// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_CODE_STUBS_H_ #define V8_CODE_STUBS_H_ #include "allocation.h" #include "globals.h" #include "codegen.h" namespace v8 { namespace internal { // List of code stubs used on all platforms. #define CODE_STUB_LIST_ALL_PLATFORMS(V) \ V(CallFunction) \ V(CallConstruct) \ V(UnaryOp) \ V(BinaryOp) \ V(StringAdd) \ V(SubString) \ V(StringCompare) \ V(Compare) \ V(CompareIC) \ V(MathPow) \ V(RecordWrite) \ V(StoreBufferOverflow) \ V(RegExpExec) \ V(TranscendentalCache) \ V(Instanceof) \ V(ConvertToDouble) \ V(WriteInt32ToHeapNumber) \ V(StackCheck) \ V(Interrupt) \ V(FastNewClosure) \ V(FastNewContext) \ V(FastNewBlockContext) \ V(FastCloneShallowArray) \ V(FastCloneShallowObject) \ V(ToBoolean) \ V(ToNumber) \ V(ArgumentsAccess) \ V(RegExpConstructResult) \ V(NumberToString) \ V(CEntry) \ V(JSEntry) \ V(KeyedLoadElement) \ V(KeyedStoreElement) \ V(DebuggerStatement) \ V(StringDictionaryLookup) \ V(ElementsTransitionAndStore) \ V(StoreArrayLiteralElement) // List of code stubs only used on ARM platforms. #ifdef V8_TARGET_ARCH_ARM #define CODE_STUB_LIST_ARM(V) \ V(GetProperty) \ V(SetProperty) \ V(InvokeBuiltin) \ V(RegExpCEntry) \ V(DirectCEntry) #else #define CODE_STUB_LIST_ARM(V) #endif // List of code stubs only used on MIPS platforms. #ifdef V8_TARGET_ARCH_MIPS #define CODE_STUB_LIST_MIPS(V) \ V(RegExpCEntry) \ V(DirectCEntry) #else #define CODE_STUB_LIST_MIPS(V) #endif // Combined list of code stubs. #define CODE_STUB_LIST(V) \ CODE_STUB_LIST_ALL_PLATFORMS(V) \ CODE_STUB_LIST_ARM(V) \ CODE_STUB_LIST_MIPS(V) // Mode to overwrite BinaryExpression values. enum OverwriteMode { NO_OVERWRITE, OVERWRITE_LEFT, OVERWRITE_RIGHT }; enum UnaryOverwriteMode { UNARY_OVERWRITE, UNARY_NO_OVERWRITE }; // Stub is base classes of all stubs. class CodeStub BASE_EMBEDDED { public: enum Major { #define DEF_ENUM(name) name, CODE_STUB_LIST(DEF_ENUM) #undef DEF_ENUM NoCache, // marker for stubs that do custom caching NUMBER_OF_IDS }; // Retrieve the code for the stub. Generate the code if needed. Handle<Code> GetCode(); static Major MajorKeyFromKey(uint32_t key) { return static_cast<Major>(MajorKeyBits::decode(key)); } static int MinorKeyFromKey(uint32_t key) { return MinorKeyBits::decode(key); } // Gets the major key from a code object that is a code stub or binary op IC. static Major GetMajorKey(Code* code_stub) { return static_cast<Major>(code_stub->major_key()); } static const char* MajorName(Major major_key, bool allow_unknown_keys); virtual ~CodeStub() {} bool CompilingCallsToThisStubIsGCSafe() { bool is_pregenerated = IsPregenerated(); Code* code = NULL; CHECK(!is_pregenerated || FindCodeInCache(&code)); return is_pregenerated; } // See comment above, where Instanceof is defined. virtual bool IsPregenerated() { return false; } static void GenerateStubsAheadOfTime(); static void GenerateFPStubs(); // Some stubs put untagged junk on the stack that cannot be scanned by the // GC. This means that we must be statically sure that no GC can occur while // they are running. If that is the case they should override this to return // true, which will cause an assertion if we try to call something that can // GC or if we try to put a stack frame on top of the junk, which would not // result in a traversable stack. virtual bool SometimesSetsUpAFrame() { return true; } // Lookup the code in the (possibly custom) cache. bool FindCodeInCache(Code** code_out); protected: static const int kMajorBits = 6; static const int kMinorBits = kBitsPerInt - kSmiTagSize - kMajorBits; private: // Nonvirtual wrapper around the stub-specific Generate function. Call // this function to set up the macro assembler and generate the code. void GenerateCode(MacroAssembler* masm); // Generates the assembler code for the stub. virtual void Generate(MacroAssembler* masm) = 0; // Perform bookkeeping required after code generation when stub code is // initially generated. void RecordCodeGeneration(Code* code, MacroAssembler* masm); // Finish the code object after it has been generated. virtual void FinishCode(Handle<Code> code) { } // Activate