/* * Copyright 2011 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "GrPathUtils.h" #include "GrPoint.h" #include "SkGeometry.h" SkScalar GrPathUtils::scaleToleranceToSrc(SkScalar devTol, const SkMatrix& viewM, const GrRect& pathBounds) { // In order to tesselate the path we get a bound on how much the matrix can // stretch when mapping to screen coordinates. SkScalar stretch = viewM.getMaxStretch(); SkScalar srcTol = devTol; if (stretch < 0) { // take worst case mapRadius amoung four corners. // (less than perfect) for (int i = 0; i < 4; ++i) { SkMatrix mat; mat.setTranslate((i % 2) ? pathBounds.fLeft : pathBounds.fRight, (i < 2) ? pathBounds.fTop : pathBounds.fBottom); mat.postConcat(viewM); stretch = SkMaxScalar(stretch, mat.mapRadius(SK_Scalar1)); } } srcTol = SkScalarDiv(srcTol, stretch); return srcTol; } static const int MAX_POINTS_PER_CURVE = 1 << 10; static const SkScalar gMinCurveTol = SkFloatToScalar(0.0001f); uint32_t GrPathUtils::quadraticPointCount(const GrPoint points[], SkScalar tol) { if (tol < gMinCurveTol) { tol = gMinCurveTol; } GrAssert(tol > 0); SkScalar d = points[1].distanceToLineSegmentBetween(points[0], points[2]); if (d <= tol) { return 1; } else { // Each time we subdivide, d should be cut in 4. So we need to // subdivide x = log4(d/tol) times. x subdivisions creates 2^(x) // points. // 2^(log4(x)) = sqrt(x); int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol))); int pow2 = GrNextPow2(temp); // Because of NaNs & INFs we can wind up with a degenerate temp // such that pow2 comes out negative. Also, our point generator // will always output at least one pt. if (pow2 < 1) { pow2 = 1; } return GrMin(pow2, MAX_POINTS_PER_CURVE); } } uint32_t GrPathUtils::generateQuadraticPoints(const GrPoint& p0, const GrPoint& p1, const GrPoint& p2, SkScalar tolSqd, GrPoint** points, uint32_t pointsLeft) { if (pointsLeft < 2 || (p1.distanceToLineSegmentBetweenSqd(p0, p2)) < tolSqd) { (*points)[0] = p2; *points += 1; return 1; } GrPoint q[] = { { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, }; GrPoint r = { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }; pointsLeft >>= 1; uint32_t a = generateQuadraticPoints(p0, q[0], r, tolSqd, points, pointsLeft); uint32_t b = generateQuadraticPoints(r, q[1], p2, tolSqd, points, pointsLeft); return a + b; } uint32_t GrPathUtils::cubicPointCount(const GrPoint points[], SkScalar tol) { if (tol < gMinCurveTol) { tol = gMinCurveTol; } GrAssert(tol > 0); SkScalar d = GrMax( points[1].distanceToLineSegmentBetweenSqd(points[0], points[3]), points[2].distanceToLineSegmentBetweenSqd(points[0], points[3])); d = SkScalarSqrt(d); if (d <= tol) { return 1; } else { int temp = SkScalarCeil(SkScalarSqrt(SkScalarDiv(d, tol))); int pow2 = GrNextPow2(temp); // Because of NaNs & INFs we can wind up with a degenerate temp // such that pow2 comes out negative. Also, our point generator // will always output at least one pt. if (pow2 < 1) { pow2 = 1; } return GrMin(pow2, MAX_POINTS_PER_CURVE); } } uint32_t GrPathUtils::generateCubicPoints(const GrPoint& p0, const GrPoint& p1, const GrPoint& p2, const GrPoint& p3, SkScalar tolSqd, GrPoint** points, uint32_t pointsLeft) { if (pointsLeft < 2 || (p1.