/* * Copyright 2009 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ //////////////////////////////////////////////////////////////////////////////// // This is an implementation of the triangulation algorithm described by Alain // Fournier and Delfin Montuno, in "Triangulating Simple Polygons and Equivalent // Problems", in the ACM Transactions on Graphics, vol. 3, no. 2, April 1984, // pp. 153-174. // // No new vertices are created in the triangulation: triangles are constructed // only from the points in the original polygon, so there is no possibility for // cracks to develop from finite precision arithmetic. //////////////////////////////////////////////////////////////////////////////// // TODO: // - RemoveDegenerateTrapezoids() was added to make the code robust, but it // unfortunately introduces T-vertices. Make it robust without T-vertices. // - It should be easy enough to detect whether the outer contour is right- or // left-handed by looking at the top vertex, which is available in the // pre-sort during trapezoidization. Use this information in angleIsConvex() // to allowed either handedness outer contour. In either case, though, holes // need to have the opposite orientation. // - SkTHeapSort was broken, so I wrote a bubble sort so that I could make other // things work. Use SkQSort() instead. // - The ActiveTrapezoid array does a linear search which is O(n) inefficient. // Use SkSearch to implement O(log n) binary search and insertion sort. // - There is no need to use SkTDArray for everything. Use SkAutoTMalloc for // everything else. #include "SkTDArray.h" #include "SkGeometry.h" #include "SkTSort.h" // This is used to prevent runaway code bugs, and can probably be removed after // the code has been proven robust. #define kMaxCount 1000 #define DEBUG #ifdef DEBUG //------------------------------------------------------------------------------ // Debugging support //------------------------------------------------------------------------------ #include <cstdio> #include <stdarg.h> static int gDebugLevel = 0; // This enables debug reporting. static void DebugPrintf(const char *format, ...) { if (gDebugLevel > 0) { va_list ap; va_start(ap, format); vprintf(format, ap); va_end(ap); } } static void FailureMessage(const char *format, ...) { if (1) { printf("FAILURE: "); va_list ap; va_start(ap, format); vprintf(format, ap); va_end(ap); } } #else // !DEBUG inline void DebugPrintf(const char *format, ...) {} inline void FailureMessage(const char *format, ...) {} #endif // DEBUG // Forward declaration. class Vertex; //------------------------------------------------------------------------------ // The Trapezoid (actually, up to two of them) is embedded into a Vertex, whose // point() provides the top of the Trapezoid, whereas the bottom, and the left // and right edges, are stored in the Trapezoid. The edges are represented by // their tail point; the head is the successive point modulo the number of // points in the polygon. Only the Y coordinate of the top and bottom are // relevant. //------------------------------------------------------------------------------ class Trapezoid { public: const Vertex* left() const { return fLeft; } const Vertex* right() const { return fRight; } const Vertex* bottom() const { return fBottom; } Vertex* left() { return fLeft; } Vertex* right() { return fRight; } Vertex* bottom() { return fBottom; } void setLeft(Vertex *left) { fLeft = left; } void setRight(Vertex *right) { fRight = right; } void setBottom(Vertex *bottom) { fBottom = bottom; } void nullify() { setBottom(NULL); } bool operator<(Trapezoid &t1) { return compare(t1) < 0; } bool operator>(Trapezoid &t1) { return compare(t1) > 0; } private: Vertex *fLeft, *fRight, *fBottom; // These return a number that is less than, equal to, or greater