/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "SkString.h" #include "SkFixed.h" #include "SkThread.h" #include "SkUtils.h" #include <stdarg.h> #include <stdio.h> // number of bytes (on the stack) to receive the printf result static const size_t kBufferSize = 256; #ifdef SK_BUILD_FOR_WIN #define VSNPRINTF(buffer, size, format, args) \ _vsnprintf_s(buffer, size, _TRUNCATE, format, args) #define SNPRINTF _snprintf #else #define VSNPRINTF vsnprintf #define SNPRINTF snprintf #endif #define ARGS_TO_BUFFER(format, buffer, size) \ do { \ va_list args; \ va_start(args, format); \ VSNPRINTF(buffer, size, format, args); \ va_end(args); \ } while (0) /////////////////////////////////////////////////////////////////////////////// bool SkStrStartsWith(const char string[], const char prefix[]) { SkASSERT(string); SkASSERT(prefix); return !strncmp(string, prefix, strlen(prefix)); } bool SkStrEndsWith(const char string[], const char suffix[]) { SkASSERT(string); SkASSERT(suffix); size_t strLen = strlen(string); size_t suffixLen = strlen(suffix); return strLen >= suffixLen && !strncmp(string + strLen - suffixLen, suffix, suffixLen); } int SkStrStartsWithOneOf(const char string[], const char prefixes[]) { int index = 0; do { const char* limit = strchr(prefixes, '\0'); if (!strncmp(string, prefixes, limit - prefixes)) { return index; } prefixes = limit + 1; index++; } while (prefixes[0]); return -1; } char* SkStrAppendS32(char string[], int32_t dec) { SkDEBUGCODE(char* start = string;) char buffer[SkStrAppendS32_MaxSize]; char* p = buffer + sizeof(buffer); bool neg = false; if (dec < 0) { neg = true; dec = -dec; } do { *--p = SkToU8('0' + dec % 10); dec /= 10; } while (dec != 0); if (neg) { *--p = '-'; } SkASSERT(p >= buffer); char* stop = buffer + sizeof(buffer); while (p < stop) { *string++ = *p++; } SkASSERT(string - start <= SkStrAppendS32_MaxSize); return string; } char* SkStrAppendS64(char string[], int64_t dec, int minDigits) { SkDEBUGCODE(char* start = string;) char buffer[SkStrAppendS64_MaxSize]; char* p = buffer + sizeof(buffer); bool neg = false; if (dec < 0) { neg = true; dec = -dec; } do { *--p = SkToU8('0' + dec % 10); dec /= 10; minDigits--; } while (dec != 0); while (minDigits > 0) { *--p = '0'; minDigits--; } if (neg) { *--p = '-'; } SkASSERT(p >= buffer); size_t cp_len = buffer + sizeof(buffer) - p; memcpy(string, p, cp_len); string += cp_len; SkASSERT(string - start <= SkStrAppendS64_MaxSize); return string; } #ifdef SK_CAN_USE_FLOAT char* SkStrAppendFloat(char string[], float value) { // since floats have at most 8 significant digits, we limit our %g to that. static const char gFormat[] = "%.8g"; // make it 1 larger for the terminating 0 char buffer[SkStrAppendScalar_MaxSize + 1]; int len = SNPRINTF(buffer, sizeof(buffer), gFormat, value); memcpy(string, buffer, len); SkASSERT(len <= SkStrAppendScalar_MaxSize); return string + len; } #endif char* SkStrAppendFixed(char string[], SkFixed x) { SkDEBUGCODE(char* start = string;) if (x < 0) { *string++ = '-'; x = -x; } unsigned frac = x & 0xFFFF; x >>= 16; if (frac == 0xFFFF) { // need to do this to "round up", since 65535/65536 is closer to 1 than to .9999 x += 1; frac = 0; } string = SkStrAppendS32(string, x); // now handle the fractional part (if any) if (frac) { static const uint16_t gTens[] = { 1000, 100, 10, 1 }; const uint16_t* tens = gTens; x = SkFixedRound(frac * 10000); SkASSERT(x <= 10000); if (x == 10000) { x -= 1; } *string++ = '.'; do { unsigned powerOfTen = *tens++; *string++ = SkToU8('0' + x / powerOfTen); x %= powerOfTen; } while (x != 0); } SkASSERT(string - start <= SkStrAppendScalar_MaxSize); return string; } /////////////////////////////////////////////////////////////////////////////// // the 3 values are [length] [refcnt] [terminating zero data] const SkString::Rec SkString::gEmptyRec = { 0, 0, 0 }; #define SizeOfRec() (gEmptyRec.data() - (const char*)&gEmptyRec) SkString::Rec* SkString::AllocRec(const char text[], size_t len) { Rec* rec; if (0 == len) { rec = const_cast<Rec*>(&gEmptyRec); } else { // add 1 for terminating 0, then align4 so we can have some slop when growing the string rec = (Rec*)sk_malloc_throw(SizeOfRec() + SkAlign4(len + 1)); rec->fLength = len; rec->fRefCnt = 1; if (text) { memcpy(rec->data(), text, len); } rec->data()[len] = 0; } return rec; } SkString::Rec* SkString::RefRec(Rec* src) { if (src != &gEmptyRec) { sk_atomic_inc(&src->fRefCnt); } return