//===- InstrInfoEmitter.cpp - Generate a Instruction Set Desc. ------------===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // This tablegen backend is responsible for emitting a description of the target // instruction set for the code generator. // //===----------------------------------------------------------------------===// #include "CodeGenDAGPatterns.h" #include "CodeGenSchedule.h" #include "CodeGenTarget.h" #include "SequenceToOffsetTable.h" #include "TableGenBackends.h" #include "llvm/ADT/StringExtras.h" #include "llvm/TableGen/Error.h" #include "llvm/TableGen/Record.h" #include "llvm/TableGen/TableGenBackend.h" #include <algorithm> #include <cstdio> #include <map> #include <vector> using namespace llvm; namespace { class InstrInfoEmitter { RecordKeeper &Records; CodeGenDAGPatterns CDP; const CodeGenSchedModels &SchedModels; public: InstrInfoEmitter(RecordKeeper &R): Records(R), CDP(R), SchedModels(CDP.getTargetInfo().getSchedModels()) {} // run - Output the instruction set description. void run(raw_ostream &OS); private: void emitEnums(raw_ostream &OS); typedef std::map<std::vector<std::string>, unsigned> OperandInfoMapTy; void emitRecord(const CodeGenInstruction &Inst, unsigned Num, Record *InstrInfo, std::map<std::vector<Record*>, unsigned> &EL, const OperandInfoMapTy &OpInfo, raw_ostream &OS); // Operand information. void EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs); std::vector<std::string> GetOperandInfo(const CodeGenInstruction &Inst); }; } // End anonymous namespace static void PrintDefList(const std::vector<Record*> &Uses, unsigned Num, raw_ostream &OS) { OS << "static const uint16_t ImplicitList" << Num << "[] = { "; for (unsigned i = 0, e = Uses.size(); i != e; ++i) OS << getQualifiedName(Uses[i]) << ", "; OS << "0 };\n"; } //===----------------------------------------------------------------------===// // Operand Info Emission. //===----------------------------------------------------------------------===// std::vector<std::string> InstrInfoEmitter::GetOperandInfo(const CodeGenInstruction &Inst) { std::vector<std::string> Result; for (unsigned i = 0, e = Inst.Operands.size(); i != e; ++i) { // Handle aggregate operands and normal operands the same way by expanding // either case into a list of operands for this op. std::vector<CGIOperandList::OperandInfo> OperandList; // This might be a multiple operand thing. Targets like X86 have // registers in their multi-operand operands. It may also be an anonymous // operand, which has a single operand, but no declared class for the // operand. DagInit *MIOI = Inst.Operands[i].MIOperandInfo; if (!MIOI || MIOI->getNumArgs() == 0) { // Single, anonymous, operand. OperandList.push_back(Inst.Operands[i]); } else { for (unsigned j = 0, e = Inst.Operands[i].MINumOperands; j != e; ++j) { OperandList.push_back(Inst.Operands[i]); Record *OpR = cast<DefInit>(MIOI->getArg(j))->getDef(); OperandList.back().Rec = OpR; } } for (unsigned j = 0, e = OperandList.size(); j != e; ++j) { Record *OpR = OperandList[j].Rec; std::string Res; if (OpR->isSubClassOf("RegisterOperand")) OpR = OpR->getValueAsDef("RegClass"); if (OpR->isSubClassOf("RegisterClass")) Res += getQualifiedName(OpR) + "RegClassID, "; else if (OpR->isSubClassOf("PointerLikeRegClass")) Res += utostr(OpR->getValueAsInt("RegClassKind")) + ", "; else // -1 means the operand does not have a fixed register class. Res += "-1, "; // Fill