/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrAAConvexPathRenderer.h" #include "GrContext.h" #include "GrDrawState.h" #include "GrPathUtils.h" #include "SkString.h" #include "SkStrokeRec.h" #include "SkTrace.h" GrAAConvexPathRenderer::GrAAConvexPathRenderer() { } namespace { struct Segment { enum { // These enum values are assumed in member functions below. kLine = 0, kQuad = 1, } fType; // line uses one pt, quad uses 2 pts GrPoint fPts[2]; // normal to edge ending at each pt GrVec fNorms[2]; // is the corner where the previous segment meets this segment // sharp. If so, fMid is a normalized bisector facing outward. GrVec fMid; int countPoints() { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fType + 1; } const SkPoint& endPt() const { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fPts[fType]; }; const SkPoint& endNorm() const { GR_STATIC_ASSERT(0 == kLine && 1 == kQuad); return fNorms[fType]; }; }; typedef SkTArray<Segment, true> SegmentArray; void center_of_mass(const SegmentArray& segments, SkPoint* c) { SkScalar area = 0; SkPoint center = {0, 0}; int count = segments.count(); SkPoint p0 = {0, 0}; if (count > 2) { // We translate the polygon so that the first point is at the origin. // This avoids some precision issues with small area polygons far away // from the origin. p0 = segments[0].endPt(); SkPoint pi; SkPoint pj; // the first and last iteration of the below loop would compute // zeros since the starting / ending point is (0,0). So instead we start // at i=1 and make the last iteration i=count-2. pj = segments[1].endPt() - p0; for (int i = 1; i < count - 1; ++i) { pi = pj; const SkPoint pj = segments[i + 1].endPt() - p0; SkScalar t = SkScalarMul(pi.fX, pj.fY) - SkScalarMul(pj.fX, pi.fY); area += t; center.fX += (pi.fX + pj.fX) * t; center.fY += (pi.fY + pj.fY) * t; } } // If the poly has no area then we instead return the average of // its points. if (SkScalarNearlyZero(area)) { SkPoint avg; avg.set(0, 0); for (int i = 0; i < count; ++i) { const SkPoint& pt = segments[i].endPt(); avg.fX += pt.fX; avg.fY += pt.fY; } SkScalar denom = SK_Scalar1 / count; avg.scale(denom); *c = avg; } else { area *= 3; area = SkScalarDiv(SK_Scalar1, area); center.fX = SkScalarMul(center.fX, area); center.fY = SkScalarMul(center.fY, area); // undo the translate of p0 to the origin. *c = center + p0; } GrAssert(!SkScalarIsNaN(c->fX) && !SkScalarIsNaN(c->fY)); } void compute_vectors(SegmentArray* segments, SkPoint* fanPt, SkPath::Direction dir, int* vCount, int* iCount) { center_of_mass(*segments, fanPt); int count = segments->count(); // Make the normals point towards the outside GrPoint::Side normSide; if (dir == SkPath::kCCW_Direction) { normSide = GrPoint::kRight_Side; } else { normSide = GrPoint::kLeft_Side; } *vCount = 0; *iCount = 0; // compute normals at all points for (int a = 0; a < count; ++a) { const Segment& sega = (*segments)[a]; int b = (a + 1) % count; Segment& segb = (*segments)[b]; const GrPoint* prevPt = &sega.endPt(); int n = segb.countPoints(); for (int p = 0; p < n; ++p) { segb.fNorms[p] = segb.fPts[p] - *prevPt; segb.fNorms[p].normalize(); segb.fNorms[p].setOrthog(segb.fNorms[p], normSide); prevPt = &segb.fPts[p]; } if (Segment::kLine == segb.fType) { *vCount += 5; *iCount += 9; } else { *vCount += 6; *iCount += 12; } } // compute mid-vectors where segments meet. TODO: Detect shallow corners // and leave out the wedges and close gaps by stitching segments together. for (int a = 0; a < count; ++a) { const Segment& sega = (*segments)[a]; int b = (a + 1) % count; Segment& segb = (*segments)[b]; segb.fMid = segb.fNorms[0] + sega.endNorm(); segb.fMid.normalize(); // corner wedges *vCount += 4; *iCount += 6; } } struct DegenerateTestData { DegenerateTestData() { fStage = kInitial; } bool isDegenerate() const { return kNonDegenerate != fStage; } enum { kInitial, kPoint, kLine, kNonDegenerate } fStage; GrPoint fFirstPoint; GrVec fLineNormal; SkScalar fLineC; }; void update_degenerate_test(DegenerateTestData* data, const GrPoint& pt) { static const SkScalar TOL = (SK_Scalar1 / 16); static const SkScalar TOL_SQD = SkScalarMul(TOL, TOL); switch (data->fStage) { case DegenerateTestData::kInitial: data->fFirstPoint = pt; data->fStage = DegenerateTestData::kPoint; break; case DegenerateTestData::kPoint: if (pt.distanceToSqd(data->fFirstPoint) > TOL_SQD) { data->fLineNormal = pt - data->fFirstPoint; data->fLineNormal.normalize(); data->fLineNormal.setOrthog(data->fLineNormal); data->fLineC = -data->fLineNormal.dot(data->fFirstPoint); data->fStage = DegenerateTestData::kLine; } break; case DegenerateTestData::kLine: if (SkScalarAbs(data->fLineNormal.dot(pt) + data->fLineC) > TOL) { data->fStage = DegenerateTestData::kNonDegenerate; } case DegenerateTestData::kNonDegenerate: break; default: GrCrash("Unexpected degenerate test stage."); } } inline bool get_direction(const SkPath& path, const SkMatrix& m, SkPath::Direction* dir) { if (!path.cheapComputeDirection(dir)) { return false; } // check whether m reverses the orientation GrAssert(!m.hasPerspective()); SkScalar det2x2 = SkScalarMul(m.get(SkMatrix::kMScaleX), m.get(SkMatrix::kMScaleY)) - SkScalarMul(m.get(SkMatrix::kMSkewX), m.get(SkMatrix::kMSkewY)); if (det2x2 < 0) { *dir = SkPath::OppositeDirection(*dir); } return true; } bool get_segments(const SkPath& path, const SkMatrix& m, SegmentArray* segments, SkPoint* fanPt, int* vCount, int* iCount) { SkPath::Iter iter(path, true); // This renderer over-emphasizes very thin path regions. We use the distance // to the path from the sample to compute coverage. Every pixel intersected // by the path will be hit and the maximum distance is sqrt(2)/2. We don't // notice that the sample may be close to a very thin area of the path and // thus should be very light. This is particularly egregious for degenerate // line paths. We detect paths that are very close to a line (zero area) and // draw nothing. DegenerateTestData degenerateData; SkPath::Direction dir; // get_direction can fail for some degenerate paths. if (!get_direction(path, m, &dir)) { return false; } for (;;) { GrPoint pts[4]; GrPathCmd cmd = (GrPathCmd)iter.next(pts); switch (cmd) { case kMove_PathCmd: m.mapPoints(pts, 1); update_degenerate_test(°enerateData, pts[0]); break; case kLine_PathCmd: { m.mapPoints(pts + 1, 1); update_degenerate_test(°enerateData, pts[1]); segments->push_back(); segments->back().fType = Segment::kLine; segments->back().fPts[0] = pts[1]; break; } case kQuadratic_PathCmd: m.mapPoints(pts + 1, 2); update_degenerate_test(°enerateData, pts[1]); update_degenerate_test(°enerateData, pts[2]); segments->push_back(); segments->back().fType = Segment::kQuad; segments->back().fPts[0] = pts[1]; segments->back().fPts[1] = pts[2]; break; case kCubic_PathCmd: { m.mapPoints(pts, 4); update_degenerate_test(°enerateData, pts[1]); update_degenerate_test(°enerateData, pts[2]); update_degenerate_test(°enerateData, pts[3]); // unlike quads and lines, the pts[0] will also be read (in // convertCubicToQuads). SkSTArray<15, SkPoint, true> quads; GrPathUtils::convertCubicToQuads(pts, SK_Scalar1, true, dir, &quads); int count = quads.count(); for (int q = 0; q < count; q += 3) { segments->push_back(); segments->back().fType = Segment::kQuad; segments->back().fPts[0] = quads[q + 1]; segments->back().fPts[1] = quads[q + 2]; } break; }; case kEnd_PathCmd: if (degenerateData.isDegenerate()) { return false; } else { compute_vectors(segments, fanPt, dir, vCount, iCount); return true; } default: break; } } } struct QuadVertex { GrPoint fPos; GrPoint fUV; SkScalar fD0; SkScalar fD1; }; void create_vertices(const SegmentArray& segments, const SkPoint& fanPt, QuadVertex* verts, uint16_t* idxs) { int v = 0; int i = 0; int count = segments.count(); for (int a = 0; a < count; ++a) { const Segment& sega = segments[a]; int b = (a + 1) % count; const Segment& segb = segments[b]; // FIXME: These tris are inset in the 1 unit arc around the corner verts[v + 0].fPos = sega.endPt(); verts[v + 1].fPos = verts[v + 0].fPos + sega.endNorm(); verts[v + 2].fPos = verts[v + 0].fPos + segb.fMid; verts[v + 3].fPos = verts[v + 0].fPos + segb.fNorms[0]; verts[v + 0].fUV.set(0,0); verts[v + 1].fUV.set(0,-SK_Scalar1); verts[v + 2].fUV.set(0,-SK_Scalar1); verts[v + 3].fUV.set(0,-SK_Scalar1); verts[v + 0].fD0 = verts[v + 0].fD1 = -SK_Scalar1; verts[v + 1].fD0 = verts[v + 1].fD1 = -SK_Scalar1; verts[v + 2].fD0 = verts[v + 2].fD1 = -SK_Scalar1; verts[v + 3].fD0 = verts[v + 3].fD1 = -SK_Scalar1; idxs[i + 0] = v + 0; idxs[i + 1] = v + 2; idxs[i + 2] = v + 1; idxs[i + 3] = v + 0; idxs[i + 4] = v + 3; idxs[i + 5] = v + 2; v += 4; i += 6; if (Segment::kLine == segb.fType) { verts[v + 0].fPos = fanPt; verts[v + 1].fPos = sega.endPt(); verts[v + 2].fPos = segb.fPts[0]; verts[v + 3].fPos = verts[v + 1].fPos + segb.fNorms[0]; verts[v + 4].fPos = verts[v + 2].fPos + segb.fNorms[0]; // we draw the line edge as a degenerate quad (u is 0, v is the // signed distance to the edge) SkScalar dist = fanPt.distanceToLineBetween(verts[v + 1].fPos, verts[v + 2].fPos); verts[v + 0].fUV.set(0, dist); verts[v + 1].fUV.set(0, 0); verts[v + 2].fUV.set(0, 0); verts[v + 3].fUV.set(0, -SK_Scalar1); verts[v + 4].fUV.set(0, -SK_Scalar1); verts[v + 0].fD0 = verts[v + 0].fD1 = -SK_Scalar1; verts[v + 1].fD0 = verts[v + 1].fD1 = -SK_Scalar1; verts[v + 2].fD0 = verts[v + 2].fD1 = -SK_Scalar1; verts[v + 3].fD0 = verts[v + 3].fD1 = -SK_Scalar1; verts[v + 4].fD0 = verts[v + 4].fD1 = -SK_Scalar1; idxs[i + 0] = v + 0; idxs[i + 1] = v + 2; idxs[i + 2] = v + 1; idxs[i + 3] = v + 3; idxs[i + 4] = v + 1; idxs[i + 5] = v + 2; idxs[i + 6] = v + 