src; } #ifdef SK_DEBUG void SkString::validate() const { // make sure know one has written over our global SkASSERT(0 == gEmptyRec.fLength); SkASSERT(0 == gEmptyRec.fRefCnt); SkASSERT(0 == gEmptyRec.data()[0]); if (fRec != &gEmptyRec) { SkASSERT(fRec->fLength > 0); SkASSERT(fRec->fRefCnt > 0); SkASSERT(0 == fRec->data()[fRec->fLength]); } SkASSERT(fStr == c_str()); } #endif /////////////////////////////////////////////////////////////////////////////// SkString::SkString() : fRec(const_cast<Rec*>(&gEmptyRec)) { #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::SkString(size_t len) { SkASSERT(SkToU16(len) == len); // can't handle larger than 64K fRec = AllocRec(NULL, (U16CPU)len); #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::SkString(const char text[]) { size_t len = text ? strlen(text) : 0; fRec = AllocRec(text, (U16CPU)len); #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::SkString(const char text[], size_t len) { fRec = AllocRec(text, (U16CPU)len); #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::SkString(const SkString& src) { src.validate(); fRec = RefRec(src.fRec); #ifdef SK_DEBUG fStr = fRec->data(); #endif } SkString::~SkString() { this->validate(); if (fRec->fLength) { SkASSERT(fRec->fRefCnt > 0); if (sk_atomic_dec(&fRec->fRefCnt) == 1) { sk_free(fRec); } } } bool SkString::equals(const SkString& src) const { return fRec == src.fRec || this->equals(src.c_str(), src.size()); } bool SkString::equals(const char text[]) const { return this->equals(text, text ? strlen(text) : 0); } bool SkString::equals(const char text[], size_t len) const { SkASSERT(len == 0 || text != NULL); return fRec->fLength == len && !memcmp(fRec->data(), text, len); } SkString& SkString::operator=(const SkString& src) { this->validate(); if (fRec != src.fRec) { SkString tmp(src); this->swap(tmp); } return *this; } SkString& SkString::operator=(const char text[]) { this->validate(); SkString tmp(text); this->swap(tmp); return *this; } void SkString::reset() { this->validate(); if (fRec->fLength) { SkASSERT(fRec->fRefCnt > 0); if (sk_atomic_dec(&fRec->fRefCnt) == 1) { sk_free(fRec); } } fRec = const_cast<Rec*>(&gEmptyRec); #ifdef SK_DEBUG fStr = fRec->data(); #endif } char* SkString::writable_str() { this->validate(); if (fRec->fLength) { if (fRec->fRefCnt > 1) { Rec* rec = AllocRec(fRec->data(), fRec->fLength); if (sk_atomic_dec(&fRec->fRefCnt) == 1) { // In this case after our check of fRecCnt > 1, we suddenly // did become the only owner, so now we have two copies of the // data (fRec and rec), so we need to delete one of them. sk_free(fRec); } fRec = rec; #ifdef SK_DEBUG fStr = fRec->data(); #endif } } return fRec->data(); } void SkString::set(const char text[]) { this->set(text, text ? strlen(text) : 0); } void SkString::set(const char text[], size_t len) { if (0 == len) { this->reset(); } else if (1 == fRec->fRefCnt && len <= fRec->fLength) { // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1))? // just use less of the buffer without allocating a smaller one char* p = this->writable_str(); if (text) { memcpy(p, text, len); } p[len] = 0; fRec->fLength = len; } else if (1 == fRec->fRefCnt && (fRec->fLength >> 2) == (len >> 2)) { // we have spare room in the current allocation, so don't alloc a larger one char* p = this->writable_str(); if (text) { memcpy(p, text, len); } p[len] = 0; fRec->fLength = len; } else { SkString tmp(text, len); this->swap(tmp); } } void SkString::setUTF16(const uint16_t src[]) { int count = 0; while (src[count]) { count += 1; } setUTF16(src, count); } void SkString::setUTF16(const uint16_t src[], size_t count) { if (0 == count) { this->reset(); } else if (count <= fRec->fLength) { // should we resize if len <<<< fLength, to save RAM? (e.g. len < (fLength>>1)) if (count < fRec->fLength) { this->resize(count); } char* p = this->writable_str(); for (size_t i = 0; i < count; i++) { p[i] = SkToU8(src[i]); } p[count] = 0; } else { SkString tmp(count); // puts a null terminator at the end of the string char* p = tmp.writable_str(); for (size_t i = 0; i < count; i++) { p[i] = SkToU8(src[i]); } this->swap(tmp); } } void SkString::insert(size_t offset, const char text[]) { this->insert(offset, text, text ? strlen(text) : 0); } void SkString::insert(size_t offset, const char text[], size_t len) { if (len) { size_t length = fRec->fLength; if (offset > length) { offset = length; } /* If