/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef SkRRect_DEFINED #define SkRRect_DEFINED #include "SkRect.h" #include "SkPoint.h" class SkPath; // Path forward: // core work // add validate method (all radii positive, all radii sums < rect size, etc.) // add contains(SkRect&) - for clip stack // add contains(SkRRect&) - for clip stack // add heart rect computation (max rect inside RR) // add 9patch rect computation // add growToInclude(SkPath&) // analysis // use growToInclude to fit skp round rects & generate stats (RRs vs. real paths) // check on # of rectorus's the RRs could handle // rendering work // add entry points (clipRRect, drawRRect) - plumb down to SkDevice // update SkPath.addRRect() to take an SkRRect - only use quads // -- alternatively add addRRectToPath here // add GM and bench // clipping opt // update SkClipStack to perform logic with RRs // further out // add RR rendering shader to Ganesh (akin to cicle drawing code) // - only for simple RRs // detect and triangulate RRectorii rather than falling back to SW in Ganesh // /** \class SkRRect The SkRRect class represents a rounded rect with a potentially different radii for each corner. It does not have a constructor so must be initialized with one of the initialization functions (e.g., setEmpty, setRectRadii, etc.) This class is intended to roughly match CSS' border-*-*-radius capabilities. This means: If either of a corner's radii are 0 the corner will be square. Negative radii are not allowed (they are clamped to zero). If the corner curves overlap they will be proportionally reduced to fit. */ class SK_API SkRRect { public: /** * Enum to capture the various possible subtypes of RR. Accessed * by type(). The subtypes become progressively less restrictive. */ enum Type { // !< Internal indicator that the sub type must be computed. kUnknown_Type = -1, // !< The RR is empty kEmpty_Type, //!< The RR is actually a (non-empty) rect (i.e., at least one radius //!< at each corner is zero) kRect_Type, //!< The RR is actually a (non-empty) oval (i.e., all x radii are equal //!< and >= width/2 and all the y radii are equal and >= height/2 kOval_Type, //!< The RR is non-empty and all the x radii are equal & all y radii //!< are equal but it is not an oval (i.e., there are lines between //!< the curves) nor a rect (i.e., both radii are non-zero) kSimple_Type, //!< A fully general (non-empty) RR. Some of the x and/or y radii are //!< different from the others and there must be one corner where //!< both radii are non-zero. kComplex_Type, }; /** * Returns the RR's sub type. */ Type getType() const { SkDEBUGCODE(this->validate();) if (kUnknown_Type == fType) { this->computeType(); } SkASSERT(kUnknown_Type != fType); return fType; } Type type() const { return this->getType(); } inline bool isEmpty() const { return kEmpty_Type == this->getType(); } inline bool isRect() const { return kRect_Type == this->getType(); } inline bool isOval() const { return kOval_Type == this->getType(); } inline bool isSimple() const { return kSimple_Type == this->getType(); } inline bool isComplex() const { return kComplex_Type == this->getType(); } SkScalar width() const { return fRect.width(); } SkScalar height() const { return fRect.height(); } /** * Set this RR to the empty rectangle (0,0,0,0) with 0 x & y radii. */ void setEmpty() { fRect.setEmpty(); memset(fRadii, 0, sizeof(fRadii)); fType = kEmpty_Type; SkDEBUGCODE(this->validate();) } /** * Set this RR to match the supplied rect. All radii will be 0. */ void setRect(const SkRect& rect) { if (rect.isEmpty()) { this->setEmpty(); return; } fRect = rect; memset(fRadii, 0, sizeof(fRadii)); fType = kRect_Type; SkDEBUGCODE(this->validate();) } /** * Set this RR to match the supplied oval. All x radii will equal half the * width and all y radii will equal half the height. */ void setOval(const SkRect& oval) { if (oval.isEmpty()) { this->setEmpty(); return; } SkScalar xRad = SkScalarHalf(oval.width()); SkScalar yRad = SkScalarHalf(oval.height()); fRect = oval; for (int i = 0; i < 4; ++i) { fRadii[i].set(xRad, yRad); } fType = kOval_Type; SkDEBUGCODE(this->validate();) } /** * Initialize the RR with the same radii for all four corners. */ void setRectXY(const SkRect& rect, SkScalar xRad, SkScalar yRad); /** * Initialize the RR with potentially different radii for all four corners. */ void setRectRadii(const SkRect& rect, const SkVector radii[4]); // The radii are stored in UL, UR, LR, LL order. enum Corner { kUpperLeft_Corner, kUpperRight_Corner, kLowerRight_Corner, kLowerLeft_Corner }; const SkRect& rect() const { return fRect; } const SkVector& radii(Corner corner) const { return fRadii[corner]; } const SkRect& getBounds() const { return fRect; } /** * When a rrect is simple, all of its radii are equal. This returns one * of those radii. This call requires the rrect to be non-complex. */ const SkVector& getSimpleRadii() const { SkASSERT(!this->isComplex()); return fRadii[0]; } friend bool operator==(const SkRRect& a, const SkRRect& b) { return a.fRect == b.fRect && SkScalarsEqual(SkTCast<const SkScalar*>(a.fRadii), SkTCast<const SkScalar*>(b.fRadii), 8); } friend bool operator!=(const SkRRect& a, const SkRRect& b) { return a.fRect != b.fRect || !SkScalarsEqual(SkTCast<const SkScalar*>(a.fRadii), SkTCast<const SkScalar*>(b.fRadii), 8); } /** * Returns true if (p.fX,p.fY) is inside the RR, and the RR * is not empty. * * Contains treats the left and top differently from the right and bottom. * The left and top coordinates of the RR are themselves considered * to be inside, while the right and bottom are not. All the points on the * edges of the corners are considered to be inside. */ bool contains(const SkPoint& p) const { return contains(p.fX, p.fY); } /** * Returns true if (x,y) is inside the RR, and the RR * is not empty. * * Contains treats the left and top differently from the right and bottom. * The left and top coordinates of the RR are themselves considered * to be inside, while the right and bottom are not. All the points on the * edges of the corners are considered to be inside. */ bool contains(SkScalar x, SkScalar y) const; /** * Call inset on the bounds, and adjust the radii to reflect what happens * in stroking: If the corner is sharp (no curvature), leave it alone, * otherwise we grow/shrink the radii by the amount of the inset. If a * given radius becomes negative, it is pinned to 0. * * It is valid for dst == this. */ void inset(SkScalar dx, SkScalar dy, SkRRect* dst) const; void inset(SkScalar dx, SkScalar dy) { this->inset(dx, dy, this); } /** * Call outset on the bounds, and adjust the radii to reflect what happens * in stroking: If the corner is sharp (no curvature), leave it alone, * otherwise we grow/shrink the radii by the amount of the inset. If a * given radius becomes negative, it is pinned to 0. * * It is valid for dst == this. */ void outset(SkScalar dx, SkScalar dy, SkRRect* dst) const { this->inset(-dx, -dy, dst); } void outset(SkScalar dx, SkScalar dy) { this->inset(-dx, -dy, this); } SkDEBUGCODE(void validate() const;) enum { kSizeInMemory = 12 * sizeof(SkScalar) }; /** * Write the rrect into the specified buffer. This is guaranteed to always * write kSizeInMemory bytes, and that value is guaranteed to always be * a multiple of 4. Return kSizeInMemory. */ uint32_t writeToMemory(void* buffer) const; /** * Read the rrect from the specified buffer. This is guaranteed to always * read kSizeInMemory bytes, and that value is guaranteed to always be * a multiple of 4. Return kSizeInMemory. */ uint32_t readFromMemory(const void* buffer); private: SkRect fRect; // Radii order is UL, UR, LR, LL. Use Corner enum to index into fRadii[] SkVector fRadii[4]; mutable Type fType; // TODO: add padding so we can use memcpy for flattening and not copy // uninitialized data void computeType() const; // to access fRadii directly friend class SkPath; }; #endif