// union.h // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // // Copyright 2005-2010 Google, Inc. // Author: riley@google.com (Michael Riley) // // \file // Functions and classes to compute the union of two FSTs. #ifndef FST_LIB_UNION_H__ #define FST_LIB_UNION_H__ #include <vector> using std::vector; #include <algorithm> #include <fst/mutable-fst.h> #include <fst/rational.h> namespace fst { // Computes the union (sum) of two FSTs. This version writes the // union to an output MurableFst. If A transduces string x to y with // weight a and B transduces string w to v with weight b, then their // union transduces x to y with weight a and w to v with weight b. // // Complexity: // - Time: (V2 + E2) // - Space: O(V2 + E2) // where Vi = # of states and Ei = # of arcs of the ith FST. template <class Arc> void Union(MutableFst<Arc> *fst1, const Fst<Arc> &fst2) { typedef typename Arc::StateId StateId; typedef typename Arc::Label Label; typedef typename Arc::Weight Weight; // TODO(riley): restore when voice actions issues fixed // Check that the symbol table are compatible if (!CompatSymbols(fst1->InputSymbols(), fst2.InputSymbols()) || !CompatSymbols(fst1->OutputSymbols(), fst2.OutputSymbols())) { LOG(ERROR) << "Union: input/output symbol tables of 1st argument " << "do not match input/output symbol tables of 2nd argument"; // fst1->SetProperties(kError, kError); // return; } StateId numstates1 = fst1->NumStates(); bool initial_acyclic1 = fst1->Properties(kInitialAcyclic, true); uint64 props1 = fst1->Properties(kFstProperties, false); uint64 props2 = fst2.Properties(kFstProperties, false); StateId start2 = fst2.Start(); if (start2 == kNoStateId) { if (props2 & kError) fst1->SetProperties(kError, kError); return; } if (fst2.Properties(kExpanded, false)) { fst1->ReserveStates( numstates1 + CountStates(fst2) + (initial_acyclic1 ? 0 : 1)); } for (StateIterator< Fst<Arc> > siter(fst2); !siter.Done(); siter.Next()) { StateId s1 = fst1->AddState(); StateId s2 = siter.Value(); fst1->SetFinal(s1, fst2.Final(s2)); fst1->ReserveArcs(s1, fst2.NumArcs(s2)); for (ArcIterator< Fst<Arc> > aiter(fst2, s2); !aiter.Done(); aiter.Next()) { Arc arc = aiter.Value(); arc.nextstate += numstates1; fst1->AddArc(s1, arc); } } StateId start1 = fst1->Start(); if (start1 == kNoStateId) { fst1->SetStart(start2); fst1->SetProperties(props2, kCopyProperties); return; } if (initial_acyclic1) { fst1->AddArc(start1, Arc(0, 0, Weight::One(), start2 + numstates1)); } else { StateId nstart1 = fst1->AddState(); fst1->SetStart(nstart1); fst1->AddArc(nstart1, Arc(0, 0, Weight::One(), start1)); fst1->AddArc(nstart1, Arc(0, 0, Weight::One(), start2 + numstates1)); } fst1->SetProperties(UnionProperties(props1, props2), kFstProperties); } // Computes the union of two FSTs; this version modifies its // RationalFst argument. template<class Arc> void Union(RationalFst<Arc> *fst1, const Fst<Arc> &fst2) { fst1->GetImpl()->AddUnion(fst2); } typedef RationalFstOptions UnionFstOptions; // Computes the union (sum) of two FSTs. This version is a delayed // Fst. If A transduces string x to y with weight a and B transduces // string w to v with weight b, then their union transduces x to y // with weight a and w to v with weight b. // // Complexity: // - Time: O(v1 + e1 + v2 + e2) // - Sapce: O(v1 + v2) // where vi = # of states visited and ei = # of arcs visited of the // ith FST. Constant time and space to visit an input state or arc // is assumed and exclusive of caching. template <class A> class UnionFst : public RationalFst<A> { public: using ImplToFst< RationalFstImpl<A> >::GetImpl; typedef A Arc; typedef typename A::Weight Weight; typedef typename A::StateId StateId; UnionFst(const Fst<A> &fst1, const Fst<A> &fst2) { GetImpl()->InitUnion(fst1, fst2); } UnionFst(const Fst<A> &fst1, const Fst<A> &fst2, const UnionFstOptions &opts) : RationalFst<A>(opts) { GetImpl()->InitUnion(fst1, fst2); } // See Fst<>::Copy() for doc. UnionFst(const UnionFst<A> &fst, bool safe = false) : RationalFst<A>(fst, safe) {} // Get a copy of this UnionFst. See Fst<>::Copy() for further doc. virtual UnionFst<A> *Copy(bool safe = false) const { return new UnionFst<A>(*this, safe); } }; // Specialization for UnionFst. template <class A> class StateIterator< UnionFst<A> > : public StateIterator< RationalFst<A> > { public: explicit StateIterator(const UnionFst<A> &fst) : StateIterator< RationalFst<A> >(fst) {} }; // Specialization for UnionFst. template <class A> class ArcIterator< UnionFst<A> > : public ArcIterator< RationalFst<A> > { public: typedef typename A::StateId StateId; ArcIterator(const UnionFst<A> &fst, StateId s) : ArcIterator< RationalFst<A> >(fst, s) {} }; // Useful alias when using StdArc. typedef UnionFst<StdArc> StdUnionFst; } // namespace fst #endif // FST_LIB_UNION_H__