we're the only owner, and we have room in our allocation for the insert, do it in place, rather than allocating a new buffer. To know we have room, compare the allocated sizes beforeAlloc = SkAlign4(length + 1) afterAlloc = SkAligh4(length + 1 + len) but SkAlign4(x) is (x + 3) >> 2 << 2 which is equivalent for testing to (length + 1 + 3) >> 2 == (length + 1 + 3 + len) >> 2 and we can then eliminate the +1+3 since that doesn't affec the answer */ if (1 == fRec->fRefCnt && (length >> 2) == ((length + len) >> 2)) { char* dst = this->writable_str(); if (offset < length) { memmove(dst + offset + len, dst + offset, length - offset); } memcpy(dst + offset, text, len); dst[length + len] = 0; fRec->fLength = length + len; } else { /* Seems we should use realloc here, since that is safe if it fails (we have the original data), and might be faster than alloc/copy/free. */ SkString tmp(fRec->fLength + len); char* dst = tmp.writable_str(); if (offset > 0) { memcpy(dst, fRec->data(), offset); } memcpy(dst + offset, text, len); if (offset < fRec->fLength) { memcpy(dst + offset + len, fRec->data() + offset, fRec->fLength - offset); } this->swap(tmp); } } } void SkString::insertUnichar(size_t offset, SkUnichar uni) { char buffer[kMaxBytesInUTF8Sequence]; size_t len = SkUTF8_FromUnichar(uni, buffer); if (len) { this->insert(offset, buffer, len); } } void SkString::insertS32(size_t offset, int32_t dec) { char buffer[SkStrAppendS32_MaxSize]; char* stop = SkStrAppendS32(buffer, dec); this->insert(offset, buffer, stop - buffer); } void SkString::insertS64(size_t offset, int64_t dec, int minDigits) { char buffer[SkStrAppendS64_MaxSize]; char* stop = SkStrAppendS64(buffer, dec, minDigits); this->insert(offset, buffer, stop - buffer); } void SkString::insertHex(size_t offset, uint32_t hex, int minDigits) { minDigits = SkPin32(minDigits, 0, 8); static const char gHex[] = "0123456789ABCDEF"; char buffer[8]; char* p = buffer + sizeof(buffer); do { *--p = gHex[hex & 0xF]; hex >>= 4; minDigits -= 1; } while (hex != 0); while (--minDigits >= 0) { *--p = '0'; } SkASSERT(p >= buffer); this->insert(offset, p, buffer + sizeof(buffer) - p); } void SkString::insertScalar(size_t offset, SkScalar value) { char buffer[SkStrAppendScalar_MaxSize]; char* stop = SkStrAppendScalar(buffer, value); this->insert(offset, buffer, stop - buffer); } void SkString::printf(const char format[], ...) { char buffer[kBufferSize]; ARGS_TO_BUFFER(format, buffer, kBufferSize); this->set(buffer, strlen(buffer)); } void SkString::appendf(const char format[], ...) { char buffer[kBufferSize]; ARGS_TO_BUFFER(format, buffer, kBufferSize); this->append(buffer, strlen(buffer)); } void SkString::prependf(const char format[], ...) { char buffer[kBufferSize]; ARGS_TO_BUFFER(format, buffer, kBufferSize); this->prepend(buffer, strlen(buffer)); } /////////////////////////////////////////////////////////////////////////////// void SkString::remove(size_t offset, size_t length) { size_t size = this->size(); if (offset < size) { if (offset + length > size) { length = size - offset; } if (length > 0) { SkASSERT(size > length); SkString tmp(size - length); char* dst = tmp.writable_str(); const char* src = this->c_str(); if (offset) { SkASSERT(offset <= tmp.size()); memcpy(dst, src, offset); } size_t tail = size - offset - length; SkASSERT((int32_t)tail >= 0); if (tail) { // SkASSERT(offset + length <= tmp.size()); memcpy(dst + offset, src + offset + length, tail); } SkASSERT(dst[tmp.size()] == 0); this->swap(tmp); } } } void SkString::swap(SkString& other) { this->validate(); other.validate(); SkTSwap<Rec*>(fRec, other.fRec); #ifdef SK_DEBUG SkTSwap<const char*>(fStr, other.fStr); #endif } /////////////////////////////////////////////////////////////////////////////// SkAutoUCS2::SkAutoUCS2(const char utf8[]) { size_t len = strlen(utf8); fUCS2 = (uint16_t*)sk_malloc_throw((len + 1) * sizeof(uint16_t)); uint16_t* dst = fUCS2; for (;;) { SkUnichar uni = SkUTF8_NextUnichar(&utf8); *dst++ = SkToU16(uni); if (uni == 0) { break; } } fCount = (int)(dst - fUCS2); } SkAutoUCS2::~SkAutoUCS2() { sk_free(fUCS2); } /////////////////////////////////////////////////////////////////////////////// SkString SkStringPrintf(const char* format, ...) { SkString formattedOutput; char buffer[kBufferSize]; ARGS_TO_BUFFER(format, buffer, kBufferSize); formattedOutput.set(buffer); return formattedOutput; } #undef VSNPRINTF #undef SNPRINTF