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd && p2.distanceToLineSegmentBetweenSqd(p0, p3) < tolSqd)) { (*points)[0] = p3; *points += 1; return 1; } GrPoint q[] = { { SkScalarAve(p0.fX, p1.fX), SkScalarAve(p0.fY, p1.fY) }, { SkScalarAve(p1.fX, p2.fX), SkScalarAve(p1.fY, p2.fY) }, { SkScalarAve(p2.fX, p3.fX), SkScalarAve(p2.fY, p3.fY) } }; GrPoint r[] = { { SkScalarAve(q[0].fX, q[1].fX), SkScalarAve(q[0].fY, q[1].fY) }, { SkScalarAve(q[1].fX, q[2].fX), SkScalarAve(q[1].fY, q[2].fY) } }; GrPoint s = { SkScalarAve(r[0].fX, r[1].fX), SkScalarAve(r[0].fY, r[1].fY) }; pointsLeft >>= 1; uint32_t a = generateCubicPoints(p0, q[0], r[0], s, tolSqd, points, pointsLeft); uint32_t b = generateCubicPoints(s, r[1], q[2], p3, tolSqd, points, pointsLeft); return a + b; } int GrPathUtils::worstCasePointCount(const SkPath& path, int* subpaths, SkScalar tol) { if (tol < gMinCurveTol) { tol = gMinCurveTol; } GrAssert(tol > 0); int pointCount = 0; *subpaths = 1; bool first = true; SkPath::Iter iter(path, false); GrPathCmd cmd; GrPoint pts[4]; while ((cmd = (GrPathCmd)iter.next(pts)) != kEnd_PathCmd) { switch (cmd) { case kLine_PathCmd: pointCount += 1; break; case kQuadratic_PathCmd: pointCount += quadraticPointCount(pts, tol); break; case kCubic_PathCmd: pointCount += cubicPointCount(pts, tol); break; case kMove_PathCmd: pointCount += 1; if (!first) { ++(*subpaths); } break; default: break; } first = false; } return pointCount; } void GrPathUtils::QuadUVMatrix::set(const GrPoint qPts[3]) { // can't make this static, no cons :( SkMatrix UVpts; #ifndef SK_SCALAR_IS_FLOAT GrCrash("Expected scalar is float."); #endif SkMatrix m; // We want M such that M * xy_pt = uv_pt // We know M * control_pts = [0 1/2 1] // [0 0 1] // [1 1 1] // We invert the control pt matrix and post concat to both sides to get M. UVpts.setAll(0, SK_ScalarHalf, SK_Scalar1, 0, 0, SK_Scalar1, SkScalarToPersp(SK_Scalar1), SkScalarToPersp(SK_Scalar1), SkScalarToPersp(SK_Scalar1)); m.setAll(qPts[0].fX, qPts[1].fX, qPts[2].fX, qPts[0].fY, qPts[1].fY, qPts[2].fY, SkScalarToPersp(SK_Scalar1), SkScalarToPersp(SK_Scalar1), SkScalarToPersp(SK_Scalar1)); if (!m.invert(&m)) { // The quad is degenerate. Hopefully this is rare. Find the pts that are // farthest apart to compute a line (unless it is really a pt). SkScalar maxD = qPts[0].distanceToSqd(qPts[1]); int maxEdge = 0; SkScalar d = qPts[1].distanceToSqd(qPts[2]); if (d > maxD) { maxD = d; maxEdge = 1; } d = qPts[2].distanceToSqd(qPts[0]); if (d > maxD) { maxD = d; maxEdge = 2; } // We could have a tolerance here, not sure if it would improve anything if (maxD > 0) { // Set the matrix to give (u = 0, v = distance_to_line) GrVec lineVec = qPts[(maxEdge + 1)%3] - qPts[maxEdge]; // when looking from the point 0 down the line we want positive // distances to be to the left. This matches the non-degenerate // case. lineVec.setOrthog(lineVec, GrPoint::kLeft_Side); lineVec.dot(qPts[0]); // first row fM[0] = 0; fM[1] = 0; fM[2] = 0; // second row fM[3] = lineVec.fX; fM[4] = lineVec.fY; fM[5] = -lineVec.dot(qPts[maxEdge]); } else { // It's a point. It should cover zero area. Just set the matrix such // that (u, v) will always be far