in applicable flags. Res += "0"; // Ptr value whose register class is resolved via callback. if (OpR->isSubClassOf("PointerLikeRegClass")) Res += "|(1<<MCOI::LookupPtrRegClass)"; // Predicate operands. Check to see if the original unexpanded operand // was of type PredicateOperand. if (Inst.Operands[i].Rec->isSubClassOf("PredicateOperand")) Res += "|(1<<MCOI::Predicate)"; // Optional def operands. Check to see if the original unexpanded operand // was of type OptionalDefOperand. if (Inst.Operands[i].Rec->isSubClassOf("OptionalDefOperand")) Res += "|(1<<MCOI::OptionalDef)"; // Fill in operand type. Res += ", MCOI::"; assert(!Inst.Operands[i].OperandType.empty() && "Invalid operand type."); Res += Inst.Operands[i].OperandType; // Fill in constraint info. Res += ", "; const CGIOperandList::ConstraintInfo &Constraint = Inst.Operands[i].Constraints[j]; if (Constraint.isNone()) Res += "0"; else if (Constraint.isEarlyClobber()) Res += "(1 << MCOI::EARLY_CLOBBER)"; else { assert(Constraint.isTied()); Res += "((" + utostr(Constraint.getTiedOperand()) + " << 16) | (1 << MCOI::TIED_TO))"; } Result.push_back(Res); } } return Result; } void InstrInfoEmitter::EmitOperandInfo(raw_ostream &OS, OperandInfoMapTy &OperandInfoIDs) { // ID #0 is for no operand info. unsigned OperandListNum = 0; OperandInfoIDs[std::vector<std::string>()] = ++OperandListNum; OS << "\n"; const CodeGenTarget &Target = CDP.getTargetInfo(); for (CodeGenTarget::inst_iterator II = Target.inst_begin(), E = Target.inst_end(); II != E; ++II) { std::vector<std::string> OperandInfo = GetOperandInfo(**II); unsigned &N = OperandInfoIDs[OperandInfo]; if (N != 0) continue; N = ++OperandListNum; OS << "static const MCOperandInfo OperandInfo" << N << "[] = { "; for (unsigned i = 0, e = OperandInfo.size(); i != e; ++i) OS << "{ " << OperandInfo[i] << " }, "; OS << "};\n"; } } //===----------------------------------------------------------------------===// // Main Output. //===----------------------------------------------------------------------===// // run - Emit the main instruction description records for the target... void InstrInfoEmitter::run(raw_ostream &OS) { emitSourceFileHeader("Target Instruction Enum Values", OS); emitEnums(OS); emitSourceFileHeader("Target Instruction Descriptors", OS); OS << "\n#ifdef GET_INSTRINFO_MC_DESC\n"; OS << "#undef GET_INSTRINFO_MC_DESC\n"; OS << "namespace llvm {\n\n"; CodeGenTarget &Target = CDP.getTargetInfo(); const std::string &TargetName = Target.getName(); Record *InstrInfo = Target.getInstructionSet(); // Keep track of all of the def lists we have emitted already. std::map<std::vector<Record*>, unsigned> EmittedLists; unsigned ListNumber = 0; // Emit all of the instruction's implicit uses and defs. for (CodeGenTarget::inst_iterator II = Target.inst_begin(), E = Target.inst_end(); II != E; ++II) { Record *Inst = (*II)->TheDef; std::vector<Record*> Uses = Inst->getValueAsListOfDefs("Uses"); if (!Uses.empty()) { unsigned &IL = EmittedLists[Uses]; if (!IL) PrintDefList(Uses, IL = ++ListNumber, OS); } std::vector<Record*> Defs = Inst->getValueAsListOfDefs("Defs"); if (!Defs.empty()) { unsigned &IL = EmittedLists[Defs]; if (!IL) PrintDefList(Defs, IL = ++ListNumber, OS); } } OperandInfoMapTy OperandInfoIDs; // Emit all of the operand info records. EmitOperandInfo(OS, OperandInfoIDs); // Emit all of the MCInstrDesc records in their ENUM ordering. // OS << "\nextern const