/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkPoint_DEFINED #define SkPoint_DEFINED #include "SkMath.h" #include "SkScalar.h" /** \struct SkIPoint SkIPoint holds two 32 bit integer coordinates */ struct SkIPoint { int32_t fX, fY; static SkIPoint Make(int32_t x, int32_t y) { SkIPoint pt; pt.set(x, y); return pt; } int32_t x() const { return fX; } int32_t y() const { return fY; } void setX(int32_t x) { fX = x; } void setY(int32_t y) { fY = y; } /** * Returns true iff fX and fY are both zero. */ bool isZero() const { return (fX | fY) == 0; } /** * Set both fX and fY to zero. Same as set(0, 0) */ void setZero() { fX = fY = 0; } /** Set the x and y values of the point. */ void set(int32_t x, int32_t y) { fX = x; fY = y; } /** Rotate the point clockwise, writing the new point into dst It is legal for dst == this */ void rotateCW(SkIPoint* dst) const; /** Rotate the point clockwise, writing the new point back into the point */ void rotateCW() { this->rotateCW(this); } /** Rotate the point counter-clockwise, writing the new point into dst. It is legal for dst == this */ void rotateCCW(SkIPoint* dst) const; /** Rotate the point counter-clockwise, writing the new point back into the point */ void rotateCCW() { this->rotateCCW(this); } /** Negate the X and Y coordinates of the point. */ void negate() { fX = -fX; fY = -fY; } /** Return a new point whose X and Y coordinates are the negative of the original point's */ SkIPoint operator-() const { SkIPoint neg; neg.fX = -fX; neg.fY = -fY; return neg; } /** Add v's coordinates to this point's */ void operator+=(const SkIPoint& v) { fX += v.fX; fY += v.fY; } /** Subtract v's coordinates from this point's */ void operator-=(const SkIPoint& v) { fX -= v.fX; fY -= v.fY; } /** Returns true if the point's coordinates equal (x,y) */ bool equals(int32_t x, int32_t y) const { return fX == x && fY == y; } friend bool operator==(const SkIPoint& a, const SkIPoint& b) { return a.fX == b.fX && a.fY == b.fY; } friend bool operator!=(const SkIPoint& a, const SkIPoint& b) { return a.fX != b.fX || a.fY != b.fY; } /** Returns a new point whose coordinates are the difference between a and b (i.e. a - b) */ friend SkIPoint operator-(const SkIPoint& a, const SkIPoint& b) { SkIPoint v; v.set(a.fX - b.fX, a.fY - b.fY); return v; } /** Returns a new point whose coordinates are the sum of a and b (a + b) */ friend SkIPoint operator+(const SkIPoint& a, const SkIPoint& b) { SkIPoint v; v.set(a.fX + b.fX, a.fY + b.fY); return v; } /** Returns the dot product of a and b, treating them as 2D vectors */ static int32_t DotProduct(const SkIPoint& a, const SkIPoint& b) { return a.fX * b.fX + a.fY * b.fY; } /** Returns the cross product of a and b, treating them as 2D vectors */ static int32_t CrossProduct(const SkIPoint& a, const SkIPoint& b) { return a.fX * b.fY - a.fY * b.fX; } }; struct SK_API SkPoint { SkScalar fX, fY; static SkPoint Make(SkScalar x, SkScalar y) { SkPoint pt; pt.set(x, y); return pt; } SkScalar x() const { return fX; } SkScalar y() const { return fY; } /** * Returns true iff fX and fY are both zero. */ bool isZero() const { return (0 == fX) & (0 == fY); } /** Set the point's X and Y coordinates */ void set(SkScalar x, SkScalar y) { fX = x; fY = y; } /** Set the point's X and Y coordinates by automatically promoting (x,y) to SkScalar values. */ void iset(int32_t x, int32_t y) { fX = SkIntToScalar(x); fY = SkIntToScalar(y); } /** Set the point's X and Y coordinates by automatically promoting p's coordinates to SkScalar values. */ void iset(const SkIPoint& p) { fX = SkIntToScalar(p.fX); fY = SkIntToScalar(p.fY); } void setAbs(const SkPoint& pt) { fX = SkScalarAbs(pt.fX); fY = SkScalarAbs(pt.fY); } // counter-clockwise fan void setIRectFan(int l, int t, int r, int b) { SkPoint* v = this; v[0].set(SkIntToScalar(l), SkIntToScalar(t)); v[1].set(SkIntToScalar(l), SkIntToScalar(b)); v[2].set(SkIntToScalar(r), SkIntToScalar(b)); v[3].set(SkIntToScalar(r), SkIntToScalar(t)); } void setIRectFan(int l, int t, int r, int b, size_t stride); // counter-clockwise fan void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b) { SkPoint* v = this; v[0].set(l, t); v[1].set(l, b); v[2].set(r, b); v[3].set(r, t); } void setRectFan(SkScalar l, SkScalar t, SkScalar r, SkScalar b, size_t stride); static void Offset(SkPoint