away from the quad. fM[0] = 0; fM[1] = 0; fM[2] = 100.f; fM[3] = 0; fM[4] = 0; fM[5] = 100.f; } } else { m.postConcat(UVpts); // The matrix should not have perspective. SkDEBUGCODE(static const SkScalar gTOL = SkFloatToScalar(1.f / 100.f)); GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp0)) < gTOL); GrAssert(SkScalarAbs(m.get(SkMatrix::kMPersp1)) < gTOL); // It may not be normalized to have 1.0 in the bottom right float m33 = m.get(SkMatrix::kMPersp2); if (1.f != m33) { m33 = 1.f / m33; fM[0] = m33 * m.get(SkMatrix::kMScaleX); fM[1] = m33 * m.get(SkMatrix::kMSkewX); fM[2] = m33 * m.get(SkMatrix::kMTransX); fM[3] = m33 * m.get(SkMatrix::kMSkewY); fM[4] = m33 * m.get(SkMatrix::kMScaleY); fM[5] = m33 * m.get(SkMatrix::kMTransY); } else { fM[0] = m.get(SkMatrix::kMScaleX); fM[1] = m.get(SkMatrix::kMSkewX); fM[2] = m.get(SkMatrix::kMTransX); fM[3] = m.get(SkMatrix::kMSkewY); fM[4] = m.get(SkMatrix::kMScaleY); fM[5] = m.get(SkMatrix::kMTransY); } } } namespace { // a is the first control point of the cubic. // ab is the vector from a to the second control point. // dc is the vector from the fourth to the third control point. // d is the fourth control point. // p is the candidate quadratic control point. // this assumes that the cubic doesn't inflect and is simple bool is_point_within_cubic_tangents(const SkPoint& a, const SkVector& ab, const SkVector& dc, const SkPoint& d, SkPath::Direction dir, const SkPoint p) { SkVector ap = p - a; SkScalar apXab = ap.cross(ab); if (SkPath::kCW_Direction == dir) { if (apXab > 0) { return false; } } else { GrAssert(SkPath::kCCW_Direction == dir); if (apXab < 0) { return false; } } SkVector dp = p - d; SkScalar dpXdc = dp.cross(dc); if (SkPath::kCW_Direction == dir) { if (dpXdc < 0) { return false; } } else { GrAssert(SkPath::kCCW_Direction == dir); if (dpXdc > 0) { return false; } } return true; } void convert_noninflect_cubic_to_quads(const SkPoint p[4], SkScalar toleranceSqd, bool constrainWithinTangents, SkPath::Direction dir, SkTArray<SkPoint, true>* quads, int sublevel = 0) { // Notation: Point a is always p[0]. Point b is p[1] unless p[1] == p[0], in which case it is // p[2]. Point d is always p[3]. Point c is p[2] unless p[2] == p[3], in which case it is p[1]. SkVector ab = p[1] - p[0]; SkVector dc = p[2] - p[3]; if (ab.isZero()) { if (dc.isZero()) { SkPoint* degQuad = quads->push_back_n(3); degQuad[0] = p[0]; degQuad[1] = p[0]; degQuad[2] = p[3]; return; } ab = p[2] - p[0]; } if (dc.isZero()) { dc = p[1] - p[3]; } // When the ab and cd tangents are nearly parallel with vector from d to a the constraint that // the quad point falls between the tangents becomes hard to enforce and we are likely to hit // the max subdivision count. However, in this case the cubic is approaching a line and the // accuracy of the quad point isn't so important. We check if the two middle cubic control // points are very close to the baseline vector. If so then we just pick quadratic points on the // control polygon. if (constrainWithinTangents) { SkVector da = p[0] - p[3]; SkScalar invDALengthSqd = da.lengthSqd(); if (invDALengthSqd > SK_ScalarNearlyZero) { invDALengthSqd = SkScalarInvert(invDALengthSqd); // cross(ab, da)^2/length(da)^2 == sqd distance from b to line from d to a. // same goed for point c using vector cd. SkScalar detABSqd = ab.cross(da); detABSqd = SkScalarSquare(detABSqd); SkScalar detDCSqd = dc.cross(da); detDCSqd = SkScalarSquare(detDCSqd); if (SkScalarMul(detABSqd, invDALengthSqd) < toleranceSqd && SkScalarMul(detDCSqd, invDALengthSqd) < toleranceSqd) { SkPoint b = p[0] + ab; SkPoint c = p[3] + dc; SkPoint mid = b + c; mid.scale(SK_ScalarHalf); // Insert two quadratics to cover the case when ab points away from d and/or dc // points away from a. if (SkVector::DotProduct(da, dc) < 0 || SkVector::DotProduct(ab,da) > 0) { SkPoint* qpts = quads->push_back_n(6); qpts[0] = p[0]; qpts[1] = b; qpts[2] = mid; qpts[3] = mid; qpts[4] = c; qpts[5] = p[3]; } else { SkPoint* qpts = quads->push_back_n(3); qpts[0] = p[0]; qpts[1] = mid; qpts[2] = p[3]; } return; } } } static const SkScalar kLengthScale = 3 * SK_Scalar1 / 2; static const int kMaxSubdivs = 10; ab.scale(kLengthScale); dc.scale(kLengthScale); // e0 and e1 are extrapolations along vectors ab and dc. SkVector c0 = p[0]; c0 += ab; SkVector c1 = p[3]; c1 += dc; SkScalar dSqd = sublevel > kMaxSubdivs ? 0 : c0.distanceToSqd(c1); if (dSqd < toleranceSqd) { SkPoint cAvg = c0; cAvg += c1; cAvg.scale(SK_ScalarHalf); bool subdivide = false; if (constrainWithinTangents && !is_point_within_cubic_tangents(p[0], ab, dc, p[3], dir, cAvg)) { // choose a new cAvg that is the intersection of the two tangent lines. ab.setOrthog(ab); SkScalar z0 = -ab.dot(p[0]); dc.setOrthog(dc); SkScalar z1 = -dc.dot(p[3]); cAvg.fX = SkScalarMul(ab.fY, z1) - SkScalarMul(z0, dc.fY); cAvg.fY = SkScalarMul(z0, dc.fX) - SkScalarMul(ab.fX, z1); SkScalar z = SkScalarMul(ab.fX, dc.fY) - SkScalarMul(ab.fY, dc.fX); z = SkScalarInvert(z); cAvg.fX *= z; cAvg.fY *= z; if (sublevel <= kMaxSubdivs) { SkScalar d0Sqd = c0.distanceToSqd(cAvg); SkScalar d1Sqd = c1.distanceToSqd(cAvg); // We need to subdivide if d0 + d1 > tolerance but we have the sqd values. We know // the distances and tolerance can't be negative. // (d0 + d1)^2 > toleranceSqd // d0Sqd + 2*d0*d1 + d1Sqd > toleranceSqd SkScalar d0d1 = SkScalarSqrt(SkScalarMul(d0Sqd, d1Sqd)); subdivide = 2 * d0d1 + d0Sqd + d1Sqd > toleranceSqd; } } if (!subdivide) { SkPoint* pts = quads->push_back_n(3); pts[0] = p[0]; pts[1] = cAvg; pts[2] = p[3]; return; } } SkPoint choppedPts[7]; SkChopCubicAtHalf(p, choppedPts); convert_noninflect_cubic_to_quads(choppedPts + 0, toleranceSqd, constrainWithinTangents, dir, quads, sublevel + 1); convert_noninflect_cubic_to_quads(choppedPts + 3, toleranceSqd, constrainWithinTangents, dir, quads, sublevel + 1); } } void GrPathUtils::convertCubicToQuads(const GrPoint p[4], SkScalar tolScale, bool constrainWithinTangents, SkPath::Direction dir, SkTArray<SkPoint, true>* quads) { SkPoint chopped[10]; int count = SkChopCubicAtInflections(p, chopped); // base tolerance is 1 pixel. static const SkScalar kTolerance = SK_Scalar1; const SkScalar tolSqd = SkScalarSquare(SkScalarMul(tolScale, kTolerance)); for (int i = 0; i < count; ++i) { SkPoint* cubic = chopped + 3*i; convert_noninflect_cubic_to_quads(cubic, tolSqd, constrainWithinTangents, dir, quads); } }