than zero // depending on whether the trapezoid or point is to the left, on, or to the // right. SkScalar compare(const Trapezoid &t1) const; SkScalar compare(const SkPoint &p) const; }; //------------------------------------------------------------------------------ // The ActiveTrapezoids are a sorted list containing the currently active // trapezoids, i.e. those that have the top, left, and right, but still need the // bottom. This could use some optimization, to reduce search time from O(n) to // O(log n). //------------------------------------------------------------------------------ class ActiveTrapezoids { public: ActiveTrapezoids() { fTrapezoids.setCount(0); } size_t count() const { return fTrapezoids.count(); } // Select an unused trapezoid from the Vertex vt, initialize it with the // left and right edges, and insert it into the sorted list. bool insertNewTrapezoid(Vertex *vt, Vertex *left, Vertex *right); // Remove the specified Trapezoids from the active list. void remove(Trapezoid *t); // Determine whether the given point lies within any active trapezoid, and // return a pointer to that Trapezoid. bool withinActiveTrapezoid(const SkPoint &pt, Trapezoid **tp); // Find an active trapezoid that contains the given edge. Trapezoid* getTrapezoidWithEdge(const Vertex *edge); private: // Insert the specified Trapezoid into the sorted list. void insert(Trapezoid *t); // The sorted list of active trapezoids. This is O(n), and would benefit // a 2-3 tree o achieve O(log n). SkTDArray<Trapezoid*> fTrapezoids; // Fournier suggests a 2-3 tree instead. }; //------------------------------------------------------------------------------ // The Vertex is used to communicate information between the various phases of // triangulation. //------------------------------------------------------------------------------ class Vertex { public: enum VertexType { MONOTONE, CONVEX, CONCAVE }; Trapezoid fTrap0; Trapezoid fTrap1; const SkPoint &point() const { return fPoint; } void setPoint(const SkPoint &point) { fPoint = point; } // The next and previous vertices around the polygon. Vertex *next() { return fNext; } Vertex *prev() { return fPrev; } const Vertex *next() const { return fNext; } const Vertex *prev() const { return fPrev; } void setNext(Vertex *next) { fNext = next; } void setPrev(Vertex *prev) { fPrev = prev; } void setDone(bool done) { fDone = done; } bool done() const { return fDone; } // Trapezoid accessors return non-null for any complete trapezoids. void trapezoids(Trapezoid **trap0, Trapezoid **trap1) { *trap0 = (fTrap0.bottom() != NULL) ? &fTrap0 : NULL; *trap1 = (fTrap1.bottom() != NULL) ? &fTrap1 : NULL; } // Eliminate a trapezoid. void nullifyTrapezoid() { if (fTrap1.bottom() != NULL) { DebugPrintf("Unexpected non-null second trapezoid.\n"); fTrap1.nullify(); return; } fTrap0.nullify(); } // Determine whether the edge specified by this Vertex shares the given top // and bottom. bool shareEdge(Vertex *top, Vertex *bottom); // Determines whether the angle specified by { prev, this, next } is convex. // Note that collinear is considered to be convex. bool angleIsConvex(); // Remove this Vertex from the { prev, next } linked list. void delink() { Vertex *p = prev(), *n = next(); p->setNext(n); n->setPrev(p); } // Return a number that is less than, equal to, or greater than zero // depending on whether the point is to the left, on, or to the right of the // edge that has this Vertex as a base. SkScalar compare(const SkPoint &pt) const; // Classify the vertex, and return its sorted edges. VertexType classify(Vertex **e0, Vertex **e1); // This helps determine unimonotonicity. Vertex *diagonal(); private: SkPoint fPoint; Vertex *fNext; Vertex *fPrev; bool fDone; }; bool Vertex::angleIsConvex() { SkPoint vPrev = prev()->point() - point(), vNext = next()->point() - point(); // TODO(turk): There might be overflow in fixed-point. return SkPoint::CrossProduct(vNext, vPrev) >= 0; } bool Vertex::shareEdge(Vertex *top, Vertex *bottom) { return (((this == top) && (this->next() == bottom)) || ((this == bottom) && (this->next() == top))); } SkScalar Vertex::compare(const SkPoint &pt) const { SkPoint ve = next()->point() - point(), vp = pt - point(); SkScalar d; if (ve.fY == 0) { // Return twice the distance to the center of the horizontal edge. d = ve.fX + pt.fX - next()->point().fX; } else { // Return the distance to the edge, scaled by the edge length. d = SkPoint::CrossProduct(ve, vp); if (ve.fY > 0) d = -d; } return d; } SkScalar Trapezoid::compare(const SkPoint &pt) const { SkScalar d = left()->compare(pt); if (d <= 0) return d; // Left of the left edge. d = right()->compare(pt); if (d >= 0) return d; // Right of the right edge. return 0; // Somewhere between the left and the right edges. } SkScalar Trapezoid::compare(const Trapezoid &t1) const { #if 1 SkScalar d = left()->compare(t1.left()->point()); if (d == 0) d = right()->compare(t1.right()->point()); return d; #else SkScalar dl = left()->compare( t1.left()->point()), dr = right()->compare(t1.right()->point()); if (dl < 0 && dr < 0) return dr; if (dl > 0 && dr > 0) return dl; return 0; #endif } Trapezoid* ActiveTrapezoids::getTrapezoidWithEdge(const Vertex *edge) { DebugPrintf("Entering getTrapezoidWithEdge(): looking through %d\n", fTrapezoids.count()); DebugPrintf("trying to find %p: ", edge); Trapezoid **tp; for (tp = fTrapezoids.begin(); tp < fTrapezoids.end(); ++tp) { SkASSERT(tp != NULL); SkASSERT(*tp != NULL); DebugPrintf("%p and %p, ", (**tp).left(), (**tp).right()); if ((**tp).left() == edge || (**tp).right() == edge) { DebugPrintf("\ngetTrapezoidWithEdge found the trapezoid\n"); return *tp; } } DebugPrintf("getTrapezoidWithEdge found no trapezoid\n"); return NULL; } bool ActiveTrapezoids::insertNewTrapezoid(Vertex *vt, Vertex *left, Vertex *right) { DebugPrintf("Inserting a trapezoid..."); if (vt->fTrap0.left() == NULL && vt->fTrap0.right() == NULL) { vt->fTrap0.setLeft(left); vt->fTrap0.setRight(right); insert(&vt->fTrap0); } else if (vt->fTrap1.left() == NULL && vt->fTrap1.right() == NULL) { DebugPrintf("a second one..."); vt->fTrap1.setLeft(left); vt->fTrap1.setRight(right); if (vt->fTrap1 < vt->fTrap0) { // Keep trapezoids sorted. remove(&vt->fTrap0); Trapezoid t = vt->fTrap0; vt->fTrap0 = vt->fTrap1; vt->fTrap1 = t; insert(&vt->fTrap0); } insert(&vt->fTrap1); } else { FailureMessage("More than 2 trapezoids requested for a vertex\n"); return false; } DebugPrintf(" done. %d incomplete trapezoids\n", fTrapezoids.count()); return true; } void ActiveTrapezoids::insert(Trapezoid *t) { Trapezoid **tp; for (tp = fTrapezoids.begin(); tp < fTrapezoids.end(); ++tp) if (**tp > *t) break; fTrapezoids.insert(tp - fTrapezoids.begin(), 1, &t); // SHOULD VERIFY THAT ALL TRAPEZOIDS ARE PROPERLY SORTED } void ActiveTrapezoids::remove(Trapezoid *t) { DebugPrintf("Removing a trapezoid..."); for (Trapezoid **tp = fTrapezoids.begin(); tp < fTrapezoids.end(); ++tp) { if (*tp == t) { fTrapezoids.remove(tp - fTrapezoids.begin()); DebugPrintf(" done.\n"); return; } } DebugPrintf(" Arghh! Panic!