points[], int count, const SkPoint& offset) { Offset(points, count, offset.fX, offset.fY); } static void Offset(SkPoint points[], int count, SkScalar dx, SkScalar dy) { for (int i = 0; i < count; ++i) { points[i].offset(dx, dy); } } void offset(SkScalar dx, SkScalar dy) { fX += dx; fY += dy; } /** Return the euclidian distance from (0,0) to the point */ SkScalar length() const { return SkPoint::Length(fX, fY); } SkScalar distanceToOrigin() const { return this->length(); } /** * Return true if the computed length of the vector is >= the internal * tolerance (used to avoid dividing by tiny values). */ static bool CanNormalize(SkScalar dx, SkScalar dy) #ifdef SK_SCALAR_IS_FLOAT // Simple enough (and performance critical sometimes) so we inline it. { return (dx*dx + dy*dy) > (SK_ScalarNearlyZero * SK_ScalarNearlyZero); } #else ; #endif bool canNormalize() const { return CanNormalize(fX, fY); } /** Set the point (vector) to be unit-length in the same direction as it already points. If the point has a degenerate length (i.e. nearly 0) then return false and do nothing; otherwise return true. */ bool normalize(); /** Set the point (vector) to be unit-length in the same direction as the x,y params. If the vector (x,y) has a degenerate length (i.e. nearly 0) then return false and do nothing, otherwise return true. */ bool setNormalize(SkScalar x, SkScalar y); /** Scale the point (vector) to have the specified length, and return that length. If the original length is degenerately small (nearly zero), do nothing and return false, otherwise return true. */ bool setLength(SkScalar length); /** Set the point (vector) to have the specified length in the same direction as (x,y). If the vector (x,y) has a degenerate length (i.e. nearly 0) then return false and do nothing, otherwise return true. */ bool setLength(SkScalar x, SkScalar y, SkScalar length); /** Scale the point's coordinates by scale, writing the answer into dst. It is legal for dst == this. */ void scale(SkScalar scale, SkPoint* dst) const; /** Scale the point's coordinates by scale, writing the answer back into the point. */ void scale(SkScalar value) { this->scale(value, this); } /** Rotate the point clockwise by 90 degrees, writing the answer into dst. It is legal for dst == this. */ void rotateCW(SkPoint* dst) const; /** Rotate the point clockwise by 90 degrees, writing the answer back into the point. */ void rotateCW() { this->rotateCW(this); } /** Rotate the point counter-clockwise by 90 degrees, writing the answer into dst. It is legal for dst == this. */ void rotateCCW(SkPoint* dst) const; /** Rotate the point counter-clockwise by 90 degrees, writing the answer back into the point. */ void rotateCCW() { this->rotateCCW(this); } /** Negate the point's coordinates */ void negate() { fX = -fX; fY = -fY; } /** Returns a new point whose coordinates are the negative of the point's */ SkPoint operator-() const { SkPoint neg; neg.fX = -fX; neg.fY = -fY; return neg; } /** Add v's coordinates to the point's */ void operator+=(const SkPoint& v) { fX += v.fX; fY += v.fY; } /** Subtract v's coordinates from the point's */ void operator-=(const SkPoint& v) { fX -= v.fX; fY -= v.fY; } /** * Returns true if both X and Y are finite (not infinity or NaN) */ bool isFinite() const { #ifdef SK_SCALAR_IS_FLOAT SkScalar accum = 0; accum *= fX; accum *= fY; // accum is either NaN or it is finite (zero). SkASSERT(0 == accum || !(accum == accum)); // value==value will be true iff value is not NaN // TODO: is it faster to say !accum or accum==accum? return accum == accum; #else // use bit-or for speed, since we don't care about short-circuting the // tests, and we expect the common case will be that we need to check all. int isNaN = (SK_FixedNaN == fX) | (SK_FixedNaN == fX)); return !isNaN; #endif } /** * Returns true if the point's coordinates equal (x,y) */ bool equals(SkScalar x, SkScalar y) const { return fX == x && fY == y; } friend bool operator==(const SkPoint& a, const SkPoint& b) { return a.fX == b.fX && a.fY == b.fY; } friend bool operator!