsComplete = true; // Make sure all sub-registers have been visited first, so the super-reg // lists will be topologically ordered. for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I) I->second->computeSuperRegs(RegBank); // Now add this as a super-register on all sub-registers. // Also compute the TopoSigId in post-order. TopoSigId Id; for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I) { // Topological signature computed from SubIdx, TopoId(SubReg). // Loops and idempotent indices have TopoSig = ~0u. Id.push_back(I->first->EnumValue); Id.push_back(I->second->TopoSig); // Don't add duplicate entries. if (!I->second->SuperRegs.empty() && I->second->SuperRegs.back() == this) continue; I->second->SuperRegs.push_back(this); } TopoSig = RegBank.getTopoSig(Id); } void CodeGenRegister::addSubRegsPreOrder(SetVector<const CodeGenRegister*> &OSet, CodeGenRegBank &RegBank) const { assert(SubRegsComplete && "Must precompute sub-registers"); for (unsigned i = 0, e = ExplicitSubRegs.size(); i != e; ++i) { CodeGenRegister *SR = ExplicitSubRegs[i]; if (OSet.insert(SR)) SR->addSubRegsPreOrder(OSet, RegBank); } // Add any secondary sub-registers that weren't part of the explicit tree. for (SubRegMap::const_iterator I = SubRegs.begin(), E = SubRegs.end(); I != E; ++I) OSet.insert(I->second); } // Compute overlapping registers. // // The standard set is all super-registers and all sub-registers, but the // target description can add arbitrary overlapping registers via the 'Aliases' // field. This complicates things, but we can compute overlapping sets using // the following rules: // // 1. The relation overlap(A, B) is reflexive and symmetric but not transitive. // // 2. overlap(A, B) implies overlap(A, S) for all S in supers(B). // // Alternatively: // // overlap(A, B) iff there exists: // A' in { A, subregs(A) } and B' in { B, subregs(B) } such that: // A' = B' or A' in aliases(B') or B' in aliases(A'). // // Here subregs(A) is the full flattened sub-register set returned by // A.getSubRegs() while aliases(A) is simply the special 'Aliases' field in the // description of register A. // // This also implies that registers with a common sub-register are considered // overlapping. This can happen when forming register pairs: // // P0 = (R0, R1) // P1 = (R1, R2) // P2 = (R2, R3) // // In this case, we will infer an overlap between P0 and P1 because of the // shared sub-register R1. There is no overlap between P0 and P2. // void CodeGenRegister::computeOverlaps(CodeGenRegister::Set &Overlaps, const CodeGenRegBank &RegBank) const { assert(!RegUnits.empty() && "Compute register units before overlaps."); // Register units are assigned such that the overlapping registers are the // super-registers of the root registers of the register units. for (unsigned rui = 0, rue = RegUnits.size(); rui != rue; ++rui) { const RegUnit &RU = RegBank.getRegUnit(RegUnits[rui]); ArrayRef<const CodeGenRegister*> Roots = RU.getRoots(); for (unsigned ri = 0, re = Roots.size(); ri != re; ++ri) { const CodeGenRegister *Root = Roots[ri]; Overlaps.insert(Root); ArrayRef<const CodeGenRegister*> Supers = Root->getSuperRegs(); Overlaps.insert(Supers.begin(), Supers.end()); } } } // Get the sum of this register's unit weights. unsigned CodeGenRegister::getWeight(const CodeGenRegBank &RegBank) const { unsigned Weight = 0; for (RegUnitList::const_iterator I = RegUnits.begin(), E = RegUnits.end(); I != E; ++I) { Weight += RegBank.getRegUnit(*I).Weight; } return Weight; } //===----------------------------------------------------------------------===// // RegisterTuples //===----------------------------------------------------------------------===// // A RegisterTuples def is used to generate pseudo-registers from lists of // sub-registers. We provide a SetTheory expander class that returns the new // registers. namespace { struct TupleExpander : SetTheory::Expander { void expand(SetTheory &ST, Record *Def, SetTheory::RecSet &Elts) { std::vector<Record*> Indices = Def->getValueAsListOfDefs("SubRegIndices"); unsigned Dim = Indices.size(); ListInit *SubRegs = Def->getValueAsListInit("SubRegs"); if (Dim != SubRegs->getSize()) PrintFatalError(Def->getLoc(), "SubRegIndices and SubRegs size mismatch"); if (Dim < 2) PrintFatalError(Def->getLoc(), "Tuples must have at least 2 sub-registers"); // Evaluate the sub-register lists to be zipped. unsigned Length = ~0u; SmallVector<SetTheory::RecSet, 4> Lists(Dim); for (unsigned i = 0; i != Dim; ++i) { ST.evaluate(SubRegs->getElement(i), Lists[i], Def->getLoc()); Length = std::min(Length, unsigned(Lists[i].size())); } if (Length == 0) return; // Precompute some types. Record *RegisterCl = Def->getRecords().getClass("Register"); RecTy *RegisterRecTy = RecordRecTy::get(RegisterCl); StringInit *BlankName = StringInit::get(""); // Zip them up. for (unsigned n = 0; n != Length; ++n) { std::string Name; Record *Proto = Lists[0][n]; std::vector<Init*> Tuple; unsigned CostPerUse = 0; for (unsigned i = 0; i != Dim; ++i) { Record *Reg = Lists[i][n]; if (i) Name += '_'; Name += Reg->getName(); Tuple.push_back(DefInit::get(Reg)); CostPerUse = std::max(CostPerUse, unsigned(Reg->getValueAsInt("CostPerUse"))); } // Create a new Record representing the synthesized register. This record // is only for consumption by CodeGenRegister, it is not added to the // RecordKeeper. Record *NewReg = new Record(Name, Def->getLoc(), Def->getRecords()); Elts.insert(NewReg); // Copy Proto super-classes. ArrayRef<Record *> Supers = Proto->getSuperClasses(); ArrayRef<SMRange> Ranges = Proto->getSuperClassRanges(); for (unsigned i = 0, e = Supers.size(); i != e; ++i) NewReg->addSuperClass(Supers[i], Ranges[i]); // Copy Proto fields. for (unsigned i = 0, e = Proto->getValues().size(); i != e; ++i) { RecordVal RV = Proto->getValues()[i]; // Skip existing fields, like NAME. if (NewReg->getValue(RV.getNameInit())) continue; StringRef Field = RV.getName(); // Replace the sub-register list with Tuple. if (Field == "SubRegs") RV.setValue(ListInit::get(Tuple, RegisterRecTy)); // Provide a blank AsmName. MC hacks are required anyway. if (Field == "AsmName") RV.setValue(BlankName); // CostPerUse is aggregated from all Tuple members. if (Field == "CostPerUse") RV.setValue(IntInit::get(CostPerUse)); // Composite registers are always covered by sub-registers. if (Field == "CoveredBySubRegs") RV.setValue(BitInit::get(true)); // Copy fields from the RegisterTuples def. if (Field == "SubRegIndices" || Field == "CompositeIndices") { NewReg->addValue(*Def->getValue(Field)); continue; } // Some fields get their default uninitialized value. if (Field == "DwarfNumbers" || Field == "DwarfAlias" || Field == "Aliases") { if (const RecordVal *DefRV = RegisterCl->getValue(Field)) NewReg->addValue(*DefRV); continue; } // Everything else is copied from Proto. NewReg->addValue(RV); } } } }; } //===----------------------------------------------------------------------===// // CodeGenRegisterClass //===----------------------------------------------------------------------===// CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, Record *R) : TheDef(R), Name(R->getName()), TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1) { // Rename anonymous register classes. if (R->getName().size() > 9 && R->getName()[9] == '.') { static unsigned AnonCounter = 0; R->setName("AnonRegClass_" + utostr(AnonCounter)); // MSVC2012 ICEs if AnonCounter++ is directly passed to utostr. ++AnonCounter; } std::vector<Record*> TypeList = R->getValueAsListOfDefs("RegTypes"); for (unsigned i = 0, e = TypeList.size(); i != e; ++i) { Record *Type = TypeList[i]; if (!Type->isSubClassOf("ValueType")) PrintFatalError("RegTypes list member '" + Type->getName() + "' does not derive from the ValueType class!"); VTs.push_back(getValueType(Type)); } assert(!VTs.empty() && "RegisterClass must contain at least one ValueType!"); // Allocation order 0 is the full set. AltOrders provides others. const SetTheory::RecVec *Elements = RegBank.getSets().expand(R); ListInit *AltOrders = R->getValueAsListInit("AltOrders"); Orders.resize(1 + AltOrders->size()); // Default allocation order always contains all registers. for (unsigned i = 0, e = Elements->size(); i != e; ++i) { Orders[0].push_back((*Elements)[i]); const CodeGenRegister *Reg = RegBank.getReg((*Elements)[i]); Members.insert(Reg); TopoSigs.set(Reg->getTopoSig()); } // Alternative allocation orders may be subsets. SetTheory::RecSet Order; for (unsigned i = 0, e = AltOrders->size(); i != e; ++i) { RegBank.getSets().evaluate(AltOrders->getElement(i), Order, R->getLoc()); Orders[1 + i].append(Order.begin(), Order.end()); // Verify that all altorder members are regclass members. while (!Order.empty()) { CodeGenRegister *Reg = RegBank.getReg(Order.back()); Order.pop_back(); if (!contains(Reg)) PrintFatalError(R->getLoc(), " AltOrder register " + Reg->getName() + " is not a class member"); } } // Allow targets to override the size in bits of the RegisterClass. unsigned Size = R->getValueAsInt("Size"); Namespace = R->getValueAsString("Namespace"); SpillSize = Size ? Size : EVT(VTs[0]).getSizeInBits(); SpillAlignment = R->getValueAsInt("Alignment"); CopyCost = R->getValueAsInt("CopyCost"); Allocatable = R->getValueAsBit("isAllocatable"); AltOrderSelect = R->getValueAsString("AltOrderSelect"); } // Create an inferred register class that was missing from the .td files. // Most properties will be inherited from the closest super-class after the // class structure has been computed. CodeGenRegisterClass::CodeGenRegisterClass(CodeGenRegBank &RegBank, StringRef Name, Key Props) : Members(*Props.Members), TheDef(0), Name(Name), TopoSigs(RegBank.getNumTopoSigs()), EnumValue(-1), SpillSize(Props.SpillSize), SpillAlignment(Props.SpillAlignment), CopyCost(0), Allocatable(true) { for (CodeGenRegister::Set::iterator I = Members.begin(), E = Members.end(); I != E; ++I) TopoSigs.set((*I)->getTopoSig()); } // Compute inherited propertied for a synthesized register class. void CodeGenRegisterClass::inheritProperties(CodeGenRegBank &RegBank) { assert(!getDef() && "Only synthesized classes can inherit properties"); assert(!SuperClasses.empty() && "Synthesized class without super class"); // The last super-class is the smallest one. CodeGenRegisterClass &Super = *SuperClasses.back(); // Most properties are copied directly. // Exceptions are members, size, and alignment Namespace = Super.Namespace; VTs = Super.VTs; CopyCost = Super.CopyCost; Allocatable = Super.Allocatable; AltOrderSelect = Super.AltOrderSelect; // Copy all allocation orders, filter out foreign registers from the larger // super-class. Orders.resize(Super.Orders.size()); for (unsigned i = 0, ie = Super.Orders.size(); i != ie; ++i) for (unsigned j = 0, je = Super.Orders[i].size(); j != je; ++j) if (contains(RegBank.getReg(Super.Orders[i][j]))) Orders[i].push_back(Super.Orders[i][j]); } bool CodeGenRegisterClass::contains(const CodeGenRegister *Reg) const { return Members.count(Reg); } namespace llvm { raw_ostream &operator<<(raw_ostream &OS, const CodeGenRegisterClass::Key &K) { OS << "{ S=" << K.SpillSize << ", A=" << K.SpillAlignment; for (CodeGenRegister::Set::const_iterator I = K.Members->begin(), E = K.Members->end(); I != E; ++I) OS << ", " << (*I)->getName(); return OS << " }"; } } // This is a simple lexicographical order that can be used to search for sets. // It is not the same as the topological order provided by TopoOrderRC. bool CodeGenRegisterClass::Key:: operator<(const CodeGenRegisterClass::Key &B) const { assert(Members && B.Members); if (*Members != *B.Members) return *Members < *B.Members; if (SpillSize != B.SpillSize) return SpillSize < B.SpillSize; return SpillAlignment < B.SpillAlignment; } // Returns true if RC is a strict subclass. // RC is a sub-class of this class if it is a valid replacement for any // instruction operand where a register of this classis required. It must // satisfy these conditions: // // 1. All RC registers are also in this. // 2. The RC spill size must not be smaller than our spill size. // 3. RC spill alignment must be compatible with ours. // static bool testSubClass(const CodeGenRegisterClass *A, const CodeGenRegisterClass *B) { return A->SpillAlignment && B->SpillAlignment % A->SpillAlignment == 0 && A->SpillSize <= B->SpillSize && std::includes(A->getMembers().begin(), A->getMembers().end(), B->getMembers().begin(), B->getMembers().end(), CodeGenRegister::Less()); } /// Sorting predicate for register classes. This provides a topological /// ordering that arranges all register classes before their sub-classes. /// /// Register classes with the same registers, spill size, and alignment form a /// clique. They will be ordered alphabetically. /// static int TopoOrderRC(const void *PA, const void *PB) { const CodeGenRegisterClass *A = *(const CodeGenRegisterClass* const*)PA; const CodeGenRegisterClass *B = *(const CodeGenRegisterClass* const*)PB; if (A == B) return 0; // Order by ascending spill size. if (A->SpillSize < B->SpillSize) return -1; if (A->SpillSize > B->SpillSize) return 1; // Order by ascending spill alignment. if (A->SpillAlignment < B->SpillAlignment) return -1; if (A->SpillAlignment > B->SpillAlignment) return 1; // Order by descending set size. Note that the classes' allocation order may // not have been computed yet. The Members set is always vaild. if (A->getMembers().size() > B->getMembers().size()) return -1; if (A->getMembers().size() < B->getMembers().size()) return 1; // Finally order by name as a tie breaker. return StringRef(A->getName()).compare(B->getName()); } std::string CodeGenRegisterClass::getQualifiedName() const { if (Namespace.empty()) return getName(); else return Namespace + "::" + getName(); } // Compute sub-classes of all register classes. // Assume the classes are ordered topologically. void CodeGenRegisterClass::computeSubClasses(CodeGenRegBank &RegBank) { ArrayRef<CodeGenRegisterClass*> RegClasses = RegBank.getRegClasses(); // Visit backwards so sub-classes are seen first. for (unsigned rci = RegClasses.size(); rci; --rci) { CodeGenRegisterClass &RC = *RegClasses[rci - 1]; RC.SubClasses.resize(RegClasses.size()); RC.SubClasses.set(RC.EnumValue); // Normally, all subclasses have IDs >= rci, unless RC is part of a clique. for (unsigned s = rci; s != RegClasses.size(); ++s) { if (RC.SubClasses.test(s)) continue; CodeGenRegisterClass *SubRC = RegClasses[s]; if (!testSubClass(&RC, SubRC)) continue; // SubRC is a sub-class. Grap all its sub-classes so we won't have to // check them again. RC.SubClasses |= SubRC->SubClasses; } // Sweep up missed clique members. They will be immediately preceding RC. for (unsigned s = rci - 1; s && testSubClass(&RC, RegClasses[s - 1]); --s) RC.SubClasses.set(s - 1); } // Compute the SuperClasses lists from the SubClasses vectors. for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { const BitVector &SC = RegClasses[rci]->getSubClasses(); for (int s = SC.find_first(); s >= 0; s = SC.find_next(s)) { if (unsigned(s) == rci) continue; RegClasses[s]->SuperClasses.push_back(RegClasses[rci]); } } // With the class hierarchy in place, let synthesized register classes inherit // properties from their closest super-class. The iteration order here can // propagate properties down multiple levels. for (unsigned rci = 0; rci != RegClasses.size(); ++rci) if (!RegClasses[rci]->getDef()) RegClasses[rci]->inheritProperties(RegBank); } void CodeGenRegisterClass::getSuperRegClasses(CodeGenSubRegIndex *SubIdx, BitVector &Out) const { DenseMap<CodeGenSubRegIndex*, SmallPtrSet<CodeGenRegisterClass*, 8> >::const_iterator FindI = SuperRegClasses.find(SubIdx); if (FindI == SuperRegClasses.end()) return; for (SmallPtrSet<CodeGenRegisterClass*, 8>::const_iterator I = FindI->second.begin(), E = FindI->second.end(); I != E; ++I) Out.set((*I)->EnumValue); } // Populate a unique sorted list of units from a register set. void CodeGenRegisterClass::buildRegUnitSet( std::vector<unsigned> &RegUnits) const { std::vector<unsigned> TmpUnits; for (RegUnitIterator UnitI(Members); UnitI.isValid(); ++UnitI) TmpUnits.push_back(*UnitI); std::sort(TmpUnits.begin(), TmpUnits.end()); std::unique_copy(TmpUnits.begin(), TmpUnits.end(), std::back_inserter(RegUnits)); } //===----------------------------------------------------------------------===// // CodeGenRegBank //===----------------------------------------------------------------------===// CodeGenRegBank::CodeGenRegBank(RecordKeeper &Records) { // Configure register Sets to understand register classes and tuples. Sets.addFieldExpander("RegisterClass", "MemberList"); Sets.addFieldExpander("CalleeSavedRegs", "SaveList"); Sets.addExpander("RegisterTuples", new TupleExpander()); // Read in the user-defined (named) sub-register indices. // More indices will be synthesized later. std::vector<Record*> SRIs = Records.getAllDerivedDefinitions("SubRegIndex"); std::sort(SRIs.begin(), SRIs.end(), LessRecord()); for (unsigned i = 0, e = SRIs.size(); i != e; ++i) getSubRegIdx(SRIs[i]); // Build composite maps from ComposedOf fields. for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) SubRegIndices[i]->updateComponents(*this); // Read in the register definitions. std::vector<Record*> Regs = Records.getAllDerivedDefinitions("Register"); std::sort(Regs.begin(), Regs.end(), LessRecord()); Registers.reserve(Regs.size()); // Assign the enumeration values. for (unsigned i = 0, e = Regs.size(); i != e; ++i) getReg(Regs[i]); // Expand tuples and number the new registers. std::vector<Record*> Tups = Records.getAllDerivedDefinitions("RegisterTuples"); for (unsigned i = 0, e = Tups.size(); i != e; ++i) { const std::vector<Record*> *TupRegs = Sets.expand(Tups[i]); for (unsigned j = 0, je = TupRegs->size(); j != je; ++j) getReg((*TupRegs)[j]); } // Now all the registers are known. Build the object graph of explicit // register-register references. for (unsigned i = 0, e = Registers.size(); i != e; ++i) Registers[i]->buildObjectGraph(*this); // Compute register name map. for (unsigned i = 0, e = Registers.size(); i != e; ++i) RegistersByName.GetOrCreateValue( Registers[i]->TheDef->getValueAsString("AsmName"), Registers[i]); // Precompute all sub-register maps. // This will create Composite entries for all inferred sub-register indices. for (unsigned i = 0, e = Registers.size(); i != e; ++i) Registers[i]->computeSubRegs(*this); // Infer even more sub-registers by combining leading super-registers. for (unsigned i = 0, e = Registers.size(); i != e; ++i) if (Registers[i]->CoveredBySubRegs) Registers[i]->computeSecondarySubRegs(*this); // After the sub-register graph is complete, compute the topologically // ordered SuperRegs list. for (unsigned i = 0, e = Registers.size(); i != e; ++i) Registers[i]->computeSuperRegs(*this); // Native register units are associated with a leaf register. They've all been // discovered now. NumNativeRegUnits = RegUnits.size(); // Read in register class definitions. std::vector<Record*> RCs = Records.getAllDerivedDefinitions("RegisterClass"); if (RCs.empty()) PrintFatalError(std::string("No 'RegisterClass' subclasses defined!")); // Allocate user-defined register classes. RegClasses.reserve(RCs.size()); for (unsigned i = 0, e = RCs.size(); i != e; ++i) addToMaps(new CodeGenRegisterClass(*this, RCs[i])); // Infer missing classes to create a full algebra. computeInferredRegisterClasses(); // Order register classes topologically and assign enum values. array_pod_sort(RegClasses.begin(), RegClasses.end(), TopoOrderRC); for (unsigned i = 0, e = RegClasses.size(); i != e; ++i) RegClasses[i]->EnumValue = i; CodeGenRegisterClass::computeSubClasses(*this); } // Create a synthetic CodeGenSubRegIndex without a corresponding Record. CodeGenSubRegIndex* CodeGenRegBank::createSubRegIndex(StringRef Name, StringRef Namespace) { CodeGenSubRegIndex *Idx = new CodeGenSubRegIndex(Name, Namespace, SubRegIndices.size() + 1); SubRegIndices.push_back(Idx); return Idx; } CodeGenSubRegIndex *CodeGenRegBank::getSubRegIdx(Record *Def) { CodeGenSubRegIndex *&Idx = Def2SubRegIdx[Def]; if (Idx) return Idx; Idx = new CodeGenSubRegIndex(Def, SubRegIndices.size() + 1); SubRegIndices.push_back(Idx); return Idx; } CodeGenRegister *CodeGenRegBank::getReg(Record *Def) { CodeGenRegister *&Reg = Def2Reg[Def]; if (Reg) return Reg; Reg = new CodeGenRegister(Def, Registers.size() + 1); Registers.push_back(Reg); return Reg; } void CodeGenRegBank::addToMaps(CodeGenRegisterClass *RC) { RegClasses.push_back(RC); if (Record *Def = RC->getDef()) Def2RC.insert(std::make_pair(Def, RC)); // Duplicate classes are rejected by insert(). // That's OK, we only care about the properties handled by CGRC::Key. CodeGenRegisterClass::Key K(*RC); Key2RC.insert(std::make_pair(K, RC)); } // Create a synthetic sub-class if it is missing. CodeGenRegisterClass* CodeGenRegBank::getOrCreateSubClass(const CodeGenRegisterClass *RC, const CodeGenRegister::Set *Members, StringRef Name) { // Synthetic sub-class has the same size and alignment as RC. CodeGenRegisterClass::Key K(Members, RC->SpillSize, RC->SpillAlignment); RCKeyMap::const_iterator FoundI = Key2RC.find(K); if (FoundI != Key2RC.end()) return FoundI->second; // Sub-class doesn't exist, create a new one. CodeGenRegisterClass *NewRC = new CodeGenRegisterClass(*this, Name, K); addToMaps(NewRC); return NewRC; } CodeGenRegisterClass *CodeGenRegBank::getRegClass(Record *Def) { if (CodeGenRegisterClass *RC = Def2RC[Def]) return RC; PrintFatalError(Def->getLoc(), "Not a known RegisterClass!"); } CodeGenSubRegIndex* CodeGenRegBank::getCompositeSubRegIndex(CodeGenSubRegIndex *A, CodeGenSubRegIndex *B) { // Look for an existing entry. CodeGenSubRegIndex *Comp = A->compose(B); if (Comp) return Comp; // None exists, synthesize one. std::string Name = A->getName() + "_then_" + B->getName(); Comp = createSubRegIndex(Name, A->getNamespace()); A->addComposite(B, Comp); return Comp; } CodeGenSubRegIndex *CodeGenRegBank:: getConcatSubRegIndex(const SmallVector<CodeGenSubRegIndex*, 8> &Parts) { assert(Parts.size() > 1 && "Need two parts to concatenate"); // Look for an existing entry. CodeGenSubRegIndex *&Idx = ConcatIdx[Parts]; if (Idx) return Idx; // None exists, synthesize one. std::string Name = Parts.front()->getName(); for (unsigned i = 1, e = Parts.size(); i != e; ++i) { Name += '_'; Name += Parts[i]->getName(); } return Idx = createSubRegIndex(Name, Parts.front()->getNamespace()); } void CodeGenRegBank::computeComposites() { // Keep track of TopoSigs visited. We only need to visit each TopoSig once, // and many registers will share TopoSigs on regular architectures. BitVector TopoSigs(getNumTopoSigs()); for (unsigned i = 0, e = Registers.size(); i != e; ++i) { CodeGenRegister *Reg1 = Registers[i]; // Skip identical subreg structures already processed. if (TopoSigs.test(Reg1->getTopoSig())) continue; TopoSigs.set(Reg1->getTopoSig()); const CodeGenRegister::SubRegMap &SRM1 = Reg1->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator i1 = SRM1.begin(), e1 = SRM1.end(); i1 != e1; ++i1) { CodeGenSubRegIndex *Idx1 = i1->first; CodeGenRegister *Reg2 = i1->second; // Ignore identity compositions. if (Reg1 == Reg2) continue; const CodeGenRegister::SubRegMap &SRM2 = Reg2->getSubRegs(); // Try composing Idx1 with another SubRegIndex. for (CodeGenRegister::SubRegMap::const_iterator i2 = SRM2.begin(), e2 = SRM2.end(); i2 != e2; ++i2) { CodeGenSubRegIndex *Idx2 = i2->first; CodeGenRegister *Reg3 = i2->second; // Ignore identity compositions. if (Reg2 == Reg3) continue; // OK Reg1:IdxPair == Reg3. Find the index with Reg:Idx == Reg3. CodeGenSubRegIndex *Idx3 = Reg1->getSubRegIndex(Reg3); assert(Idx3 && "Sub-register doesn't have an index"); // Conflicting composition? Emit a warning but allow it. if (CodeGenSubRegIndex *Prev = Idx1->addComposite(Idx2, Idx3)) PrintWarning(Twine("SubRegIndex ") + Idx1->getQualifiedName() + " and " + Idx2->getQualifiedName() + " compose ambiguously as " + Prev->getQualifiedName() + " or " + Idx3->getQualifiedName()); } } } } // Compute lane masks. This is similar to register units, but at the // sub-register index level. Each bit in the lane mask is like a register unit // class, and two lane masks will have a bit in common if two sub-register // indices overlap in some register. // // Conservatively share a lane mask bit if two sub-register indices overlap in // some registers, but not in others. That shouldn't happen a lot. void