\n"); SkASSERT(t == 0); // Cannot find t in active trapezoid list. } bool ActiveTrapezoids::withinActiveTrapezoid(const SkPoint &pt, Trapezoid **trap) { DebugPrintf("Entering withinActiveTrapezoid()\n"); // This is where a good search data structure would be helpful. Trapezoid **t; for (t = fTrapezoids.begin(); t < fTrapezoids.end(); ++t) { if ((**t).left()->compare(pt) <= 0) { // The point is to the left of the left edge of this trapezoid. DebugPrintf("withinActiveTrapezoid: Before a trapezoid\n"); *trap = *t; // Return the place where a new trapezoid would go. // We have a bug with the sorting -- look through everything. continue; // return false; // Outside all trapezoids, since they are sorted. } // The point is to the right of the left edge of this trapezoid. if ((**t).right()->compare(pt) < 0) { // The point is to the left of the right edge. DebugPrintf("withinActiveTrapezoid: Within an Active Trapezoid\n"); *trap = *t; return true; } } // The point is to the right of all trapezoids. DebugPrintf("withinActiveTrapezoid: After all trapezoids\n"); *trap = NULL; return false; } Vertex* Vertex::diagonal() { Vertex *diag = NULL; if (fTrap0.bottom() != NULL) { if (!fTrap0.left() ->shareEdge(this, fTrap0.bottom()) && !fTrap0.right()->shareEdge(this, fTrap0.bottom()) ) { diag = fTrap0.bottom(); fTrap0 = fTrap1; fTrap1.nullify(); } else if (fTrap1.bottom() != NULL && !fTrap1.left() ->shareEdge(this, fTrap1.bottom()) && !fTrap1.right()->shareEdge(this, fTrap1.bottom()) ) { diag = fTrap1.bottom(); fTrap1.nullify(); } } return diag; } // We use this to sort the edges vertically for a scan-conversion type of // operation. class VertexPtr { public: Vertex *vt; }; bool operator<(VertexPtr &v0, VertexPtr &v1) { // DebugPrintf("< %p %p\n", &v0, &v1); if (v0.vt->point().fY < v1.vt->point().fY) return true; if (v0.vt->point().fY > v1.vt->point().fY) return false; if (v0.vt->point().fX < v1.vt->point().fX) return true; else return false; } bool operator>(VertexPtr &v0, VertexPtr &v1) { // DebugPrintf("> %p %p\n", &v0, &v1); if (v0.vt->point().fY > v1.vt->point().fY) return true; if (v0.vt->point().fY < v1.vt->point().fY) return false; if (v0.vt->point().fX > v1.vt->point().fX) return true; else return false; } static void SetVertexPoints(size_t numPts, const SkPoint *pt, Vertex *vt) { for (; numPts-- != 0; ++pt, ++vt) vt->setPoint(*pt); } static void InitializeVertexTopology(size_t numPts, Vertex *v1) { Vertex *v0 = v1 + numPts - 1, *v_1 = v0 - 1; for (; numPts-- != 0; v_1 = v0, v0 = v1++) { v0->setPrev(v_1); v0->setNext(v1); } } Vertex::VertexType Vertex::classify(Vertex **e0, Vertex **e1) { VertexType type; SkPoint vPrev, vNext; vPrev.fX = prev()->point().fX - point().fX; vPrev.fY = prev()->point().fY - point().fY; vNext.fX = next()->point().fX - point().fX; vNext.fY = next()->point().fY - point().fY; // This can probably be simplified, but there are enough potential bugs, // we will leave it expanded until all cases are tested appropriately. if (vPrev.fY < 0) { if (vNext.fY > 0) { // Prev comes from above, Next goes below. type = MONOTONE; *e0 = prev(); *e1 = this; } else if (vNext.fY < 0) { // The are both above: sort so that e0 is on the left. type = CONCAVE; if (SkPoint::CrossProduct(vPrev, vNext) <= 0) { *e0 = this; *e1 = prev(); } else { *e0 = prev(); *e1 = this; } } else { DebugPrintf("### py < 0, ny = 0\n"); if (vNext.fX < 0) { type = CONCAVE; *e0 = this; // flat to the left *e1 = prev(); // concave on the right } else { type = CONCAVE; *e0 = prev(); // concave to the left *e1 = this; // flat to the right } } } else if (vPrev.fY > 0) { if (vNext.fY < 0) { // Next comes from above, Prev goes below. type = MONOTONE; *e0 = this; *e1 = prev(); } else if (vNext.fY > 0) { // They are both below: sort so that e0 is on the left. type = CONVEX; if (SkPoint::CrossProduct(vPrev, vNext) <= 0) { *e0 = prev(); *e1 = this; } else { *e0 = this; *e1 = prev(); } } else { DebugPrintf("### py > 0, ny = 0\n"); if (vNext.fX < 0) { type = MONOTONE; *e0 = this; // flat to the left *e1 = prev(); // convex on the right - try monotone first } else { type = MONOTONE; *e0 = prev(); // convex to the left - try monotone first *e1 = this; // flat to the right } } } else { // vPrev.fY == 0 if (vNext.fY < 0) { DebugPrintf("### py = 0, ny < 0\n"); if (vPrev.fX < 0) { type = CONCAVE; *e0 = prev(); // flat to the left *e1 = this; // concave on the right } else { type = CONCAVE; *e0 = this; // concave on the left - defer *e1 = prev(); // flat to the right } } else if (vNext.fY > 0) { DebugPrintf("### py = 0, ny > 0\n"); if (vPrev.fX < 0) { type = MONOTONE; *e0 = prev(); // flat to the left *e1 = this; // convex on the right - try monotone first } else { type = MONOTONE; *e0 = this; // convex to the left - try monotone first *e1 = prev(); // flat to the right } } else { DebugPrintf("### py = 0, ny = 0\n"); // First we try concave, then monotone, then convex. if (vPrev.fX <= vNext.fX) { type = CONCAVE; *e0 = prev(); // flat to the left *e1 = this; // flat to the right } else { type = CONCAVE; *e0 = this; // flat to the left *e1 = prev(); // flat to the right } } } return type; } #ifdef DEBUG static const char* GetVertexTypeString(Vertex::VertexType type) { const char *typeStr = NULL; switch (type) { case Vertex::MONOTONE: typeStr = "MONOTONE"; break; case Vertex::CONCAVE: typeStr = "CONCAVE"; break; case Vertex::CONVEX: typeStr = "CONVEX"; break; } return typeStr; } static void PrintVertices(size_t numPts, Vertex *vt) { DebugPrintf("\nVertices:\n"); for (size_t i = 0; i < numPts; i++) { Vertex *e0, *e1; Vertex::VertexType type = vt[i].classify(&e0, &e1); DebugPrintf("%2d: (%.7g, %.7g), prev(%d), next(%d), " "type(%s), left(%d), right(%d)", i, vt[i].point().fX, vt[i].point().fY, vt[i].prev() - vt, vt[i].next() - vt, GetVertexTypeString(type), e0 - vt, e1 - vt); Trapezoid *trap[2]; vt[i].trapezoids(trap, trap+1); for (int j = 0; j < 2; ++j) { if (trap[j] != NULL) { DebugPrintf(", trap(L=%d, R=%d, B=%d)", trap[j]->left() - vt, trap[j]->right() - vt, trap[j]->bottom() - vt); } } DebugPrintf("\n"); } } static void PrintVertexPtrs(size_t numPts, VertexPtr *vp, Vertex *vtBase) { DebugPrintf("\nSorted Vertices:\n"); for (size_t i = 0; i < numPts; i++) { Vertex *e0, *e1; Vertex *vt = vp[i].vt; Vertex::VertexType type = vt->classify(&e0, &e1); DebugPrintf("%2d: %2d: (%.7g, %.7g), prev(%d), next(%d), " "type(%s), left(%d), right(%d)", i, vt - vtBase, vt->point().fX, vt->point().fY, vt->prev() - vtBase, vt->next() - vtBase, GetVertexTypeString(type), e0 - vtBase, e1 - vtBase); Trapezoid *trap[2]; vt->trapezoids(trap, trap+1); for (int j = 0; j < 2; ++j) { if (trap[j] != NULL) { DebugPrintf(", trap(L=%d, R=%d, B=%d)", trap[j]->left() - vtBase, trap[j]->right() - vtBase, trap[j]->bottom() - vtBase); } } DebugPrintf("\n"); } } #else // !DEBUG inline void PrintVertices(size_t numPts, Vertex *vt) {} inline void PrintVertexPtrs(size_t numPts, VertexPtr *vp, Vertex *vtBase) {} #endif // !DEBUG // SkTHeapSort is broken, so we use a bubble sort in the meantime. template <typename T> void BubbleSort(T *array, size_t count) { bool sorted; size_t count_1 = count - 1; do { sorted = true; for (size_t i = 0; i < count_1; ++i) { if (array[i + 1] < array[i]) { T t = array[i]; array[i] = array[i + 1]; array[i + 1] = t; sorted = false; } } } while (!sorted); } // Remove zero-height trapezoids. static void RemoveDegenerateTrapezoids(size_t numVt, Vertex *vt) { for (; numVt-- != 0; vt++) { Trapezoid *traps[2]; vt->trapezoids(traps, traps+1); if (traps[1] != NULL && vt->point().fY >= traps[1]->bottom()->point().fY) { traps[1]->nullify(); traps[1] = NULL; } if (traps[0] != NULL && vt->point().fY >= traps[0]->bottom()->point().fY) { if (traps[1] != NULL) { *traps[0] = *traps[1]; traps[1]->nullify(); } else { traps[0]->nullify(); } } } } // Enhance the polygon with trapezoids. bool ConvertPointsToVertices(size_t numPts, const SkPoint *pts, Vertex *vta) { DebugPrintf("ConvertPointsToVertices()\n"); // Clear everything. DebugPrintf("Zeroing vertices\n"); sk_bzero(vta, numPts * sizeof(*vta)); // Initialize vertices. DebugPrintf("Initializing