//===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // It contains the tablegen backend that emits the decoder functions for // targets with fixed length instruction set. // //===----------------------------------------------------------------------===// #define DEBUG_TYPE "decoder-emitter" #include "CodeGenTarget.h" #include "llvm/ADT/APInt.h" #include "llvm/ADT/SmallString.h" #include "llvm/ADT/StringExtras.h" #include "llvm/ADT/StringRef.h" #include "llvm/ADT/Twine.h" #include "llvm/MC/MCFixedLenDisassembler.h" #include "llvm/Support/DataTypes.h" #include "llvm/Support/Debug.h" #include "llvm/Support/FormattedStream.h" #include "llvm/Support/LEB128.h" #include "llvm/Support/raw_ostream.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <map> #include <string> #include <vector> using namespace llvm; namespace { struct EncodingField { unsigned Base, Width, Offset; EncodingField(unsigned B, unsigned W, unsigned O) : Base(B), Width(W), Offset(O) { } }; struct OperandInfo { std::vector<EncodingField> Fields; std::string Decoder; OperandInfo(std::string D) : Decoder(D) { } void addField(unsigned Base, unsigned Width, unsigned Offset) { Fields.push_back(EncodingField(Base, Width, Offset)); } unsigned numFields() const { return Fields.size(); } typedef std::vector<EncodingField>::const_iterator const_iterator; const_iterator begin() const { return Fields.begin(); } const_iterator end() const { return Fields.end(); } }; typedef std::vector<uint8_t> DecoderTable; typedef uint32_t DecoderFixup; typedef std::vector<DecoderFixup> FixupList; typedef std::vector<FixupList> FixupScopeList; typedef SetVector<std::string> PredicateSet; typedef SetVector<std::string> DecoderSet; struct DecoderTableInfo { DecoderTable Table; FixupScopeList FixupStack; PredicateSet Predicates; DecoderSet Decoders; }; } // End anonymous namespace namespace { class FixedLenDecoderEmitter { const std::vector<const CodeGenInstruction*> *NumberedInstructions; public: // Defaults preserved here for documentation, even though they aren't // strictly necessary given the way that this is currently being called. FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace, std::string GPrefix = "if (", std::string GPostfix = " == MCDisassembler::Fail)" " return MCDisassembler::Fail;", std::string ROK = "MCDisassembler::Success", std::string RFail = "MCDisassembler::Fail", std::string L = "") : Target(R), PredicateNamespace(PredicateNamespace), GuardPrefix(GPrefix), GuardPostfix(GPostfix), ReturnOK(ROK), ReturnFail(RFail), Locals(L) {} // Emit the decoder state machine table. void emitTable(formatted_raw_ostream &o, DecoderTable &Table, unsigned Indentation, unsigned BitWidth, StringRef Namespace) const; void emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates, unsigned Indentation) const; void emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders, unsigned Indentation) const; // run - Output the code emitter void run(raw_ostream &o); private: CodeGenTarget Target; public: std::string PredicateNamespace; std::string GuardPrefix, GuardPostfix; std::string ReturnOK, ReturnFail; std::string Locals; }; } // End anonymous namespace // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system // for a bit value. // // BIT_UNFILTERED is used as the init value for a filter position. It is used // only for filter processings. typedef enum { BIT_TRUE, // '1' BIT_FALSE, // '0' BIT_UNSET, // '?' BIT_UNFILTERED // unfiltered } bit_value_t; static bool ValueSet(bit_value_t V) { return (V == BIT_TRUE || V == BIT_FALSE); } static bool ValueNotSet(bit_value_t V) { return (V == BIT_UNSET); } static int Value(bit_value_t V) { return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); } static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) { if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index))) return bit->getValue() ? BIT_TRUE : BIT_FALSE; // The bit is uninitialized. return BIT_UNSET; } // Prints the bit value for each position. static void dumpBits(raw_ostream &o, const BitsInit &bits) { for (unsigned index = bits.getNumBits(); index > 0; --index) { switch (bitFromBits(bits, index - 1)) { case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; case BIT_UNSET: o << "_"; break; default: llvm_unreachable("unexpected return value from bitFromBits"); } } } static BitsInit &getBitsField(const Record &def, const char *str) { BitsInit *bits = def.getValueAsBitsInit(str); return *bits; } // Forward declaration. namespace { class FilterChooser; } // End anonymous namespace // Representation of the instruction to work on. typedef std::vector<bit_value_t> insn_t; /// Filter - Filter works with FilterChooser to produce the decoding tree for /// the ISA. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree in a certain level. Each case stmt delegates to an inferior /// FilterChooser to decide what further decoding logic to employ, or in another /// words, what other remaining bits to look at. The FilterChooser eventually /// chooses a best Filter to do its job. /// /// This recursive scheme ends when the number of Opcodes assigned to the /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when /// the Filter/FilterChooser combo does not know how to distinguish among the /// Opcodes assigned. /// /// An example of a conflict is /// /// Conflict: /// 111101000.00........00010000.... /// 111101000.00........0001........ /// 1111010...00........0001........ /// 1111010...00.................... /// 1111010......................... /// 1111............................ /// ................................ /// VST4q8a 111101000_00________00010000____ /// VST4q8b 111101000_00________00010000____ /// /// The Debug output shows the path that the decoding tree follows to reach the /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced /// even registers, while VST4q8b is a vst4 to double-spaced odd regsisters. /// /// The encoding info in the .td files does not specify this meta information, /// which could have been used by the decoder to resolve the conflict. The /// decoder could try to decode the even/odd register numbering and assign to /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" /// version and return the Opcode since the two have the same Asm format string. namespace { class Filter { protected: const FilterChooser *Owner;// points to the FilterChooser who owns this filter unsigned StartBit; // the starting bit position unsigned NumBits; // number of bits to filter bool Mixed; // a mixed region contains both set and unset bits // Map of well-known segment value to the set of uid's with that value. std::map<uint64_t, std::vector<unsigned> > FilteredInstructions; // Set of uid's with non-constant segment values. std::vector<unsigned> VariableInstructions; // Map of well-known segment value to its delegate. std::map<unsigned, const FilterChooser*> FilterChooserMap; // Number of instructions which fall under FilteredInstructions category. unsigned NumFiltered; // Keeps track of the last opcode in the filtered bucket. unsigned LastOpcFiltered; public: unsigned getNumFiltered() const { return NumFiltered; } unsigned getSingletonOpc() const { assert(NumFiltered == 1); return LastOpcFiltered; } // Return the filter chooser for the group of instructions without constant // segment values. const FilterChooser &getVariableFC() const { assert(NumFiltered == 1); assert(FilterChooserMap.size() == 1); return *(FilterChooserMap.find((unsigned)-1)->second); } Filter(const Filter &f); Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); ~Filter(); // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void