CodeGenRegBank::computeSubRegIndexLaneMasks() { // First assign individual bits to all the leaf indices. unsigned Bit = 0; for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) { CodeGenSubRegIndex *Idx = SubRegIndices[i]; if (Idx->getComposites().empty()) { Idx->LaneMask = 1u << Bit; // Share bit 31 in the unlikely case there are more than 32 leafs. // // Sharing bits is harmless; it allows graceful degradation in targets // with more than 32 vector lanes. They simply get a limited resolution // view of lanes beyond the 32nd. // // See also the comment for getSubRegIndexLaneMask(). if (Bit < 31) ++Bit; } else { Idx->LaneMask = 0; } } // FIXME: What if ad-hoc aliasing introduces overlaps that aren't represented // by the sub-register graph? This doesn't occur in any known targets. // Inherit lanes from composites. for (unsigned i = 0, e = SubRegIndices.size(); i != e; ++i) SubRegIndices[i]->computeLaneMask(); } namespace { // UberRegSet is a helper class for computeRegUnitWeights. Each UberRegSet is // the transitive closure of the union of overlapping register // classes. Together, the UberRegSets form a partition of the registers. If we // consider overlapping register classes to be connected, then each UberRegSet // is a set of connected components. // // An UberRegSet will likely be a horizontal slice of register names of // the same width. Nontrivial subregisters should then be in a separate // UberRegSet. But this property isn't required for valid computation of // register unit weights. // // A Weight field caches the max per-register unit weight in each UberRegSet. // // A set of SingularDeterminants flags single units of some register in this set // for which the unit weight equals the set weight. These units should not have // their weight increased. struct UberRegSet { CodeGenRegister::Set Regs; unsigned Weight; CodeGenRegister::RegUnitList SingularDeterminants; UberRegSet(): Weight(0) {} }; } // namespace // Partition registers into UberRegSets, where each set is the transitive // closure of the union of overlapping register classes. // // UberRegSets[0] is a special non-allocatable set. static void computeUberSets(std::vector<UberRegSet> &UberSets, std::vector<UberRegSet*> &RegSets, CodeGenRegBank &RegBank) { const std::vector<CodeGenRegister*> &Registers = RegBank.getRegisters(); // The Register EnumValue is one greater than its index into Registers. assert(Registers.size() == Registers[Registers.size()-1]->EnumValue && "register enum value mismatch"); // For simplicitly make the SetID the same as EnumValue. IntEqClasses UberSetIDs(Registers.size()+1); std::set<unsigned> AllocatableRegs; for (unsigned i = 0, e = RegBank.getRegClasses().size(); i != e; ++i) { CodeGenRegisterClass *RegClass = RegBank.getRegClasses()[i]; if (!RegClass->Allocatable) continue; const CodeGenRegister::Set &Regs = RegClass->getMembers(); if (Regs.empty()) continue; unsigned USetID = UberSetIDs.findLeader((*Regs.begin())->EnumValue); assert(USetID && "register number 0 is invalid"); AllocatableRegs.insert((*Regs.begin())->EnumValue); for (CodeGenRegister::Set::const_iterator I = llvm::next(Regs.begin()), E = Regs.end(); I != E; ++I) { AllocatableRegs.insert((*I)->EnumValue); UberSetIDs.join(USetID, (*I)->EnumValue); } } // Combine non-allocatable regs. for (unsigned i = 0, e = Registers.size(); i != e; ++i) { unsigned RegNum = Registers[i]->EnumValue; if (AllocatableRegs.count(RegNum)) continue; UberSetIDs.join(0, RegNum); } UberSetIDs.compress(); // Make the first UberSet a special unallocatable set. unsigned ZeroID = UberSetIDs[0]; // Insert Registers into the UberSets formed by union-find. // Do not resize after this. UberSets.resize(UberSetIDs.getNumClasses()); for (unsigned i = 0, e = Registers.size(); i != e; ++i) { const CodeGenRegister *Reg = Registers[i]; unsigned USetID = UberSetIDs[Reg->EnumValue]; if (!USetID) USetID = ZeroID; else if (USetID == ZeroID) USetID = 0; UberRegSet *USet = &UberSets[USetID]; USet->Regs.insert(Reg); RegSets[i] = USet; } } // Recompute each UberSet weight after changing unit weights. static void computeUberWeights(std::vector<UberRegSet> &UberSets, CodeGenRegBank &RegBank) { // Skip the first unallocatable set. for (std::vector<UberRegSet>::iterator I = llvm::next(UberSets.begin()), E = UberSets.end(); I != E; ++I) { // Initialize all unit weights in this set, and remember the max units/reg. const CodeGenRegister *Reg = 0; unsigned MaxWeight = 0, Weight = 0; for (RegUnitIterator UnitI(I->Regs); UnitI.isValid(); ++UnitI) { if (Reg != UnitI.getReg()) { if (Weight > MaxWeight) MaxWeight = Weight; Reg = UnitI.getReg(); Weight = 0; } unsigned UWeight = RegBank.getRegUnit(*UnitI).Weight; if (!UWeight) { UWeight = 1; RegBank.increaseRegUnitWeight(*UnitI, UWeight); } Weight += UWeight; } if (Weight > MaxWeight) MaxWeight = Weight; // Update the set weight. I->Weight = MaxWeight; // Find singular determinants. for (CodeGenRegister::Set::iterator RegI = I->Regs.begin(), RegE = I->Regs.end(); RegI != RegE; ++RegI) { if ((*RegI)->getRegUnits().size() == 1 && (*RegI)->getWeight(RegBank) == I->Weight) mergeRegUnits(I->SingularDeterminants, (*RegI)->getRegUnits()); } } } // normalizeWeight is a computeRegUnitWeights helper that adjusts the weight of // a register and its subregisters so that they have the same weight as their // UberSet. Self-recursion processes the subregister tree in postorder so // subregisters are normalized first. // // Side effects: // - creates new adopted register units // - causes superregisters to inherit adopted units // - increases the weight of "singular" units // - induces recomputation of UberWeights. static bool normalizeWeight(CodeGenRegister *Reg, std::vector<UberRegSet> &UberSets, std::vector<UberRegSet*> &RegSets, std::set<unsigned> &NormalRegs, CodeGenRegister::RegUnitList &NormalUnits, CodeGenRegBank &RegBank) { bool Changed = false; if (!NormalRegs.insert(Reg->EnumValue).second) return Changed; const CodeGenRegister::SubRegMap &SRM = Reg->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator SRI = SRM.begin(), SRE = SRM.end(); SRI != SRE; ++SRI) { if (SRI->second == Reg) continue; // self-cycles happen Changed |= normalizeWeight(SRI->second, UberSets, RegSets, NormalRegs, NormalUnits, RegBank); } // Postorder register normalization. // Inherit register units newly adopted by subregisters. if (Reg->inheritRegUnits(RegBank)) computeUberWeights(UberSets, RegBank); // Check if this register is too skinny for its UberRegSet. UberRegSet *UberSet = RegSets[RegBank.getRegIndex(Reg)]; unsigned RegWeight = Reg->getWeight(RegBank); if (UberSet->Weight > RegWeight) { // A register unit's weight can be adjusted only if it is the singular unit // for this register, has not been used to normalize a subregister's set, // and has not already been used to singularly determine this UberRegSet. unsigned AdjustUnit = Reg->getRegUnits().front(); if (Reg->getRegUnits().size() != 1 || hasRegUnit(NormalUnits, AdjustUnit) || hasRegUnit(UberSet->SingularDeterminants, AdjustUnit)) { // We don't have an adjustable unit, so adopt a new one. AdjustUnit = RegBank.newRegUnit(UberSet->Weight - RegWeight); Reg->adoptRegUnit(AdjustUnit); // Adopting a unit does not immediately require recomputing set weights. } else { // Adjust the existing single unit. RegBank.increaseRegUnitWeight(AdjustUnit, UberSet->Weight - RegWeight); // The unit may be shared among sets and registers within this set. computeUberWeights(UberSets, RegBank); } Changed = true; } // Mark these units normalized so superregisters can't change their weights. mergeRegUnits(NormalUnits, Reg->getRegUnits()); return Changed; } // Compute a weight for each register unit created during getSubRegs. // // The goal is that two registers in the same class will have the same weight, // where each register's weight is defined as sum of its units' weights. void CodeGenRegBank::computeRegUnitWeights() { std::vector<UberRegSet> UberSets; std::vector<UberRegSet*> RegSets(Registers.size()); computeUberSets(UberSets, RegSets, *this); // UberSets and RegSets are now immutable. computeUberWeights(UberSets, *this); // Iterate over each Register, normalizing the unit weights until reaching // a fix point. unsigned NumIters = 0; for (bool Changed = true; Changed; ++NumIters) { assert(NumIters <= NumNativeRegUnits && "Runaway register unit weights"); Changed = false; for (unsigned i = 0, e = Registers.size(); i != e; ++i) { CodeGenRegister::RegUnitList NormalUnits; std::set<unsigned> NormalRegs; Changed |= normalizeWeight(Registers[i], UberSets, RegSets, NormalRegs, NormalUnits, *this); } } } // Find a set in UniqueSets with the same elements as Set. // Return an iterator into UniqueSets. static std::vector<RegUnitSet>::const_iterator findRegUnitSet(const std::vector<RegUnitSet> &UniqueSets, const RegUnitSet &Set) { std::vector<RegUnitSet>::const_iterator I = UniqueSets.begin(), E = UniqueSets.end(); for(;I != E; ++I) { if (I->Units == Set.Units) break; } return I; } // Return true if the RUSubSet is a subset of RUSuperSet. static bool isRegUnitSubSet(const std::vector<unsigned> &RUSubSet, const std::vector<unsigned> &RUSuperSet) { return std::includes(RUSuperSet.begin(), RUSuperSet.end(), RUSubSet.begin(), RUSubSet.end()); } // Iteratively prune unit sets. void CodeGenRegBank::pruneUnitSets() { assert(RegClassUnitSets.empty() && "this invalidates RegClassUnitSets"); // Form an equivalence class of UnitSets with no significant difference. std::vector<unsigned> SuperSetIDs; for (unsigned SubIdx = 0, EndIdx = RegUnitSets.size(); SubIdx != EndIdx; ++SubIdx) { const RegUnitSet &SubSet = RegUnitSets[SubIdx]; unsigned SuperIdx = 0; for (; SuperIdx != EndIdx; ++SuperIdx) { if (SuperIdx == SubIdx) continue; const RegUnitSet &SuperSet = RegUnitSets[SuperIdx]; if (isRegUnitSubSet(SubSet.Units, SuperSet.Units) && (SubSet.Units.size() + 3 > SuperSet.Units.size())) { break; } } if (SuperIdx == EndIdx) SuperSetIDs.push_back(SubIdx); } // Populate PrunedUnitSets with each equivalence class's superset. std::vector<RegUnitSet> PrunedUnitSets(SuperSetIDs.size()); for (unsigned i = 0, e = SuperSetIDs.size(); i != e; ++i) { unsigned SuperIdx = SuperSetIDs[i]; PrunedUnitSets[i].Name = RegUnitSets[SuperIdx].Name; PrunedUnitSets[i].Units.swap(RegUnitSets[SuperIdx].Units); } RegUnitSets.swap(PrunedUnitSets); } // Create a RegUnitSet for each RegClass that contains all units in the class // including adopted units that are necessary to model register pressure. Then // iteratively compute RegUnitSets such that the union of any two overlapping // RegUnitSets is repreresented. // // RegisterInfoEmitter will map each RegClass to its RegUnitClass and any // RegUnitSet that is a superset of that RegUnitClass. void CodeGenRegBank::computeRegUnitSets() { // Compute a unique RegUnitSet for each RegClass. const ArrayRef<CodeGenRegisterClass*> &RegClasses = getRegClasses(); unsigned NumRegClasses = RegClasses.size(); for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { if (!RegClasses[RCIdx]->Allocatable) continue; // Speculatively grow the RegUnitSets to hold the new set. RegUnitSets.resize(RegUnitSets.size() + 1); RegUnitSets.back().Name = RegClasses[RCIdx]->getName(); // Compute a sorted list of units in this class. RegClasses[RCIdx]->buildRegUnitSet(RegUnitSets.back().Units); // Find an existing RegUnitSet. std::vector<RegUnitSet>::const_iterator SetI = findRegUnitSet(RegUnitSets, RegUnitSets.back()); if (SetI != llvm::prior(RegUnitSets.end())) RegUnitSets.pop_back(); } // Iteratively prune unit sets. pruneUnitSets(); // Iterate over all unit sets, including new ones added by this loop. unsigned NumRegUnitSubSets = RegUnitSets.size(); for (unsigned Idx = 0, EndIdx = RegUnitSets.size(); Idx != EndIdx; ++Idx) { // In theory, this is combinatorial. In practice, it needs to be bounded // by a small number of sets for regpressure to be efficient. // If the assert is hit, we need to implement pruning. assert(Idx < (2*NumRegUnitSubSets) && "runaway unit set inference"); // Compare new sets with all original classes. for (unsigned SearchIdx = (Idx >= NumRegUnitSubSets) ? 