vertices\n"); SetVertexPoints(numPts, pts, vta); InitializeVertexTopology(numPts, vta); PrintVertices(numPts, vta); SkTDArray<VertexPtr> vtptr; vtptr.setCount(numPts); for (int i = numPts; i-- != 0;) vtptr[i].vt = vta + i; PrintVertexPtrs(vtptr.count(), vtptr.begin(), vta); DebugPrintf("Sorting vertrap ptr array [%d] %p %p\n", vtptr.count(), &vtptr[0], &vtptr[vtptr.count() - 1] ); // SkTHeapSort(vtptr.begin(), vtptr.count()); BubbleSort(vtptr.begin(), vtptr.count()); DebugPrintf("Done sorting\n"); PrintVertexPtrs(vtptr.count(), vtptr.begin(), vta); DebugPrintf("Traversing sorted vertrap ptrs\n"); ActiveTrapezoids incompleteTrapezoids; for (VertexPtr *vtpp = vtptr.begin(); vtpp < vtptr.end(); ++vtpp) { DebugPrintf("%d: sorted vertrap %d\n", vtpp - vtptr.begin(), vtpp->vt - vta); Vertex *vt = vtpp->vt; Vertex *e0, *e1; Trapezoid *t; switch (vt->classify(&e0, &e1)) { case Vertex::MONOTONE: monotone: DebugPrintf("MONOTONE %d %d\n", e0 - vta, e1 - vta); // We should find one edge. t = incompleteTrapezoids.getTrapezoidWithEdge(e0); if (t == NULL) { // One of the edges is flat. DebugPrintf("Monotone: cannot find a trapezoid with e0: " "trying convex\n"); goto convex; } t->setBottom(vt); // This trapezoid is now complete. incompleteTrapezoids.remove(t); if (e0 == t->left()) // Replace the left edge. incompleteTrapezoids.insertNewTrapezoid(vt, e1, t->right()); else // Replace the right edge. incompleteTrapezoids.insertNewTrapezoid(vt, t->left(), e1); break; case Vertex::CONVEX: // Start of a new trapezoid. convex: // We don't expect to find any edges. DebugPrintf("CONVEX %d %d\n", e0 - vta, e1 - vta); if (incompleteTrapezoids.withinActiveTrapezoid( vt->point(), &t)) { // Complete trapezoid. SkASSERT(t != NULL); t->setBottom(vt); incompleteTrapezoids.remove(t); // Introduce two new trapezoids. incompleteTrapezoids.insertNewTrapezoid(vt, t->left(), e0); incompleteTrapezoids.insertNewTrapezoid(vt, e1, t->right()); } else { // Insert a new trapezoid. incompleteTrapezoids.insertNewTrapezoid(vt, e0, e1); } break; case Vertex::CONCAVE: // End of a trapezoid. DebugPrintf("CONCAVE %d %d\n", e0 - vta, e1 - vta); // We should find two edges. t = incompleteTrapezoids.getTrapezoidWithEdge(e0); if (t == NULL) { DebugPrintf("Concave: cannot find a trapezoid with e0: " " trying monotone\n"); goto monotone; } SkASSERT(t != NULL); if (e0 == t->left() && e1 == t->right()) { DebugPrintf( "Concave edges belong to the same trapezoid.\n"); // Edges belong to the same trapezoid. // Complete trapezoid & transfer it from the active list. t->setBottom(vt); incompleteTrapezoids.remove(t); } else { // Edges belong to different trapezoids DebugPrintf( "Concave edges belong to different trapezoids.\n"); // Complete left and right trapezoids. Trapezoid *s = incompleteTrapezoids.getTrapezoidWithEdge( e1); if (s == NULL) { DebugPrintf( "Concave: cannot find a trapezoid with e1: " " trying monotone\n"); goto monotone; } t->setBottom(vt); s->setBottom(vt); incompleteTrapezoids.remove(t); incompleteTrapezoids.remove(s); // Merge the two trapezoids into one below this vertex. incompleteTrapezoids.insertNewTrapezoid(vt, t->left(), s->right()); } break; } } RemoveDegenerateTrapezoids(numPts, vta); DebugPrintf("Done making trapezoids\n"); PrintVertexPtrs(vtptr.count(), vtptr.begin(), vta); size_t k = incompleteTrapezoids.count(); if (k > 0) { FailureMessage("%d incomplete trapezoids\n", k); return false; } return true; } inline void appendTriangleAtVertex(const Vertex *v, SkTDArray<SkPoint> *triangles) { SkPoint *p = triangles->append(3); p[0] = v->prev()->point(); p[1] = v->point(); p[2] = v->next()->point(); DebugPrintf( "Appending triangle: { (%.7g, %.7g), (%.7g, %.7g), (%.7g, %.7g) }\n", p[0].fX, p[0].fY, p[1].fX, p[1].fY, p[2].fX, p[2].fY ); } static size_t CountVertices(const Vertex *first, const Vertex *last) { DebugPrintf("Counting vertices: "); size_t count = 1; for (; first != last; first = first->next()) { ++count; SkASSERT(count <= kMaxCount); if (count >= kMaxCount) { FailureMessage("Vertices do not seem to be in a linked chain\n"); break; } } return count; } bool operator<(const SkPoint &p0, const SkPoint &p1) { if (p0.fY < p1.fY) return true; if (p0.fY > p1.fY) return false; if (p0.fX < p1.fX) return true; else return false; } static void PrintLinkedVertices(size_t n, Vertex *vertices) { DebugPrintf("%d vertices:\n", n); Vertex *v; for (v = vertices; n-- != 0; v = v->next()) DebugPrintf(" (%.7g, %.7g)\n", v->point().fX, v->point().fY); if (v != vertices) FailureMessage("Vertices are not in a linked chain\n"); } // Triangulate an unimonotone chain. bool TriangulateMonotone(Vertex *first, Vertex *last, SkTDArray<SkPoint> *triangles) { DebugPrintf("TriangulateMonotone()\n"); size_t numVertices = CountVertices(first, last); if (numVertices == kMaxCount) { FailureMessage("Way too many vertices: %d:\n", numVertices); PrintLinkedVertices(numVertices, first); return false; } Vertex *start = first; // First find the point with the smallest Y. DebugPrintf("TriangulateMonotone: finding bottom\n"); int count = kMaxCount; // Maximum number of vertices. for (Vertex *v = first->next(); v != first && count-- > 0; v = v->next()) if (v->point() < start->point()) start = v; if (count <= 0) { FailureMessage("TriangulateMonotone() was given disjoint chain\n"); return false; // Something went wrong. } // Start at the far end of the long edge. if (start->prev()->point() < start->next()->point()) start = start->next(); Vertex *current = start->next(); while (numVertices >= 3) { if (current->angleIsConvex()) { DebugPrintf("Angle %p is convex\n", current); // Print the vertices PrintLinkedVertices(numVertices, start); appendTriangleAtVertex(current, triangles); if (triangles->count() > kMaxCount * 3) { FailureMessage("An extraordinarily large number of triangles " "were generated\n"); return false; } Vertex *save = current->prev(); current->delink(); current = (save == start || save == start->prev()) ? start->next() : save; --numVertices; } else { if (numVertices == 3) { FailureMessage("Convexity error in TriangulateMonotone()\n"); appendTriangleAtVertex(current, triangles); return false; } DebugPrintf("Angle %p is concave\n", current); current = current->next(); } } return true; } // Split the polygon into sets of unimonotone chains, and eventually call // TriangulateMonotone() to convert them into triangles. bool Triangulate(Vertex *first, Vertex *last, SkTDArray<SkPoint> *triangles) { DebugPrintf("Triangulate()\n"); Vertex *currentVertex = first; while (!currentVertex->done()) { currentVertex->setDone(true); Vertex *bottomVertex = currentVertex->diagonal(); if (bottomVertex != NULL) { Vertex *saveNext = currentVertex->next(); Vertex *savePrev = bottomVertex->prev(); currentVertex->setNext(bottomVertex); bottomVertex->setPrev(currentVertex); currentVertex->nullifyTrapezoid(); bool success = Triangulate(bottomVertex, currentVertex, triangles); currentVertex->setDone(false); bottomVertex->setDone(false); currentVertex->setNext(saveNext); bottomVertex->setPrev(savePrev); bottomVertex->setNext(currentVertex); currentVertex->setPrev(bottomVertex); return Triangulate(currentVertex, bottomVertex, triangles) && success; } else { currentVertex = currentVertex->next(); } } return TriangulateMonotone(first, last, triangles); } bool SkConcaveToTriangles(size_t numPts, const SkPoint pts[], SkTDArray<SkPoint> *triangles) { DebugPrintf("SkConcaveToTriangles()\n"); SkTDArray<Vertex> vertices; vertices.setCount(numPts); if (!ConvertPointsToVertices(numPts, pts, vertices.begin())) return false; triangles->setReserve(numPts); triangles->setCount(0); return Triangulate(vertices.begin(), vertices.end() - 1, triangles); }