recurse(); // Emit table entries to decode instructions given a segment or segments of // bits. void emitTableEntry(DecoderTableInfo &TableInfo) const; // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned usefulness() const; }; // End of class Filter } // End anonymous namespace // These are states of our finite state machines used in FilterChooser's // filterProcessor() which produces the filter candidates to use. typedef enum { ATTR_NONE, ATTR_FILTERED, ATTR_ALL_SET, ATTR_ALL_UNSET, ATTR_MIXED } bitAttr_t; /// FilterChooser - FilterChooser chooses the best filter among a set of Filters /// in order to perform the decoding of instructions at the current level. /// /// Decoding proceeds from the top down. Based on the well-known encoding bits /// of instructions available, FilterChooser builds up the possible Filters that /// can further the task of decoding by distinguishing among the remaining /// candidate instructions. /// /// Once a filter has been chosen, it is called upon to divide the decoding task /// into sub-tasks and delegates them to its inferior FilterChoosers for further /// processings. /// /// It is useful to think of a Filter as governing the switch stmts of the /// decoding tree. And each case is delegated to an inferior FilterChooser to /// decide what further remaining bits to look at. namespace { class FilterChooser { protected: friend class Filter; // Vector of codegen instructions to choose our filter. const std::vector<const CodeGenInstruction*> &AllInstructions; // Vector of uid's for this filter chooser to work on. const std::vector<unsigned> &Opcodes; // Lookup table for the operand decoding of instructions. const std::map<unsigned, std::vector<OperandInfo> > &Operands; // Vector of candidate filters. std::vector<Filter> Filters; // Array of bit values passed down from our parent. // Set to all BIT_UNFILTERED's for Parent == NULL. std::vector<bit_value_t> FilterBitValues; // Links to the FilterChooser above us in the decoding tree. const FilterChooser *Parent; // Index of the best filter from Filters. int BestIndex; // Width of instructions unsigned BitWidth; // Parent emitter const FixedLenDecoderEmitter *Emitter; public: FilterChooser(const FilterChooser &FC) : AllInstructions(FC.AllInstructions), Opcodes(FC.Opcodes), Operands(FC.Operands), Filters(FC.Filters), FilterBitValues(FC.FilterBitValues), Parent(FC.Parent), BestIndex(FC.BestIndex), BitWidth(FC.BitWidth), Emitter(FC.Emitter) { } FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, const std::vector<unsigned> &IDs, const std::map<unsigned, std::vector<OperandInfo> > &Ops, unsigned BW, const FixedLenDecoderEmitter *E) : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(), Parent(NULL), BestIndex(-1), BitWidth(BW), Emitter(E) { for (unsigned i = 0; i < BitWidth; ++i) FilterBitValues.push_back(BIT_UNFILTERED); doFilter(); } FilterChooser(const std::vector<const CodeGenInstruction*> &Insts, const std::vector<unsigned> &IDs, const std::map<unsigned, std::vector<OperandInfo> > &Ops, const std::vector<bit_value_t> &ParentFilterBitValues, const FilterChooser &parent) : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), Filters(), FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), BitWidth(parent.BitWidth), Emitter(parent.Emitter) { doFilter(); } unsigned getBitWidth() const { return BitWidth; } protected: // Populates the insn given the uid. void insnWithID(insn_t &Insn, unsigned Opcode) const { BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); // We may have a SoftFail bitmask, which specifies a mask where an encoding // may differ from the value in "Inst" and yet still be valid, but the // disassembler should return SoftFail instead of Success. // // This is used for marking UNPREDICTABLE instructions in the ARM world. BitsInit *SFBits = AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail"); for (unsigned i = 0; i < BitWidth; ++i) { if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE) Insn.push_back(BIT_UNSET); else Insn.push_back(bitFromBits(Bits, i)); } } // Returns the record name. const std::string &nameWithID(unsigned Opcode) const { return AllInstructions[Opcode]->TheDef->getName(); } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns false if there exists any uninitialized bit value in the range. // Returns true, otherwise. bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, unsigned NumBits) const; /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void dumpFilterArray(raw_ostream &o, const std::vector<bit_value_t> & filter) const; /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void dumpStack(raw_ostream &o, const char *prefix) const; Filter &bestFilter() { assert(BestIndex != -1 && "BestIndex not set"); return Filters[BestIndex]; } // Called from Filter::recurse() when singleton exists. For debug purpose. void SingletonExists(unsigned Opc) const; bool PositionFiltered(unsigned i) const { return ValueSet(FilterBitValues[i]); } // Calculates the island(s) needed to decode the instruction. // This returns a lit of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned getIslands(std::vector<unsigned> &StartBits, std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, const insn_t &Insn) const; // Emits code to check the Predicates member of an instruction are true. // Returns true if predicate matches were emitted, false otherwise. bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation, unsigned Opc) const; bool doesOpcodeNeedPredicate(unsigned Opc) const; unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; void emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; // Emits table entries to decode the singleton. void emitSingletonTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const; // Emits code to decode the singleton, and then to decode the rest. void emitSingletonTableEntry(DecoderTableInfo &TableInfo, const Filter &Best) const; void emitBinaryParser(raw_ostream &o, unsigned &Indentation, const OperandInfo &OpInfo) const; void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const; unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const; // Assign a single filter and run with it. void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed); // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed); // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool filterProcessor(bool AllowMixed, bool Greedy = true); // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void doFilter(); public: // emitTableEntries - Emit state machine entries to decode our share of // instructions. void emitTableEntries(DecoderTableInfo &TableInfo) const; }; } // End anonymous namespace /////////////////////////// // // // Filter Implementation // // // /////////////////////////// Filter::Filter(const Filter &f) : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), FilteredInstructions(f.FilteredInstructions), VariableInstructions(f.VariableInstructions), FilterChooserMap(f.FilterChooserMap), NumFiltered(f.NumFiltered), LastOpcFiltered(f.LastOpcFiltered) { } Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed) : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { assert(StartBit + NumBits - 1 < Owner->BitWidth); NumFiltered = 0; LastOpcFiltered = 0; for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { insn_t Insn; // Populates the insn given the uid. Owner->insnWithID(Insn, Owner->Opcodes[i]); uint64_t Field; // Scans the segment for possibly well-specified encoding bits. bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); if (ok) { // The encoding bits are well-known. Lets add the uid of the // instruction into the bucket keyed off the constant field value. LastOpcFiltered = Owner->Opcodes[i]; FilteredInstructions[Field].push_back(LastOpcFiltered); ++NumFiltered; } else { // Some of the encoding bit(s) are unspecified. This contributes to // one additional member of "Variable" instructions. VariableInstructions.push_back(Owner->Opcodes[i]); } } assert((FilteredInstructions.size() + VariableInstructions.size() > 0) && "Filter returns no instruction categories"); } Filter::~Filter() { std::map<unsigned, const FilterChooser*>::iterator filterIterator; for (filterIterator = FilterChooserMap.begin(); filterIterator != FilterChooserMap.end(); filterIterator++) { delete filterIterator->second; } } // Divides the decoding task into sub tasks and delegates them to the // inferior FilterChooser's. // // A special case arises when there's only one entry in the filtered // instructions. In order to unambiguously decode the singleton, we need to // match the remaining undecoded encoding bits against the singleton. void Filter::recurse() { std::map<uint64_t, std::vector<unsigned> >::const_iterator mapIterator; // Starts by inheriting our parent filter chooser's filter bit values. std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues); if (VariableInstructions.size()) { // Conservatively marks each segment position as BIT_UNSET. for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) BitValueArray[StartBit + bitIndex] = BIT_UNSET; // Delegates to an inferior filter chooser for further processing on this // group of instructions whose segment values are variable. FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>( (unsigned)-1, new FilterChooser(Owner->AllInstructions, VariableInstructions, Owner->Operands, BitValueArray, *Owner) )); } // No need to recurse for a singleton filtered instruction. // See also Filter::emit*(). if (getNumFiltered() == 1) { //Owner->SingletonExists(LastOpcFiltered); assert(FilterChooserMap.size() == 1); return; } // Otherwise, create sub choosers. for (mapIterator = FilteredInstructions.begin(); mapIterator != FilteredInstructions.end(); mapIterator++) { // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) { if (mapIterator->first & (1ULL << bitIndex)) BitValueArray[StartBit + bitIndex] = BIT_TRUE; else BitValueArray[StartBit + bitIndex] = BIT_FALSE; } // Delegates to an inferior filter chooser for further processing on this // category of instructions. FilterChooserMap.insert(std::pair<unsigned, const FilterChooser*>( mapIterator->first, new FilterChooser(Owner->AllInstructions, mapIterator->second, Owner->Operands, BitValueArray, *Owner) )); } } static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups, uint32_t DestIdx) { // Any NumToSkip fixups in the current scope can resolve to the // current location. for (FixupList::const_reverse_iterator I = Fixups.rbegin(), E = Fixups.rend(); I != E; ++I) { // Calculate the distance from the byte following the fixup entry byte // to the destination. The Target is calculated from after the 16-bit // NumToSkip entry itself, so subtract two from the displacement here // to account for that. uint32_t FixupIdx = *I; uint32_t Delta = DestIdx - FixupIdx - 2; // Our NumToSkip entries are 16-bits. Make sure our table isn't too // big. assert(Delta < 65536U && "disassembler decoding table too large!"); Table[FixupIdx] = (uint8_t)Delta; Table[FixupIdx + 1] = (uint8_t)(Delta >> 8); } } // Emit table entries to decode instructions given a segment or segments // of bits. void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { TableInfo.Table.push_back(MCD::OPC_ExtractField); TableInfo.Table.push_back(StartBit); TableInfo.Table.push_back(NumBits); // A new filter entry begins a new scope for fixup resolution. TableInfo.FixupStack.push_back(FixupList()); std::map<unsigned, const FilterChooser*>::const_iterator filterIterator; DecoderTable &Table = TableInfo.Table; size_t PrevFilter = 0; bool HasFallthrough = false; for (filterIterator = FilterChooserMap.begin(); filterIterator != FilterChooserMap.end(); filterIterator++) { // Field value -1 implies a non-empty set of variable instructions. // See also recurse(). if (filterIterator->first == (unsigned)-1) { HasFallthrough = true; // Each scope should always have at least one filter value to check // for. assert(PrevFilter != 0 && "empty filter set!"); FixupList &CurScope = TableInfo.FixupStack.back(); // Resolve any NumToSkip fixups in the current scope. resolveTableFixups(Table, CurScope, Table.size()); CurScope.clear(); PrevFilter = 0; // Don't re-process the filter's fallthrough. } else { Table.push_back(MCD::OPC_FilterValue); // Encode and emit the value to filter against. uint8_t Buffer[8]; unsigned Len = encodeULEB128(filterIterator->first, Buffer); Table.insert(Table.end(), Buffer, Buffer + Len); // Reserve space for the NumToSkip entry. We'll backpatch the value // later. PrevFilter = Table.size(); Table.push_back(0); Table.push_back(0); } // We arrive at a category of instructions with the same segment value. // Now delegate to the sub filter chooser for further decodings. // The case may fallthrough, which happens if the remaining well-known // encoding bits do not match exactly. filterIterator->second->emitTableEntries(TableInfo); // Now that we've emitted the body of the handler, update the NumToSkip // of the filter itself to be able to skip forward when false. Subtract // two as to account for the width of the NumToSkip field itself. if (PrevFilter) { uint32_t NumToSkip = Table.size() - PrevFilter - 2; assert(NumToSkip < 65536U && "disassembler decoding table too large!"); Table[PrevFilter] = (uint8_t)NumToSkip; Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8); } } // Any remaining unresolved fixups bubble up to the parent fixup scope. assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!"); FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1; FixupScopeList::iterator Dest = Source - 1; Dest->insert(Dest->end(), Source->begin(), Source->end()); TableInfo.FixupStack.pop_back(); // If there is no fallthrough, then the final filter should get fixed // up according to the enclosing scope rather than the current position. if (!HasFallthrough) TableInfo.FixupStack.back().push_back(PrevFilter); } // Returns the number of fanout produced by the filter. More fanout implies // the filter distinguishes more categories of instructions. unsigned Filter::usefulness() const { if (VariableInstructions.size()) return FilteredInstructions.size(); else return FilteredInstructions.size() + 1; } ////////////////////////////////// // // // Filterchooser Implementation // // // ////////////////////////////////// // Emit the decoder state machine table. void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS, DecoderTable &Table, unsigned Indentation, unsigned BitWidth, StringRef Namespace) const { OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace << BitWidth << "[] = {\n"; Indentation += 2; // FIXME: We may be able to use the NumToSkip values to recover // appropriate indentation levels. DecoderTable::const_iterator I = Table.begin(); DecoderTable::const_iterator E = Table.end(); while (I != E) { assert (I < E && "incomplete decode table entry!"); uint64_t Pos = I - Table.begin(); OS << "/* " << Pos << " */"; OS.PadToColumn(12); switch (*I) { default: PrintFatalError("invalid decode table opcode"); case MCD::OPC_ExtractField: { ++I; unsigned Start = *I++; unsigned Len = *I++; OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", " << Len << ", // Inst{"; if (Len > 1) OS << (Start + Len - 1) << "-"; OS << Start << "} ...