0 : Idx+1; SearchIdx != EndIdx; ++SearchIdx) { std::set<unsigned> Intersection; std::set_intersection(RegUnitSets[Idx].Units.begin(), RegUnitSets[Idx].Units.end(), RegUnitSets[SearchIdx].Units.begin(), RegUnitSets[SearchIdx].Units.end(), std::inserter(Intersection, Intersection.begin())); if (Intersection.empty()) continue; // Speculatively grow the RegUnitSets to hold the new set. RegUnitSets.resize(RegUnitSets.size() + 1); RegUnitSets.back().Name = RegUnitSets[Idx].Name + "+" + RegUnitSets[SearchIdx].Name; std::set_union(RegUnitSets[Idx].Units.begin(), RegUnitSets[Idx].Units.end(), RegUnitSets[SearchIdx].Units.begin(), RegUnitSets[SearchIdx].Units.end(), std::inserter(RegUnitSets.back().Units, RegUnitSets.back().Units.begin())); // Find an existing RegUnitSet, or add the union to the unique sets. std::vector<RegUnitSet>::const_iterator SetI = findRegUnitSet(RegUnitSets, RegUnitSets.back()); if (SetI != llvm::prior(RegUnitSets.end())) RegUnitSets.pop_back(); } } // Iteratively prune unit sets after inferring supersets. pruneUnitSets(); // For each register class, list the UnitSets that are supersets. RegClassUnitSets.resize(NumRegClasses); for (unsigned RCIdx = 0, RCEnd = NumRegClasses; RCIdx != RCEnd; ++RCIdx) { if (!RegClasses[RCIdx]->Allocatable) continue; // Recompute the sorted list of units in this class. std::vector<unsigned> RegUnits; RegClasses[RCIdx]->buildRegUnitSet(RegUnits); // Don't increase pressure for unallocatable regclasses. if (RegUnits.empty()) continue; // Find all supersets. for (unsigned USIdx = 0, USEnd = RegUnitSets.size(); USIdx != USEnd; ++USIdx) { if (isRegUnitSubSet(RegUnits, RegUnitSets[USIdx].Units)) RegClassUnitSets[RCIdx].push_back(USIdx); } assert(!RegClassUnitSets[RCIdx].empty() && "missing unit set for regclass"); } // For each register unit, ensure that we have the list of UnitSets that // contain the unit. Normally, this matches an existing list of UnitSets for a // register class. If not, we create a new entry in RegClassUnitSets as a // "fake" register class. for (unsigned UnitIdx = 0, UnitEnd = NumNativeRegUnits; UnitIdx < UnitEnd; ++UnitIdx) { std::vector<unsigned> RUSets; for (unsigned i = 0, e = RegUnitSets.size(); i != e; ++i) { RegUnitSet &RUSet = RegUnitSets[i]; if (std::find(RUSet.Units.begin(), RUSet.Units.end(), UnitIdx) == RUSet.Units.end()) continue; RUSets.push_back(i); } unsigned RCUnitSetsIdx = 0; for (unsigned e = RegClassUnitSets.size(); RCUnitSetsIdx != e; ++RCUnitSetsIdx) { if (RegClassUnitSets[RCUnitSetsIdx] == RUSets) { break; } } RegUnits[UnitIdx].RegClassUnitSetsIdx = RCUnitSetsIdx; if (RCUnitSetsIdx == RegClassUnitSets.size()) { // Create a new list of UnitSets as a "fake" register class. RegClassUnitSets.resize(RCUnitSetsIdx + 1); RegClassUnitSets[RCUnitSetsIdx].swap(RUSets); } } } void CodeGenRegBank::computeDerivedInfo() { computeComposites(); computeSubRegIndexLaneMasks(); // Compute a weight for each register unit created during getSubRegs. // This may create adopted register units (with unit # >= NumNativeRegUnits). computeRegUnitWeights(); // Compute a unique set of RegUnitSets. One for each RegClass and inferred // supersets for the union of overlapping sets. computeRegUnitSets(); } // // Synthesize missing register class intersections. // // Make sure that sub-classes of RC exists such that getCommonSubClass(RC, X) // returns a maximal register class for all X. // void CodeGenRegBank::inferCommonSubClass(CodeGenRegisterClass *RC) { for (unsigned rci = 0, rce = RegClasses.size(); rci != rce; ++rci) { CodeGenRegisterClass *RC1 = RC; CodeGenRegisterClass *RC2 = RegClasses[rci]; if (RC1 == RC2) continue; // Compute the set intersection of RC1 and RC2. const CodeGenRegister::Set &Memb1 = RC1->getMembers(); const CodeGenRegister::Set &Memb2 = RC2->getMembers(); CodeGenRegister::Set Intersection; std::set_intersection(Memb1.begin(), Memb1.end(), Memb2.begin(), Memb2.end(), std::inserter(Intersection, Intersection.begin()), CodeGenRegister::Less()); // Skip disjoint class pairs. if (Intersection.empty()) continue; // If RC1 and RC2 have different spill sizes or alignments, use the // larger size for sub-classing. If they are equal, prefer RC1. if (RC2->SpillSize > RC1->SpillSize || (RC2->SpillSize == RC1->SpillSize && RC2->SpillAlignment > RC1->SpillAlignment)) std::swap(RC1, RC2); getOrCreateSubClass(RC1, &Intersection, RC1->getName() + "_and_" + RC2->getName()); } } // // Synthesize missing sub-classes for getSubClassWithSubReg(). // // Make sure that the set of registers in RC with a given SubIdx sub-register // form a register class. Update RC->SubClassWithSubReg. // void CodeGenRegBank::inferSubClassWithSubReg(CodeGenRegisterClass *RC) { // Map SubRegIndex to set of registers in RC supporting that SubRegIndex. typedef std::map<CodeGenSubRegIndex*, CodeGenRegister::Set, CodeGenSubRegIndex::Less> SubReg2SetMap; // Compute the set of registers supporting each SubRegIndex. SubReg2SetMap SRSets; for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), RE = RC->getMembers().end(); RI != RE; ++RI) { const CodeGenRegister::SubRegMap &SRM = (*RI)->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), E = SRM.end(); I != E; ++I) SRSets[I->first].insert(*RI); } // Find matching classes for all SRSets entries. Iterate in SubRegIndex // numerical order to visit synthetic indices last. for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; SubReg2SetMap::const_iterator I = SRSets.find(SubIdx); // Unsupported SubRegIndex. Skip it. if (I == SRSets.end()) continue; // In most cases, all RC registers support the SubRegIndex. if (I->second.size() == RC->getMembers().size()) { RC->setSubClassWithSubReg(SubIdx, RC); continue; } // This is a real subset. See if we have a matching class. CodeGenRegisterClass *SubRC = getOrCreateSubClass(RC, &I->second, RC->getName() + "_with_" + I->first->getName()); RC->setSubClassWithSubReg(SubIdx, SubRC); } } // // Synthesize missing sub-classes of RC for getMatchingSuperRegClass(). // // Create sub-classes of RC such that getMatchingSuperRegClass(RC, SubIdx, X) // has a maximal result for any SubIdx and any X >= FirstSubRegRC. // void CodeGenRegBank::inferMatchingSuperRegClass(CodeGenRegisterClass *RC, unsigned FirstSubRegRC) { SmallVector<std::pair<const CodeGenRegister*, const CodeGenRegister*>, 16> SSPairs; BitVector TopoSigs(getNumTopoSigs()); // Iterate in SubRegIndex numerical order to visit synthetic indices last. for (unsigned sri = 0, sre = SubRegIndices.size(); sri != sre; ++sri) { CodeGenSubRegIndex *SubIdx = SubRegIndices[sri]; // Skip indexes that aren't fully supported by RC's registers. This was // computed by inferSubClassWithSubReg() above which should have been // called first. if (RC->getSubClassWithSubReg(SubIdx) != RC) continue; // Build list of (Super, Sub) pairs for this SubIdx. SSPairs.clear(); TopoSigs.reset(); for (CodeGenRegister::Set::const_iterator RI = RC->getMembers().begin(), RE = RC->getMembers().end(); RI != RE; ++RI) { const CodeGenRegister *Super = *RI; const CodeGenRegister *Sub = Super->getSubRegs().find(SubIdx)->second; assert(Sub && "Missing sub-register"); SSPairs.push_back(std::make_pair(Super, Sub)); TopoSigs.set(Sub->getTopoSig()); } // Iterate over sub-register class candidates. Ignore classes created by // this loop. They will never be useful. for (unsigned rci = FirstSubRegRC, rce = RegClasses.size(); rci != rce; ++rci) { CodeGenRegisterClass *SubRC = RegClasses[rci]; // Topological shortcut: SubRC members have the wrong shape. if (!TopoSigs.anyCommon(SubRC->getTopoSigs())) continue; // Compute the subset of RC that maps into SubRC. CodeGenRegister::Set SubSet; for (unsigned i = 0, e = SSPairs.size(); i != e; ++i) if (SubRC->contains(SSPairs[i].second)) SubSet.insert(SSPairs[i].first); if (SubSet.empty()) continue; // RC injects completely into SubRC. if (SubSet.size() == SSPairs.size()) { SubRC->addSuperRegClass(SubIdx, RC); continue; } // Only a subset of RC maps into SubRC. Make sure it is represented by a // class. getOrCreateSubClass(RC, &SubSet, RC->getName() + "_with_" + SubIdx->getName() + "_in_" + SubRC->getName()); } } } // // Infer missing register classes. // void CodeGenRegBank::computeInferredRegisterClasses() { // When this function is called, the register classes have not been sorted // and assigned EnumValues yet. That means getSubClasses(), // getSuperClasses(), and hasSubClass() functions are defunct. unsigned FirstNewRC = RegClasses.size(); // Visit all register classes, including the ones being added by the loop. for (unsigned rci = 0; rci != RegClasses.size(); ++rci) { CodeGenRegisterClass *RC = RegClasses[rci]; // Synthesize answers for getSubClassWithSubReg(). inferSubClassWithSubReg(RC); // Synthesize answers for getCommonSubClass(). inferCommonSubClass(RC); // Synthesize answers for getMatchingSuperRegClass(). inferMatchingSuperRegClass(RC); // New register classes are created while this loop is running, and we need // to visit all of them. I particular, inferMatchingSuperRegClass needs // to match old super-register classes with sub-register classes created // after inferMatchingSuperRegClass was called. At this point, // inferMatchingSuperRegClass has checked SuperRC = [0..rci] with SubRC = // [0..FirstNewRC). We need to cover SubRC = [FirstNewRC..rci]. if (rci + 1 == FirstNewRC) { unsigned NextNewRC = RegClasses.size(); for (unsigned rci2 = 0; rci2 != FirstNewRC; ++rci2) inferMatchingSuperRegClass(RegClasses[rci2], FirstNewRC); FirstNewRC = NextNewRC; } } } /// getRegisterClassForRegister - Find the register class that contains the /// specified physical register. If the register is not in a register class, /// return null. If the register is in multiple classes, and the classes have a /// superset-subset relationship and the same set of types, return the /// superclass. Otherwise return null. const CodeGenRegisterClass* CodeGenRegBank::getRegClassForRegister(Record *R) { const CodeGenRegister *Reg = getReg(R); ArrayRef<CodeGenRegisterClass*> RCs = getRegClasses(); const CodeGenRegisterClass *FoundRC = 0; for (unsigned i = 0, e = RCs.size(); i != e; ++i) { const CodeGenRegisterClass &RC = *RCs[i]; if (!RC.contains(Reg)) continue; // If this is the first class that contains the register, // make a note of it and go on to the next class. if (!FoundRC) { FoundRC = &RC; continue; } // If a register's classes have different types, return null. if (RC.getValueTypes() != FoundRC->getValueTypes()) return 0; // Check to see if the previously found class that contains // the register is a subclass of the current class. If so, // prefer the superclass. if (RC.hasSubClass(FoundRC)) { FoundRC = &RC; continue; } // Check to see if the previously found class that contains // the register is a superclass of the current class. If so, // prefer the superclass. if (FoundRC->hasSubClass(&RC)) continue; // Multiple classes, and neither is a superclass of the other. // Return null. return 0; } return FoundRC; } BitVector CodeGenRegBank::computeCoveredRegisters(ArrayRef<Record*> Regs) { SetVector<const CodeGenRegister*> Set; // First add Regs with all sub-registers. for (unsigned i = 0, e = Regs.size(); i != e; ++i) { CodeGenRegister *Reg = getReg(Regs[i]); if (Set.insert(Reg)) // Reg is new, add all sub-registers. // The pre-ordering is not important here. Reg->addSubRegsPreOrder(Set, *this); } // Second, find all super-registers that are completely covered by the set. for (unsigned i = 0; i != Set.size(); ++i) { const CodeGenRegister::SuperRegList &SR = Set[i]->getSuperRegs(); for (unsigned j = 0, e = SR.size(); j != e; ++j) { const CodeGenRegister *Super = SR[j]; if (!Super->CoveredBySubRegs || Set.count(Super)) continue; // This new super-register is covered by its sub-registers. bool AllSubsInSet = true; const CodeGenRegister::SubRegMap &SRM = Super->getSubRegs(); for (CodeGenRegister::SubRegMap::const_iterator I = SRM.begin(), E = SRM.end(); I != E; ++I) if (!Set.count(I->second)) { AllSubsInSet = false; break; } // All sub-registers in Set, add Super as well. // We will visit Super later to recheck its super-registers. if (AllSubsInSet) Set.insert(Super); } } // Convert to BitVector. BitVector BV(Registers.size() + 1); for (unsigned i = 0, e = Set.size(); i != e; ++i) BV.set(Set[i]->EnumValue); return BV; }