#!/usr/bin/env perl # # ==================================================================== # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL # project. The module is, however, dual licensed under OpenSSL and # CRYPTOGAMS licenses depending on where you obtain it. For further # details see http://www.openssl.org/~appro/cryptogams/. # ==================================================================== # # May 2011 # # The module implements bn_GF2m_mul_2x2 polynomial multiplication used # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for # the time being... gcc 4.3 appeared to generate poor code, therefore # the effort. And indeed, the module delivers 55%-90%(*) improvement # on haviest ECDSA verify and ECDH benchmarks for 163- and 571-bit # key lengths on z990, 30%-55%(*) - on z10, and 70%-110%(*) - on z196. # This is for 64-bit build. In 32-bit "highgprs" case improvement is # even higher, for example on z990 it was measured 80%-150%. ECDSA # sign is modest 9%-12% faster. Keep in mind that these coefficients # are not ones for bn_GF2m_mul_2x2 itself, as not all CPU time is # burnt in it... # # (*) gcc 4.1 was observed to deliver better results than gcc 4.3, # so that improvement coefficients can vary from one specific # setup to another. $flavour = shift; if ($flavour =~ /3[12]/) { $SIZE_T=4; $g=""; } else { $SIZE_T=8; $g="g"; } while (($output=shift) && ($output!~/^\w[\w\-]*\.\w+$/)) {} open STDOUT,">$output"; $stdframe=16*$SIZE_T+4*8; $rp="%r2"; $a1="%r3"; $a0="%r4"; $b1="%r5"; $b0="%r6"; $ra="%r14"; $sp="%r15"; @T=("%r0","%r1"); @i=("%r12","%r13"); ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(6..11)); ($lo,$hi,$b)=map("%r$_",(3..5)); $a=$lo; $mask=$a8; $code.=<<___; .text .type _mul_1x1,\@function .align 16 _mul_1x1: lgr $a1,$a sllg $a2,$a,1 sllg $a4,$a,2 sllg $a8,$a,3 srag $lo,$a1,63 # broadcast 63rd bit nihh $a1,0x1fff srag @i[0],$a2,63 # broadcast 62nd bit nihh $a2,0x3fff srag @i[1],$a4,63 # broadcast 61st bit nihh $a4,0x7fff ngr $lo,$b ngr @i[0],$b ngr @i[1],$b lghi @T[0],0 lgr $a12,$a1 stg @T[0],`$stdframe+0*8`($sp) # tab[0]=0 xgr $a12,$a2 stg $a1,`$stdframe+1*8`($sp) # tab[1]=a1 lgr $a48,$a4 stg $a2,`$stdframe+2*8`($sp) # tab[2]=a2 xgr $a48,$a8 stg $a12,`$stdframe+3*8`($sp) # tab[3]=a1^a2 xgr $a1,$a4 stg $a4,`$stdframe+4*8`($sp) # tab[4]=a4 xgr $a2,$a4 stg $a1,`$stdframe+5*8`($sp) # tab[5]=a1^a4 xgr $a12,$a4 stg $a2,`$stdframe+6*8`($sp) # tab[6]=a2^a4 xgr $a1,$a48 stg $a12,`$stdframe+7*8`($sp) # tab[7]=a1^a2^a4 