4; idxs[i + 7] = v + 3; idxs[i + 8] = v + 2; v += 5; i += 9; } else { GrPoint qpts[] = {sega.endPt(), segb.fPts[0], segb.fPts[1]}; GrVec midVec = segb.fNorms[0] + segb.fNorms[1]; midVec.normalize(); verts[v + 0].fPos = fanPt; verts[v + 1].fPos = qpts[0]; verts[v + 2].fPos = qpts[2]; verts[v + 3].fPos = qpts[0] + segb.fNorms[0]; verts[v + 4].fPos = qpts[2] + segb.fNorms[1]; verts[v + 5].fPos = qpts[1] + midVec; SkScalar c = segb.fNorms[0].dot(qpts[0]); verts[v + 0].fD0 = -segb.fNorms[0].dot(fanPt) + c; verts[v + 1].fD0 = 0.f; verts[v + 2].fD0 = -segb.fNorms[0].dot(qpts[2]) + c; verts[v + 3].fD0 = -SK_ScalarMax/100; verts[v + 4].fD0 = -SK_ScalarMax/100; verts[v + 5].fD0 = -SK_ScalarMax/100; c = segb.fNorms[1].dot(qpts[2]); verts[v + 0].fD1 = -segb.fNorms[1].dot(fanPt) + c; verts[v + 1].fD1 = -segb.fNorms[1].dot(qpts[0]) + c; verts[v + 2].fD1 = 0.f; verts[v + 3].fD1 = -SK_ScalarMax/100; verts[v + 4].fD1 = -SK_ScalarMax/100; verts[v + 5].fD1 = -SK_ScalarMax/100; GrPathUtils::QuadUVMatrix toUV(qpts); toUV.apply<6, sizeof(QuadVertex), sizeof(GrPoint)>(verts + v); idxs[i + 0] = v + 3; idxs[i + 1] = v + 1; idxs[i + 2] = v + 2; idxs[i + 3] = v + 4; idxs[i + 4] = v + 3; idxs[i + 5] = v + 2; idxs[i + 6] = v + 5; idxs[i + 7] = v + 3; idxs[i + 8] = v + 4; idxs[i + 9] = v + 0; idxs[i + 10] = v + 2; idxs[i + 11] = v + 1; v += 6; i += 12; } } } } bool GrAAConvexPathRenderer::canDrawPath(const SkPath& path, const SkStrokeRec& stroke, const GrDrawTarget* target, bool antiAlias) const { return (target->getCaps().shaderDerivativeSupport() && antiAlias && stroke.isFillStyle() && !path.isInverseFillType() && path.isConvex()); } bool GrAAConvexPathRenderer::onDrawPath(const SkPath& origPath, const SkStrokeRec&, GrDrawTarget* target, bool antiAlias) { const SkPath* path = &origPath; if (path->isEmpty()) { return true; } GrDrawState* drawState = target->drawState(); GrDrawState::AutoDeviceCoordDraw adcd(drawState); if (!adcd.succeeded()) { return false; } const SkMatrix* vm = &adcd.getOriginalMatrix(); GrVertexLayout layout = 0; layout |= GrDrawState::kEdge_VertexLayoutBit; // We use the fact that SkPath::transform path does subdivision based on // perspective. Otherwise, we apply the view matrix when copying to the // segment representation. SkPath tmpPath; if (vm->hasPerspective()) { origPath.transform(*vm, &tmpPath); path = &tmpPath; vm = &SkMatrix::I(); } QuadVertex *verts; uint16_t* idxs; int vCount; int iCount; enum { kPreallocSegmentCnt = 512 / sizeof(Segment), }; SkSTArray<kPreallocSegmentCnt, Segment, true> segments; SkPoint fanPt; if (!get_segments(*path, *vm, &segments, &fanPt, &vCount, &iCount)) { return false; } GrDrawTarget::AutoReleaseGeometry arg(target, layout, vCount, iCount); if (!arg.succeeded()) { return false; } verts = reinterpret_cast<QuadVertex*>(arg.vertices()); idxs = reinterpret_cast<uint16_t*>(arg.indices()); create_vertices(segments, fanPt, verts, idxs); GrDrawState::VertexEdgeType oldEdgeType = drawState->getVertexEdgeType(); drawState->setVertexEdgeType(GrDrawState::kQuad_EdgeType); target->drawIndexed(kTriangles_GrPrimitiveType, 0, // start vertex 0, // start index vCount, iCount); drawState->setVertexEdgeType(oldEdgeType); return true; }