\n"; break; } case MCD::OPC_FilterValue: { ++I; OS.indent(Indentation) << "MCD::OPC_FilterValue, "; // The filter value is ULEB128 encoded. while (*I >= 128) OS << utostr(*I++) << ", "; OS << utostr(*I++) << ", "; // 16-bit numtoskip value. uint8_t Byte = *I++; uint32_t NumToSkip = Byte; OS << utostr(Byte) << ", "; Byte = *I++; OS << utostr(Byte) << ", "; NumToSkip |= Byte << 8; OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; break; } case MCD::OPC_CheckField: { ++I; unsigned Start = *I++; unsigned Len = *I++; OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", " << Len << ", ";// << Val << ", " << NumToSkip << ",\n"; // ULEB128 encoded field value. for (; *I >= 128; ++I) OS << utostr(*I) << ", "; OS << utostr(*I++) << ", "; // 16-bit numtoskip value. uint8_t Byte = *I++; uint32_t NumToSkip = Byte; OS << utostr(Byte) << ", "; Byte = *I++; OS << utostr(Byte) << ", "; NumToSkip |= Byte << 8; OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; break; } case MCD::OPC_CheckPredicate: { ++I; OS.indent(Indentation) << "MCD::OPC_CheckPredicate, "; for (; *I >= 128; ++I) OS << utostr(*I) << ", "; OS << utostr(*I++) << ", "; // 16-bit numtoskip value. uint8_t Byte = *I++; uint32_t NumToSkip = Byte; OS << utostr(Byte) << ", "; Byte = *I++; OS << utostr(Byte) << ", "; NumToSkip |= Byte << 8; OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; break; } case MCD::OPC_Decode: { ++I; // Extract the ULEB128 encoded Opcode to a buffer. uint8_t Buffer[8], *p = Buffer; while ((*p++ = *I++) >= 128) assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer) && "ULEB128 value too large!"); // Decode the Opcode value. unsigned Opc = decodeULEB128(Buffer); OS.indent(Indentation) << "MCD::OPC_Decode, "; for (p = Buffer; *p >= 128; ++p) OS << utostr(*p) << ", "; OS << utostr(*p) << ", "; // Decoder index. for (; *I >= 128; ++I) OS << utostr(*I) << ", "; OS << utostr(*I++) << ", "; OS << "// Opcode: " << NumberedInstructions->at(Opc)->TheDef->getName() << "\n"; break; } case MCD::OPC_SoftFail: { ++I; OS.indent(Indentation) << "MCD::OPC_SoftFail"; // Positive mask uint64_t Value = 0; unsigned Shift = 0; do { OS << ", " << utostr(*I); Value += (*I & 0x7f) << Shift; Shift += 7; } while (*I++ >= 128); if (Value > 127) OS << " /* 0x" << utohexstr(Value) << " */"; // Negative mask Value = 0; Shift = 0; do { OS << ", " << utostr(*I); Value += (*I & 0x7f) << Shift; Shift += 7; } while (*I++ >= 128); if (Value > 127) OS << " /* 0x" << utohexstr(Value) << " */"; OS << ",\n"; break; } case MCD::OPC_Fail: { ++I; OS.indent(Indentation) << "MCD::OPC_Fail,\n"; break; } } } OS.indent(Indentation) << "0\n"; Indentation -= 2; OS.indent(Indentation) << "};\n\n"; } void FixedLenDecoderEmitter:: emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates, unsigned Indentation) const { // The predicate function is just a big switch statement based on the // input predicate index. OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, " << "uint64_t Bits) {\n"; Indentation += 2; OS.indent(Indentation) << "switch (Idx) {\n"; OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; unsigned Index = 0; for (PredicateSet::const_iterator I = Predicates.begin(), E = Predicates.end(); I != E; ++I, ++Index) { OS.indent(Indentation) << "case " << Index << ":\n"; OS.indent(Indentation+2) << "return (" << *I << ");\n"; } OS.indent(Indentation) << "}\n"; Indentation -= 2; OS.indent(Indentation) << "}\n\n"; } void FixedLenDecoderEmitter:: emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders, unsigned Indentation) const { // The decoder function is just a big switch statement based on the // input decoder index. OS.indent(Indentation) << "template<typename InsnType>\n"; OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S," << " unsigned Idx, InsnType insn, MCInst &MI,\n"; OS.indent(Indentation) << " uint64_t " << "Address, const void *Decoder) {\n"; Indentation += 2; OS.indent(Indentation) << "InsnType tmp;\n"; OS.indent(Indentation) << "switch (Idx) {\n"; OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; unsigned Index = 0; for (DecoderSet::const_iterator I = Decoders.begin(), E = Decoders.end(); I != E; ++I, ++Index) { OS.indent(Indentation) << "case " << Index << ":\n"; OS << *I; OS.indent(Indentation+2) << "return S;\n"; } OS.indent(Indentation) << "}\n"; Indentation -= 2; OS.indent(Indentation) << "}\n\n"; } // Populates the field of the insn given the start position and the number of // consecutive bits to scan for. // // Returns false if and on the first uninitialized bit value encountered. // Returns true, otherwise. bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, unsigned NumBits) const { Field = 0; for (unsigned i = 0; i < NumBits; ++i) { if (Insn[StartBit + i] == BIT_UNSET) return false; if (Insn[StartBit + i] == BIT_TRUE) Field = Field | (1ULL << i); } return true; } /// dumpFilterArray - dumpFilterArray prints out debugging info for the given /// filter array as a series of chars. void FilterChooser::dumpFilterArray(raw_ostream &o, const std::vector<bit_value_t> &filter) const { for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) { switch (filter[bitIndex - 1]) { case BIT_UNFILTERED: o << "."; break; case BIT_UNSET: o << "_"; break; case BIT_TRUE: o << "1"; break; case BIT_FALSE: o << "0"; break; } } } /// dumpStack - dumpStack traverses the filter chooser chain and calls /// dumpFilterArray on each filter chooser up to the top level one. void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const { const FilterChooser *current = this; while (current) { o << prefix; dumpFilterArray(o, current->FilterBitValues); o << '\n'; current = current->Parent; } } // Called from Filter::recurse() when singleton exists. For debug purpose. void FilterChooser::SingletonExists(unsigned Opc) const { insn_t Insn0; insnWithID(Insn0, Opc); errs() << "Singleton exists: " << nameWithID(Opc) << " with its decoding dominating "; for (unsigned i = 0; i < Opcodes.size(); ++i) { if (Opcodes[i] == Opc) continue; errs() << nameWithID(Opcodes[i]) << ' '; } errs() << '\n'; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Opcodes.size(); ++i) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } } // Calculates the island(s) needed to decode the instruction. // This returns a list of undecoded bits of an instructions, for example, // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be // decoded bits in order to verify that the instruction matches the Opcode. unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, std::vector<unsigned> &EndBits, std::vector<uint64_t> &FieldVals, const insn_t &Insn) const { unsigned Num, BitNo; Num = BitNo = 0; uint64_t FieldVal = 0; // 0: Init // 1: Water (the bit value does not affect decoding) // 2: Island (well-known bit value needed for decoding) int State = 0; int Val = -1; for (unsigned i = 0; i < BitWidth; ++i) { Val = Value(Insn[i]); bool Filtered = PositionFiltered(i); switch (State) { default: llvm_unreachable("Unreachable code!"); case 0: case 1: if (Filtered || Val == -1) State = 1; // Still in Water else { State = 2; // Into the Island BitNo = 0; StartBits.push_back(i); FieldVal = Val; } break; case 2: if (Filtered || Val == -1) { State = 1; // Into the Water EndBits.push_back(i - 1); FieldVals.push_back(FieldVal); ++Num; } else { State = 2; // Still in Island ++BitNo; FieldVal = FieldVal | Val << BitNo; } break; } } // If we are still in Island after the loop, do some housekeeping. if (State == 2) { EndBits.push_back(BitWidth - 1); FieldVals.push_back(FieldVal); ++Num; } assert(StartBits.size() == Num && EndBits.size() == Num && FieldVals.size() == Num); return Num; } void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation, const OperandInfo &OpInfo) const { const std::string &Decoder = OpInfo.Decoder; if (OpInfo.numFields() == 1) { OperandInfo::const_iterator OI = OpInfo.begin(); o.indent(Indentation) << "tmp = fieldFromInstruction" << "(insn, " << OI->Base << ", " << OI->Width << ");\n"; } else { o.indent(Indentation) << "tmp = 0;\n"; for (OperandInfo::const_iterator OI = OpInfo.begin(), OE = OpInfo.end(); OI != OE; ++OI) { o.indent(Indentation) << "tmp |= (fieldFromInstruction" << "(insn, " << OI->Base << ", " << OI->Width << ") << " << OI->Offset << ");\n"; } } if (Decoder != "") o.indent(Indentation) << Emitter->GuardPrefix << Decoder << "(MI, tmp, Address, Decoder)" << Emitter->GuardPostfix << "\n"; else o.indent(Indentation) << "MI.addOperand(MCOperand::CreateImm(tmp));\n"; } void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc) const { std::map<unsigned, std::vector<OperandInfo> >::const_iterator OpIter = Operands.find(Opc); const std::vector<OperandInfo>& InsnOperands = OpIter->second; for (std::vector<OperandInfo>::const_iterator I = InsnOperands.begin(), E = InsnOperands.end(); I != E; ++I) { // If a custom instruction decoder was specified, use that. if (I->numFields() == 0 && I->Decoder.size()) { OS.indent(Indentation) << Emitter->GuardPrefix << I->Decoder << "(MI, insn, Address, Decoder)" << Emitter->GuardPostfix << "\n"; break; } emitBinaryParser(OS, Indentation, *I); } } unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders, unsigned Opc) const { // Build up the predicate string. SmallString<256> Decoder; // FIXME: emitDecoder() function can take a buffer directly rather than // a stream. raw_svector_ostream S(Decoder); unsigned I = 4; emitDecoder(S, I, Opc); S.flush(); // Using the full decoder string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easilly enough with a map back to the actual string. That's // overkill for now, though. // Make sure the predicate is in the table. Decoders.insert(Decoder.str()); // Now figure out the index for when we write out the table. DecoderSet::const_iterator P = std::find(Decoders.begin(), Decoders.end(), Decoder.str()); return (unsigned)(P - Decoders.begin()); } static void emitSinglePredicateMatch(raw_ostream &o, StringRef str, const std::string &PredicateNamespace) { if (str[0] == '!') o << "!(Bits & " << PredicateNamespace << "::" << str.slice(1,str.size()) << ")"; else o << "(Bits & " << PredicateNamespace << "::" << str << ")"; } bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation, unsigned Opc) const { ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); for (unsigned i = 0; i < Predicates->getSize(); ++i) { Record *Pred = Predicates->getElementAsRecord(i); if (!Pred->getValue("AssemblerMatcherPredicate")) continue; std::string P = Pred->getValueAsString("AssemblerCondString"); if (!P.length()) continue; if (i != 0) o << " && "; StringRef SR(P); std::pair<StringRef, StringRef> pairs = SR.split(','); while (pairs.second.size()) { emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); o << " && "; pairs = pairs.second.split(','); } emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); } return Predicates->getSize() > 0; } bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const { ListInit *Predicates = AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); for (unsigned i = 0; i < Predicates->getSize(); ++i) { Record *Pred = Predicates->getElementAsRecord(i); if (!Pred->getValue("AssemblerMatcherPredicate")) continue; std::string P = Pred->getValueAsString("AssemblerCondString"); if (!P.length()) continue; return true; } return false; } unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, StringRef Predicate) const { // Using the full predicate string as the key value here is a bit // heavyweight, but is effective. If the string comparisons become a // performance concern, we can implement a mangling of the predicate // data easilly enough with a map back to the actual string. That's // overkill for now, though. // Make sure the predicate is in the table. TableInfo.Predicates.insert(Predicate.str()); // Now figure out the index for when we write out the table. PredicateSet::const_iterator P = std::find(TableInfo.Predicates.begin(), TableInfo.Predicates.end(), Predicate.str()); return (unsigned)(P - TableInfo.Predicates.begin()); } void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const { if (!doesOpcodeNeedPredicate(Opc)) return; // Build up the predicate string. SmallString<256> Predicate; // FIXME: emitPredicateMatch() functions can take a buffer directly rather // than a stream. raw_svector_ostream PS(Predicate); unsigned I = 0; emitPredicateMatch(PS, I, Opc); // Figure out the index into the predicate table for the predicate just // computed. unsigned PIdx = getPredicateIndex(TableInfo, PS.str()); SmallString<16> PBytes; raw_svector_ostream S(PBytes); encodeULEB128(PIdx, S); S.flush(); TableInfo.Table.push_back(MCD::OPC_CheckPredicate); // Predicate index for (unsigned i = 0, e = PBytes.size(); i != e; ++i) TableInfo.Table.push_back(PBytes[i]); // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); TableInfo.Table.push_back(0); TableInfo.Table.push_back(0); } void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const { BitsInit *SFBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail"); if (!SFBits) return; BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst"); APInt PositiveMask(BitWidth, 0ULL); APInt NegativeMask(BitWidth, 0ULL); for (unsigned i = 0; i < BitWidth; ++i) { bit_value_t B = bitFromBits(*SFBits, i); bit_value_t IB = bitFromBits(*InstBits, i); if (B != BIT_TRUE) continue; switch (IB) { case BIT_FALSE: // The bit is meant to be false, so emit a check to see if it is true. PositiveMask.setBit(i); break; case BIT_TRUE: // The bit is meant to be true, so emit a check to see if it is false. NegativeMask.setBit(i); break; default: // The bit is not set; this must be an error! StringRef Name = AllInstructions[Opc]->TheDef->getName(); errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name << " is set but Inst{" << i << "} is unset!\n" << " - You can only mark a bit as SoftFail if it is fully defined" << " (1/0 - not '?') in Inst\n"; return; } } bool NeedPositiveMask = PositiveMask.getBoolValue(); bool NeedNegativeMask = NegativeMask.getBoolValue(); if (!NeedPositiveMask && !NeedNegativeMask) return; TableInfo.Table.push_back(MCD::OPC_SoftFail); SmallString<16> MaskBytes; raw_svector_ostream S(MaskBytes); if (NeedPositiveMask) { encodeULEB128(PositiveMask.getZExtValue(), S); S.flush(); for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) TableInfo.Table.push_back(MaskBytes[i]); } else TableInfo.Table.push_back(0); if (NeedNegativeMask) { MaskBytes.clear(); S.resync(); encodeULEB128(NegativeMask.getZExtValue(), S); S.flush(); for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) TableInfo.Table.push_back(MaskBytes[i]); } else TableInfo.Table.push_back(0); } // Emits table entries to decode the singleton. void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, unsigned Opc) const { std::vector<unsigned> StartBits; std::vector<unsigned> EndBits; std::vector<uint64_t> FieldVals; insn_t Insn; insnWithID(Insn, Opc); // Look for islands of undecoded bits of the singleton. getIslands(StartBits, EndBits, FieldVals, Insn); unsigned Size = StartBits.size(); // Emit the