xgr $a2,$a48 stg $a8,`$stdframe+8*8`($sp) # tab[8]=a8 xgr $a12,$a48 stg $a1,`$stdframe+9*8`($sp) # tab[9]=a1^a8 xgr $a1,$a4 stg $a2,`$stdframe+10*8`($sp) # tab[10]=a2^a8 xgr $a2,$a4 stg $a12,`$stdframe+11*8`($sp) # tab[11]=a1^a2^a8 xgr $a12,$a4 stg $a48,`$stdframe+12*8`($sp) # tab[12]=a4^a8 srlg $hi,$lo,1 stg $a1,`$stdframe+13*8`($sp) # tab[13]=a1^a4^a8 sllg $lo,$lo,63 stg $a2,`$stdframe+14*8`($sp) # tab[14]=a2^a4^a8 srlg @T[0],@i[0],2 stg $a12,`$stdframe+15*8`($sp) # tab[15]=a1^a2^a4^a8 lghi $mask,`0xf<<3` sllg $a1,@i[0],62 sllg @i[0],$b,3 srlg @T[1],@i[1],3 ngr @i[0],$mask sllg $a2,@i[1],61 srlg @i[1],$b,4-3 xgr $hi,@T[0] ngr @i[1],$mask xgr $lo,$a1 xgr $hi,@T[1] xgr $lo,$a2 xg $lo,$stdframe(@i[0],$sp) srlg @i[0],$b,8-3 ngr @i[0],$mask ___ for($n=1;$n<14;$n++) { $code.=<<___; lg @T[1],$stdframe(@i[1],$sp) srlg @i[1],$b,`($n+2)*4`-3 sllg @T[0],@T[1],`$n*4` ngr @i[1],$mask srlg @T[1],@T[1],`64-$n*4` xgr $lo,@T[0] xgr $hi,@T[1] ___ push(@i,shift(@i)); push(@T,shift(@T)); } $code.=<<___; lg @T[1],$stdframe(@i[1],$sp) sllg @T[0],@T[1],`$n*4` srlg @T[1],@T[1],`64-$n*4` xgr $lo,@T[0] xgr $hi,@T[1] lg @T[0],$stdframe(@i[0],$sp) sllg @T[1],@T[0],`($n+1)*4` srlg @T[0],@T[0],`64-($n+1)*4` xgr $lo,@T[1] xgr $hi,@T[0] br $ra .size _mul_1x1,.-_mul_1x1 .globl bn_GF2m_mul_2x2 .type bn_GF2m_mul_2x2,\@function .align 16 bn_GF2m_mul_2x2: stm${g} %r3,%r15,3*$SIZE_T($sp) lghi %r1,-$stdframe-128 la %r0,0($sp) la $sp,0(%r1,$sp) # alloca st${g} %r0,0($sp) # back chain ___ if ($SIZE_T==8) { my @r=map("%r$_",(6..9)); $code.=<<___; bras $ra,_mul_1x1 # a1·b1 stmg $lo,$hi,16($rp) lg $a,`$stdframe+128+4*$SIZE_T`($sp) lg $b,`$stdframe+128+6*$SIZE_T`($sp) bras $ra,_mul_1x1 # a0·b0 stmg $lo,$hi,0($rp) lg $a,`$stdframe+128+3*$SIZE_T`($sp) lg $b,`$stdframe+128+5*$SIZE_T`($sp) xg $a,`$stdframe+128+4*$SIZE_T`($sp) xg $b,`$stdframe+128+6*$SIZE_T`($sp) bras $ra,_mul_1x1 # (a0+a1)·(b0+b1) lmg @r[0],@r[3],0($rp) xgr $lo,$hi xgr $hi,@r[1] xgr $lo,@r[0] xgr $hi,@r[2] xgr $lo,@r[3] xgr $hi,@r[3] xgr $lo,$hi stg $hi,16($rp) stg $lo,8($rp) ___ } else { $code.=<<___; sllg %r3,%r3,32 sllg %r5,%r5,32 or %r3,%r4 or %r5,%r6 bras $ra,_mul_1x1 rllg $lo,$lo,32 rllg $hi,$hi,32 stmg $lo,$hi,0($rp) ___ } $code.=<<___; lm${g} %r6,%r15,`$stdframe+128+6*$SIZE_T`($sp) br $ra .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 .string "GF(2^m) Multiplication for s390x, CRYPTOGAMS by <appro\@openssl.org>" ___ $code =~ s/\`([^\`]*)\`/eval($1)/gem; print $code; close STDOUT;