=(const SkPoint& a, const SkPoint& b) { return a.fX != b.fX || a.fY != b.fY; } /** Return true if this point and the given point are far enough apart such that a vector between them would be non-degenerate. WARNING: Unlike the deprecated version of equalsWithinTolerance(), this method does not use componentwise comparison. Instead, it uses a comparison designed to match judgments elsewhere regarding degeneracy ("points A and B are so close that the vector between them is essentially zero"). */ bool equalsWithinTolerance(const SkPoint& p) const { return !CanNormalize(fX - p.fX, fY - p.fY); } /** DEPRECATED: Return true if this and the given point are componentwise within tolerance "tol". WARNING: There is no guarantee that the result will reflect judgments elsewhere regarding degeneracy ("points A and B are so close that the vector between them is essentially zero"). */ bool equalsWithinTolerance(const SkPoint& p, SkScalar tol) const { return SkScalarNearlyZero(fX - p.fX, tol) && SkScalarNearlyZero(fY - p.fY, tol); } /** Returns a new point whose coordinates are the difference between a's and b's (a - b) */ friend SkPoint operator-(const SkPoint& a, const SkPoint& b) { SkPoint v; v.set(a.fX - b.fX, a.fY - b.fY); return v; } /** Returns a new point whose coordinates are the sum of a's and b's (a + b) */ friend SkPoint operator+(const SkPoint& a, const SkPoint& b) { SkPoint v; v.set(a.fX + b.fX, a.fY + b.fY); return v; } /** Returns the euclidian distance from (0,0) to (x,y) */ static SkScalar Length(SkScalar x, SkScalar y); /** Normalize pt, returning its previous length. If the prev length is too small (degenerate), return 0 and leave pt unchanged. This uses the same tolerance as CanNormalize. Note that this method may be significantly more expensive than the non-static normalize(), because it has to return the previous length of the point. If you don't need the previous length, call the non-static normalize() method instead. */ static SkScalar Normalize(SkPoint* pt); /** Returns the euclidian distance between a and b */ static SkScalar Distance(const SkPoint& a, const SkPoint& b) { return Length(a.fX - b.fX, a.fY - b.fY); } /** Returns the dot product of a and b, treating them as 2D vectors */ static SkScalar DotProduct(const SkPoint& a, const SkPoint& b) { return SkScalarMul(a.fX, b.fX) + SkScalarMul(a.fY, b.fY); } /** Returns the cross product of a and b, treating them as 2D vectors */ static SkScalar CrossProduct(const SkPoint& a, const SkPoint& b) { return SkScalarMul(a.fX, b.fY) - SkScalarMul(a.fY, b.fX); } SkScalar cross(const SkPoint& vec) const { return CrossProduct(*this, vec); } SkScalar dot(const SkPoint& vec) const { return DotProduct(*this, vec); } SkScalar lengthSqd() const { return DotProduct(*this, *this); } SkScalar distanceToSqd(const SkPoint& pt) const { SkScalar dx = fX - pt.fX; SkScalar dy = fY - pt.fY; return SkScalarMul(dx, dx) + SkScalarMul(dy, dy); } /** * The side of a point relative to a line. If the line is from a to b then * the values are consistent with the sign of (b-a) cross (pt-a) */ enum Side { kLeft_Side = -1, kOn_Side = 0, kRight_Side = 1 }; /** * Returns the squared distance to the infinite line between two pts. Also * optionally returns the side of the line that the pt falls on (looking * along line from a to b) */ SkScalar distanceToLineBetweenSqd(const SkPoint& a, const SkPoint& b, Side* side = NULL) const; /** * Returns the distance to the infinite line between two pts. Also * optionally returns the side of the line that the pt falls on (looking * along the line from a to b) */ SkScalar distanceToLineBetween(const SkPoint& a, const SkPoint& b, Side* side = NULL) const { return SkScalarSqrt(this->distanceToLineBetweenSqd(a, b, side)); } /** * Returns the squared distance to the line segment between pts a and b */ SkScalar distanceToLineSegmentBetweenSqd(const SkPoint& a, const SkPoint& b) const; /** * Returns the distance to the line segment between pts a and b. */ SkScalar distanceToLineSegmentBetween(const SkPoint& a, const SkPoint& b) const { return SkScalarSqrt(this->distanceToLineSegmentBetweenSqd(a, b)); } /** * Make this vector be orthogonal to vec. Looking down vec the * new vector will point in direction indicated by side (which * must be kLeft_Side or kRight_Side). */ void setOrthog(const SkPoint& vec, Side side = kLeft_Side) { // vec could be this SkScalar tmp = vec.fX; if (kRight_Side == side) { fX = -vec.fY; fY = tmp; } else { SkASSERT(kLeft_Side == side); fX = vec.fY; fY = -tmp; } } }; typedef SkPoint SkVector; #endif