MCInstrDesc " << TargetName << "Insts[] = {\n"; const std::vector<const CodeGenInstruction*> &NumberedInstructions = Target.getInstructionsByEnumValue(); for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) emitRecord(*NumberedInstructions[i], i, InstrInfo, EmittedLists, OperandInfoIDs, OS); OS << "};\n\n"; // Build an array of instruction names SequenceToOffsetTable<std::string> InstrNames; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { const CodeGenInstruction *Instr = NumberedInstructions[i]; InstrNames.add(Instr->TheDef->getName()); } InstrNames.layout(); OS << "extern const char " << TargetName << "InstrNameData[] = {\n"; InstrNames.emit(OS, printChar); OS << "};\n\n"; OS << "extern const unsigned " << TargetName <<"InstrNameIndices[] = {"; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { if (i % 8 == 0) OS << "\n "; const CodeGenInstruction *Instr = NumberedInstructions[i]; OS << InstrNames.get(Instr->TheDef->getName()) << "U, "; } OS << "\n};\n\n"; // MCInstrInfo initialization routine. OS << "static inline void Init" << TargetName << "MCInstrInfo(MCInstrInfo *II) {\n"; OS << " II->InitMCInstrInfo(" << TargetName << "Insts, " << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, " << NumberedInstructions.size() << ");\n}\n\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_INSTRINFO_MC_DESC\n\n"; // Create a TargetInstrInfo subclass to hide the MC layer initialization. OS << "\n#ifdef GET_INSTRINFO_HEADER\n"; OS << "#undef GET_INSTRINFO_HEADER\n"; std::string ClassName = TargetName + "GenInstrInfo"; OS << "namespace llvm {\n"; OS << "struct " << ClassName << " : public TargetInstrInfo {\n" << " explicit " << ClassName << "(int SO = -1, int DO = -1);\n" << "};\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_INSTRINFO_HEADER\n\n"; OS << "\n#ifdef GET_INSTRINFO_CTOR\n"; OS << "#undef GET_INSTRINFO_CTOR\n"; OS << "namespace llvm {\n"; OS << "extern const MCInstrDesc " << TargetName << "Insts[];\n"; OS << "extern const unsigned " << TargetName << "InstrNameIndices[];\n"; OS << "extern const char " << TargetName << "InstrNameData[];\n"; OS << ClassName << "::" << ClassName << "(int SO, int DO)\n" << " : TargetInstrInfo(SO, DO) {\n" << " InitMCInstrInfo(" << TargetName << "Insts, " << TargetName << "InstrNameIndices, " << TargetName << "InstrNameData, " << NumberedInstructions.size() << ");\n}\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_INSTRINFO_CTOR\n\n"; } void InstrInfoEmitter::emitRecord(const CodeGenInstruction &Inst, unsigned Num, Record *InstrInfo, std::map<std::vector<Record*>, unsigned> &EmittedLists, const OperandInfoMapTy &OpInfo, raw_ostream &OS) { int MinOperands = 0; if (!Inst.Operands.empty()) // Each logical operand can be multiple MI operands. MinOperands = Inst.Operands.back().MIOperandNo + Inst.Operands.back().MINumOperands; OS << " { "; OS << Num << ",\t" << MinOperands << ",\t" << Inst.Operands.NumDefs << ",\t" << SchedModels.getSchedClassIdx(Inst) << ",\t" << Inst.TheDef->getValueAsInt("Size") << ",\t0"; // Emit all of the target indepedent flags... if (Inst.isPseudo) OS << "|(1<<MCID::Pseudo)"; if (Inst.isReturn) OS << "|(1<<MCID::Return)"; if (Inst.isBranch) OS << "|(1<<MCID::Branch)"; if (Inst.isIndirectBranch) OS << "|(1<<MCID::IndirectBranch)"; if (Inst.isCompare) OS << "|(1<<MCID::Compare)"; if (Inst.isMoveImm) OS << "|(1<<MCID::MoveImm)"; if (Inst.isBitcast) OS << "|(1<<MCID::Bitcast)"; if (Inst.isSelect) OS << "|(1<<MCID::Select)"; if (Inst.isBarrier) OS << "|(1<<MCID::Barrier)"; if (Inst.hasDelaySlot) OS << "|(1<<MCID::DelaySlot)"; if (Inst.isCall) OS << "|(1<<MCID::Call)"; if (Inst.canFoldAsLoad) OS << "|(1<<MCID::FoldableAsLoad)"; if (Inst.mayLoad) OS << "|(1<<MCID::MayLoad)"; if (Inst.mayStore) OS << "|(1<<MCID::MayStore)"; if (Inst.isPredicable) OS << "|(1<<MCID::Predicable)"; if (Inst.isConvertibleToThreeAddress) OS << "|(1<<MCID::ConvertibleTo3Addr)"; if (Inst.isCommutable) OS << "|(1<<MCID::Commutable)"; if (Inst.isTerminator) OS << "|(1<<MCID::Terminator)"; if (Inst.isReMaterializable) OS << "|(1<<MCID::Rematerializable)"; if (Inst.isNotDuplicable) OS << "|(1<<MCID::NotDuplicable)"; if (Inst.Operands.hasOptionalDef) OS << "|(1<<MCID::HasOptionalDef)"; if (Inst.usesCustomInserter) OS << "|(1<<MCID::UsesCustomInserter)"; if (Inst.hasPostISelHook) OS << "|(1<<MCID::HasPostISelHook)"; if (Inst.Operands.isVariadic)OS << "|(1<<MCID::Variadic)"; if (Inst.hasSideEffects) OS << "|(1<<MCID::UnmodeledSideEffects)"; if (Inst.isAsCheapAsAMove) OS << "|(1<<MCID::CheapAsAMove)"; if (Inst.hasExtraSrcRegAllocReq) OS << "|(1<<MCID::ExtraSrcRegAllocReq)"; if (Inst.hasExtraDefRegAllocReq) OS << "|(1<<MCID::ExtraDefRegAllocReq)"; // Emit all of the target-specific flags... BitsInit *TSF = Inst.TheDef->getValueAsBitsInit("TSFlags"); if (!TSF) PrintFatalError("no TSFlags?"); uint64_t Value = 0; for (unsigned i = 0, e = TSF->getNumBits(); i != e; ++i) { if (BitInit *Bit = dyn_cast<BitInit>(TSF->getBit(i))) Value |= uint64_t(Bit->getValue()) << i; else PrintFatalError("Invalid TSFlags bit in " + Inst.TheDef->getName()); } OS << ", 0x"; OS.write_hex(Value); OS << "ULL, "; // Emit the implicit uses and defs lists... std::vector<Record*> UseList = Inst.TheDef->getValueAsListOfDefs("Uses"); if (UseList.empty()) OS << "NULL, "; else OS << "ImplicitList" << EmittedLists[UseList] << ", "; std::vector<Record*> DefList = Inst.TheDef->getValueAsListOfDefs("Defs"); if (DefList.empty()) OS << "NULL, "; else OS << "ImplicitList" << EmittedLists[DefList] << ", "; // Emit the operand info. std::vector<std::string> OperandInfo = GetOperandInfo(Inst); if (OperandInfo.empty()) OS << "0"; else OS << "OperandInfo" << OpInfo.find(OperandInfo)->second; OS << " }, // Inst #" << Num << " = " << Inst.TheDef->getName() << "\n"; } // emitEnums - Print out enum values for all of the instructions. void InstrInfoEmitter::emitEnums(raw_ostream &OS) { OS << "\n#ifdef GET_INSTRINFO_ENUM\n"; OS << "#undef GET_INSTRINFO_ENUM\n"; OS << "namespace llvm {\n\n"; CodeGenTarget Target(Records); // We must emit the PHI opcode first... std::string Namespace = Target.getInstNamespace(); if (Namespace.empty()) { fprintf(stderr, "No instructions defined!\n"); exit(1); } const std::vector<const CodeGenInstruction*> &NumberedInstructions = Target.getInstructionsByEnumValue(); OS << "namespace " << Namespace << " {\n"; OS << " enum {\n"; for (unsigned i = 0, e = NumberedInstructions.size(); i != e; ++i) { OS << " " << NumberedInstructions[i]->TheDef->getName() << "\t= " << i << ",\n"; } OS << " INSTRUCTION_LIST_END = " << NumberedInstructions.size() << "\n"; OS << " };\n}\n"; OS << "} // End llvm namespace \n"; OS << "#endif // GET_INSTRINFO_ENUM\n\n"; } namespace llvm { void EmitInstrInfo(RecordKeeper &RK, raw_ostream &OS) { InstrInfoEmitter(RK).run(OS); EmitMapTable(RK, OS); } } // End llvm namespace