predicate table entry if one is needed. emitPredicateTableEntry(TableInfo, Opc); // Check any additional encoding fields needed. for (unsigned I = Size; I != 0; --I) { unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1; TableInfo.Table.push_back(MCD::OPC_CheckField); TableInfo.Table.push_back(StartBits[I-1]); TableInfo.Table.push_back(NumBits); uint8_t Buffer[8], *p; encodeULEB128(FieldVals[I-1], Buffer); for (p = Buffer; *p >= 128 ; ++p) TableInfo.Table.push_back(*p); TableInfo.Table.push_back(*p); // Push location for NumToSkip backpatching. TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); // The fixup is always 16-bits, so go ahead and allocate the space // in the table so all our relative position calculations work OK even // before we fully resolve the real value here. TableInfo.Table.push_back(0); TableInfo.Table.push_back(0); } // Check for soft failure of the match. emitSoftFailTableEntry(TableInfo, Opc); TableInfo.Table.push_back(MCD::OPC_Decode); uint8_t Buffer[8], *p; encodeULEB128(Opc, Buffer); for (p = Buffer; *p >= 128 ; ++p) TableInfo.Table.push_back(*p); TableInfo.Table.push_back(*p); unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc); SmallString<16> Bytes; raw_svector_ostream S(Bytes); encodeULEB128(DIdx, S); S.flush(); // Decoder index for (unsigned i = 0, e = Bytes.size(); i != e; ++i) TableInfo.Table.push_back(Bytes[i]); } // Emits table entries to decode the singleton, and then to decode the rest. void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, const Filter &Best) const { unsigned Opc = Best.getSingletonOpc(); // complex singletons need predicate checks from the first singleton // to refer forward to the variable filterchooser that follows. TableInfo.FixupStack.push_back(FixupList()); emitSingletonTableEntry(TableInfo, Opc); resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), TableInfo.Table.size()); TableInfo.FixupStack.pop_back(); Best.getVariableFC().emitTableEntries(TableInfo); } // Assign a single filter and run with it. Top level API client can initialize // with a single filter to start the filtering process. void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit, bool mixed) { Filters.clear(); Filter F(*this, startBit, numBit, true); Filters.push_back(F); BestIndex = 0; // Sole Filter instance to choose from. bestFilter().recurse(); } // reportRegion is a helper function for filterProcessor to mark a region as // eligible for use as a filter region. void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, bool AllowMixed) { if (RA == ATTR_MIXED && AllowMixed) Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, true)); else if (RA == ATTR_ALL_SET && !AllowMixed) Filters.push_back(Filter(*this, StartBit, BitIndex - StartBit, false)); } // FilterProcessor scans the well-known encoding bits of the instructions and // builds up a list of candidate filters. It chooses the best filter and // recursively descends down the decoding tree. bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { Filters.clear(); BestIndex = -1; unsigned numInstructions = Opcodes.size(); assert(numInstructions && "Filter created with no instructions"); // No further filtering is necessary. if (numInstructions == 1) return true; // Heuristics. See also doFilter()'s "Heuristics" comment when num of // instructions is 3. if (AllowMixed && !Greedy) { assert(numInstructions == 3); for (unsigned i = 0; i < Opcodes.size(); ++i) { std::vector<unsigned> StartBits; std::vector<unsigned> EndBits; std::vector<uint64_t> FieldVals; insn_t Insn; insnWithID(Insn, Opcodes[i]); // Look for islands of undecoded bits of any instruction. if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { // Found an instruction with island(s). Now just assign a filter. runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true); return true; } } } unsigned BitIndex; // We maintain BIT_WIDTH copies of the bitAttrs automaton. // The automaton consumes the corresponding bit from each // instruction. // // Input symbols: 0, 1, and _ (unset). // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. // Initial state: NONE. // // (NONE) ------- [01] -> (ALL_SET) // (NONE) ------- _ ----> (ALL_UNSET) // (ALL_SET) ---- [01] -> (ALL_SET) // (ALL_SET) ---- _ ----> (MIXED) // (ALL_UNSET) -- [01] -> (MIXED) // (ALL_UNSET) -- _ ----> (ALL_UNSET) // (MIXED) ------ . ----> (MIXED) // (FILTERED)---- . ----> (FILTERED) std::vector<bitAttr_t> bitAttrs; // FILTERED bit positions provide no entropy and are not worthy of pursuing. // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) if (FilterBitValues[BitIndex] == BIT_TRUE || FilterBitValues[BitIndex] == BIT_FALSE) bitAttrs.push_back(ATTR_FILTERED); else bitAttrs.push_back(ATTR_NONE); for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { insn_t insn; insnWithID(insn, Opcodes[InsnIndex]); for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { switch (bitAttrs[BitIndex]) { case ATTR_NONE: if (insn[BitIndex] == BIT_UNSET) bitAttrs[BitIndex] = ATTR_ALL_UNSET; else bitAttrs[BitIndex] = ATTR_ALL_SET; break; case ATTR_ALL_SET: if (insn[BitIndex] == BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_ALL_UNSET: if (insn[BitIndex] != BIT_UNSET) bitAttrs[BitIndex] = ATTR_MIXED; break; case ATTR_MIXED: case ATTR_FILTERED: break; } } } // The regionAttr automaton consumes the bitAttrs automatons' state, // lowest-to-highest. // // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) // States: NONE, ALL_SET, MIXED // Initial state: NONE // // (NONE) ----- F --> (NONE) // (NONE) ----- S --> (ALL_SET) ; and set region start // (NONE) ----- U --> (NONE) // (NONE) ----- M --> (MIXED) ; and set region start // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- S --> (ALL_SET) // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region // (MIXED) ---- F --> (NONE) ; and report a MIXED region // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region // (MIXED) ---- U --> (NONE) ; and report a MIXED region // (MIXED) ---- M --> (MIXED) bitAttr_t RA = ATTR_NONE; unsigned StartBit = 0; for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { bitAttr_t bitAttr = bitAttrs[BitIndex]; assert(bitAttr != ATTR_NONE && "Bit without attributes"); switch (RA) { case ATTR_NONE: switch (bitAttr) { case ATTR_FILTERED: break; case ATTR_ALL_SET: StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_SET: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_ALL_SET: break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_MIXED; break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_MIXED: switch (bitAttr) { case ATTR_FILTERED: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_NONE; break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); StartBit = BitIndex; RA = ATTR_ALL_SET; break; case ATTR_ALL_UNSET: reportRegion(RA, StartBit, BitIndex, AllowMixed); RA = ATTR_NONE; break; case ATTR_MIXED: break; default: llvm_unreachable("Unexpected bitAttr!"); } break; case ATTR_ALL_UNSET: llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); case ATTR_FILTERED: llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); } } // At the end, if we're still in ALL_SET or MIXED states, report a region switch (RA) { case ATTR_NONE: break; case ATTR_FILTERED: break; case ATTR_ALL_SET: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; case ATTR_ALL_UNSET: break; case ATTR_MIXED: reportRegion(RA, StartBit, BitIndex, AllowMixed); break; } // We have finished with the filter processings. Now it's time to choose // the best performing filter. BestIndex = 0; bool AllUseless = true; unsigned BestScore = 0; for (unsigned i = 0, e = Filters.size(); i != e; ++i) { unsigned Usefulness = Filters[i].usefulness(); if (Usefulness) AllUseless = false; if (Usefulness > BestScore) { BestIndex = i; BestScore = Usefulness; } } if (!AllUseless) bestFilter().recurse(); return !AllUseless; } // end of FilterChooser::filterProcessor(bool) // Decides on the best configuration of filter(s) to use in order to decode // the instructions. A conflict of instructions may occur, in which case we // dump the conflict set to the standard error. void FilterChooser::doFilter() { unsigned Num = Opcodes.size(); assert(Num && "FilterChooser created with no instructions"); // Try regions of consecutive known bit values first. if (filterProcessor(false)) return; // Then regions of mixed bits (both known and unitialized bit values allowed). if (filterProcessor(true)) return; // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a // well-known encoding pattern. In such case, we backtrack and scan for the // the very first consecutive ATTR_ALL_SET region and assign a filter to it. if (Num == 3 && filterProcessor(true, false)) return; // If we come to here, the instruction decoding has failed. // Set the BestIndex to -1 to indicate so. BestIndex = -1; } // emitTableEntries - Emit state machine entries to decode our share of // instructions. void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { if (Opcodes.size() == 1) { // There is only one instruction in the set, which is great! // Call emitSingletonDecoder() to see whether there are any remaining // encodings bits. emitSingletonTableEntry(TableInfo, Opcodes[0]); return; } // Choose the best filter to do the decodings! if (BestIndex != -1) { const Filter &Best = Filters[BestIndex]; if (Best.getNumFiltered() == 1) emitSingletonTableEntry(TableInfo, Best); else Best.emitTableEntry(TableInfo); return; } // We don't know how to decode these instructions! Dump the // conflict set and bail. // Print out useful conflict information for postmortem analysis. errs() << "Decoding Conflict:\n"; dumpStack(errs(), "\t\t"); for (unsigned i = 0; i < Opcodes.size(); ++i) { const std::string &Name = nameWithID(Opcodes[i]); errs() << '\t' << Name << " "; dumpBits(errs(), getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); errs() << '\n'; } } static bool populateInstruction(const CodeGenInstruction &CGI, unsigned Opc, std::map<unsigned, std::vector<OperandInfo> > &Operands){ const Record &Def = *CGI.TheDef; // If all the bit positions are not specified; do not decode this instruction. // We are bound to fail! For proper disassembly, the well-known encoding bits // of the instruction must be fully specified. // // This also removes pseudo instructions from considerations of disassembly, // which is a better design and less fragile than the name matchings. // Ignore "asm parser only" instructions. if (Def.getValueAsBit("isAsmParserOnly") || Def.getValueAsBit("isCodeGenOnly")) return false; BitsInit &Bits = getBitsField(Def, "Inst"); if (Bits.allInComplete()) return false; std::vector<OperandInfo> InsnOperands; // If the instruction has specified a custom decoding hook, use that instead // of trying to auto-generate the decoder. std::string InstDecoder = Def.getValueAsString("DecoderMethod"); if (InstDecoder != "") { InsnOperands.push_back(OperandInfo(InstDecoder)); Operands[Opc] = InsnOperands; return true; } // Generate a description of the operand of the instruction that we know // how to decode automatically. // FIXME: We'll need to have a way to manually override this as needed. // Gather the outputs/inputs of the instruction, so we can find their // positions in the encoding. This assumes for now that they appear in the // MCInst in the order that they're listed. std::vector<std::pair<Init*, std::string> > InOutOperands; DagInit *Out = Def.getValueAsDag("OutOperandList"); DagInit *In = Def.getValueAsDag("InOperandList"); for (unsigned i = 0; i < Out->getNumArgs(); ++i) InOutOperands.push_back(std::make_pair(Out->getArg(i), Out->getArgName(i))); for (unsigned i = 0; i < In->getNumArgs(); ++i) InOutOperands.push_back(std::make_pair(In->getArg(i), In->getArgName(i))); // Search for tied operands, so that we can correctly instantiate // operands that are not explicitly represented in the encoding. std::map<std::string, std::string> TiedNames; for (unsigned i = 0; i < CGI.Operands.size(); ++i) { int tiedTo = CGI.Operands[i].getTiedRegister(); if (tiedTo != -1) { TiedNames[InOutOperands[i].second] = InOutOperands[tiedTo].second; TiedNames[InOutOperands[tiedTo].second] = InOutOperands[i].second; } } // For each operand, see if we can figure out where it is encoded. for (std::vector<std::pair<Init*, std::string> >::const_iterator NI = InOutOperands.begin(), NE = InOutOperands.end(); NI != NE; ++NI) { std::string Decoder = ""; // At this point, we can locate the field, but we need to know how to // interpret it. As a first step, require the target to provide callbacks // for decoding register classes. // FIXME: This need to be extended to handle instructions with custom // decoder methods, and operands with (simple) MIOperandInfo's. TypedInit *TI = cast<TypedInit>(NI->first); RecordRecTy *Type = cast<RecordRecTy>(TI->getType()); Record *TypeRecord = Type->getRecord(); bool isReg = false; if (TypeRecord->isSubClassOf("RegisterOperand")) TypeRecord = TypeRecord->getValueAsDef("RegClass"); if (TypeRecord->isSubClassOf("RegisterClass")) { Decoder = "Decode" + TypeRecord->getName() + "RegisterClass"; isReg = true; } RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); StringInit *String = DecoderString ? dyn_cast<StringInit>(DecoderString->getValue()) : 0; if (!isReg && String && String->getValue() != "") Decoder = String->getValue(); OperandInfo OpInfo(Decoder); unsigned Base = ~0U; unsigned Width = 0; unsigned Offset = 0; for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { VarInit *Var = 0; VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); if (BI) Var = dyn_cast<VarInit>(BI->getBitVar()); else Var = dyn_cast<VarInit>(Bits.getBit(bi)); if (!Var) { if (Base != ~0U) { OpInfo.addField(Base, Width, Offset); Base = ~0U; Width = 0; Offset = 0; } continue; } if (Var->getName() != NI->second && Var->getName() != TiedNames[NI->second]) { if (Base != ~0U) { OpInfo.addField(Base, Width, Offset); Base = ~0U; Width = 0; Offset = 0; } continue; } if (Base == ~0U) { Base = bi; Width = 1; Offset = BI ? BI->getBitNum() : 0; } else if (BI && BI->getBitNum() != Offset + Width) { OpInfo.addField(Base, Width, Offset); Base = bi; Width = 1; Offset = BI->getBitNum(); } else { ++Width; } } if (Base != ~0U) OpInfo.addField(Base, Width, Offset); if (OpInfo.numFields() > 0) InsnOperands.push_back(OpInfo); } Operands[Opc] = InsnOperands; #if 0 DEBUG({ // Dumps the instruction encoding bits. dumpBits(errs(), Bits); errs() << '\n'; // Dumps the list of operand info. for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; const std::string &OperandName = Info.Name; const Record &OperandDef = *Info.Rec; errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; } }); #endif return true; } // emitFieldFromInstruction - Emit the templated helper function // fieldFromInstruction(). static void emitFieldFromInstruction(formatted_raw_ostream &OS) { OS << "// Helper function for extracting fields from encoded instructions.\n" << "template<typename InsnType>\n" << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n" << " unsigned numBits) {\n" << " assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n" << " \"Instruction field out of bounds!\");\n" << " InsnType fieldMask;\n" << " if (numBits == sizeof(InsnType)*8)\n" << " fieldMask = (InsnType)(-1LL);\n" << " else\n" << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n" << " return (insn & fieldMask) >> startBit;\n" << "}\n\n"; } // emitDecodeInstruction - Emit the templated helper function // decodeInstruction(). static void emitDecodeInstruction(formatted_raw_ostream &OS) { OS << "template<typename InsnType>\n" << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n" << " InsnType insn, uint64_t Address,\n" << " const void *DisAsm,\n" << " const MCSubtargetInfo &STI) {\n" << " uint64_t Bits = STI.getFeatureBits();\n" << "\n" << " const uint8_t *Ptr = DecodeTable;\n" << " uint32_t CurFieldValue = 0;\n" << " DecodeStatus S = MCDisassembler::Success;\n" << " for (;;) {\n" << " ptrdiff_t Loc = Ptr - DecodeTable;\n" << " switch (*Ptr) {\n" << " default:\n" << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n" << " return MCDisassembler::Fail;\n" << " case MCD::OPC_ExtractField: {\n" << " unsigned Start = *++Ptr;\n" << " unsigned Len = *++Ptr;\n" << " ++Ptr;\n" << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n" << " DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n" << " << Len << \"): \" << CurFieldValue << \"\\n\");\n" << " break;\n" << " }\n" << " case MCD::OPC_FilterValue: {\n" << " // Decode the field value.\n" << " unsigned Len;\n" << " InsnType Val = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " // NumToSkip is a plain 16-bit integer.\n" << " unsigned NumToSkip = *Ptr++;\n" << " NumToSkip |= (*Ptr++) << 8;\n" << "\n" << " // Perform the filter operation.\n" << " if (Val != CurFieldValue)\n" << " Ptr += NumToSkip;\n" << " DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n" << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n" << " << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n" << "\n" << " break;\n" << " }\n" << " case MCD::OPC_CheckField: {\n" << " unsigned Start = *++Ptr;\n" << " unsigned Len = *++Ptr;\n" << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n" << " // Decode the field value.\n" << " uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " // NumToSkip is a plain 16-bit integer.\n" << " unsigned NumToSkip = *Ptr++;\n" << " NumToSkip |= (*Ptr++) << 8;\n" << "\n" << " // If the actual and expected values don't match, skip.\n" << " if (ExpectedValue != FieldValue)\n" << " Ptr += NumToSkip;\n" << " DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n" << " << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n" << " << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n" << " << ExpectedValue << \": \"\n" << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n" << " break;\n" << " }\n" << " case MCD::OPC_CheckPredicate: {\n" << " unsigned Len;\n" << " // Decode the Predicate Index value.\n" << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " // NumToSkip is a plain 16-bit integer.\n" << " unsigned NumToSkip = *Ptr++;\n" << " NumToSkip |= (*Ptr++) << 8;\n" << " // Check the predicate.\n" << " bool Pred;\n" << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n" << " Ptr += NumToSkip;\n" << " (void)Pred;\n" << " DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n" << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n" << "\n" << " break;\n" << " }\n" << " case MCD::OPC_Decode: {\n" << " unsigned Len;\n" << " // Decode the Opcode value.\n" << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" << " Ptr += Len;\n" << " DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n" << " << \", using decoder \" << DecodeIdx << \"\\n\" );\n" << " DEBUG(dbgs() << \"----- DECODE SUCCESSFUL -----\\n\");\n" << "\n" << " MI.setOpcode(Opc);\n" << " return decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm);\n" << " }\n" << " case MCD::OPC_SoftFail: {\n" << " // Decode the mask values.\n" << " unsigned Len;\n" << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n" << " Ptr += Len;\n" << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n" << " Ptr += Len;\n" << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n" << " if (Fail)\n" << " S = MCDisassembler::SoftFail;\n" << " DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n" << " break;\n" << " }\n" << " case MCD::OPC_Fail: {\n" << " DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n" << " return MCDisassembler::Fail;\n" << " }\n" << " }\n" << " }\n" << " llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n" << "}\n\n"; } // Emits disassembler code for instruction decoding. void FixedLenDecoderEmitter::run(raw_ostream &o) { formatted_raw_ostream OS(o); OS << "#include \"llvm/MC/MCInst.h\"\n"; OS << "#include \"llvm/Support/Debug.h\"\n"; OS << "#include \"llvm/Support/DataTypes.h\"\n"; OS << "#include \"llvm/Support/LEB128.h\"\n"; OS << "#include \"llvm/Support/raw_ostream.h\"\n"; OS << "#include <assert.h>\n"; OS << '\n'; OS << "namespace llvm {\n\n"; emitFieldFromInstruction(OS); // Parameterize the decoders based on namespace and instruction width. NumberedInstructions = &Target.getInstructionsByEnumValue(); std::map<std::pair<std::string, unsigned>, std::vector<unsigned> > OpcMap; std::map<unsigned, std::vector<OperandInfo> > Operands; for (unsigned i = 0; i < NumberedInstructions->size(); ++i) { const CodeGenInstruction *Inst = NumberedInstructions->at(i); const Record *Def = Inst->TheDef; unsigned Size = Def->getValueAsInt("Size"); if (Def->getValueAsString("Namespace") == "TargetOpcode" || Def->getValueAsBit("isPseudo") || Def->getValueAsBit("isAsmParserOnly") || Def->getValueAsBit("isCodeGenOnly")) continue; std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace"); if (Size) { if (populateInstruction(*Inst, i, Operands)) { OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i); } } } DecoderTableInfo TableInfo; std::set<unsigned> Sizes; for (std::map<std::pair<std::string, unsigned>, std::vector<unsigned> >::const_iterator I = OpcMap.begin(), E = OpcMap.end(); I != E; ++I) { // Emit the decoder for this namespace+width combination. FilterChooser FC(*NumberedInstructions, I->second, Operands, 8*I->first.second, this); // The decode table is cleared for each top level decoder function. The // predicates and decoders themselves, however, are shared across all // decoders to give more opportunities for uniqueing. TableInfo.Table.clear(); TableInfo.FixupStack.clear(); TableInfo.Table.reserve(16384); TableInfo.FixupStack.push_back(FixupList()); FC.emitTableEntries(TableInfo); // Any NumToSkip fixups in the top level scope can resolve to the // OPC_Fail at the end of the table. assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!"); // Resolve any NumToSkip fixups in the current scope. resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), TableInfo.Table.size()); TableInfo.FixupStack.clear(); TableInfo.Table.push_back(MCD::OPC_Fail); // Print the table to the output stream. emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), I->first.first); OS.flush(); } // Emit the predicate function. emitPredicateFunction(OS, TableInfo.Predicates, 0); // Emit the decoder function. emitDecoderFunction(OS, TableInfo.Decoders, 0); // Emit the main entry point for the decoder, decodeInstruction(). emitDecodeInstruction(OS); OS << "\n} // End llvm namespace\n"; } namespace llvm { void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS, std::string PredicateNamespace, std::string GPrefix, std::string GPostfix, std::string ROK, std::string RFail, std::string L) { FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, ROK, RFail, L).run(OS); } } // End llvm namespace