newly generated stub. Is called after // registering stub in the stub cache. virtual void Activate(Code* code) { } // Returns information for computing the number key. virtual Major MajorKey() = 0; virtual int MinorKey() = 0; // BinaryOpStub needs to override this. virtual int GetCodeKind(); // BinaryOpStub needs to override this. virtual InlineCacheState GetICState() { return UNINITIALIZED; } // Add the code to a specialized cache, specific to an individual // stub type. Please note, this method must add the code object to a // roots object, otherwise we will remove the code during GC. virtual void AddToSpecialCache(Handle<Code> new_object) { } // Find code in a specialized cache, work is delegated to the specific stub. virtual bool FindCodeInSpecialCache(Code** code_out) { return false; } // If a stub uses a special cache override this. virtual bool UseSpecialCache() { return false; } // Returns a name for logging/debugging purposes. SmartArrayPointer<const char> GetName(); virtual void PrintName(StringStream* stream); // Returns whether the code generated for this stub needs to be allocated as // a fixed (non-moveable) code object. virtual bool NeedsImmovableCode() { return false; } // Computes the key based on major and minor. uint32_t GetKey() { ASSERT(static_cast<int>(MajorKey()) < NUMBER_OF_IDS); return MinorKeyBits::encode(MinorKey()) | MajorKeyBits::encode(MajorKey()); } class MajorKeyBits: public BitField<uint32_t, 0, kMajorBits> {}; class MinorKeyBits: public BitField<uint32_t, kMajorBits, kMinorBits> {}; friend class BreakPointIterator; }; // Helper interface to prepare to/restore after making runtime calls. class RuntimeCallHelper { public: virtual ~RuntimeCallHelper() {} virtual void BeforeCall(MacroAssembler* masm) const = 0; virtual void AfterCall(MacroAssembler* masm) const = 0; protected: RuntimeCallHelper() {} private: DISALLOW_COPY_AND_ASSIGN(RuntimeCallHelper); }; } } // namespace v8::internal #if V8_TARGET_ARCH_IA32 #include "ia32/code-stubs-ia32.h" #elif V8_TARGET_ARCH_X64 #include "x64/code-stubs-x64.h" #elif V8_TARGET_ARCH_ARM #include "arm/code-stubs-arm.h" #elif V8_TARGET_ARCH_MIPS #include "mips/code-stubs-mips.h" #else #error Unsupported target architecture. #endif namespace v8 { namespace internal { // RuntimeCallHelper implementation used in stubs: enters/leaves a // newly created internal frame before/after the runtime call. class StubRuntimeCallHelper : public RuntimeCallHelper { public: StubRuntimeCallHelper() {} virtual void BeforeCall(MacroAssembler* masm) const; virtual void AfterCall(MacroAssembler* masm) const; }; // Trivial RuntimeCallHelper implementation. class NopRuntimeCallHelper : public RuntimeCallHelper { public: NopRuntimeCallHelper() {} virtual void BeforeCall(MacroAssembler* masm) const {} virtual void AfterCall(MacroAssembler* masm) const {} }; class StackCheckStub : public CodeStub { public: StackCheckStub() { } void Generate(MacroAssembler* masm); private: Major MajorKey() { return StackCheck; } int MinorKey() { return 0; } }; class InterruptStub : public CodeStub { public: InterruptStub() { } void Generate(MacroAssembler* masm); private: Major MajorKey() { return Interrupt; } int MinorKey() { return 0; } }; class ToNumberStub: public CodeStub { public: ToNumberStub() { } void Generate(MacroAssembler* masm); private: Major MajorKey() { return ToNumber; } int MinorKey() { return 0; } }; class FastNewClosureStub : public CodeStub { public: explicit FastNewClosureStub(LanguageMode language_mode) : language_mode_(language_mode) { } void Generate(MacroAssembler* masm); private: Major MajorKey() { return FastNewClosure; } int MinorKey() { return language_mode_ == CLASSIC_MODE ? kNonStrictMode : kStrictMode; } LanguageMode language_mode_; }; class FastNewContextStub : public CodeStub { public: static const int kMaximumSlots = 64; explicit FastNewContextStub(int slots) : slots_(slots) { ASSERT(slots_ > 0 && slots_ <= kMaximumSlots); } void Generate(MacroAssembler* masm); private: int slots_; Major MajorKey() { return FastNewContext; } int MinorKey() { return slots_; } }; class FastNewBlockContextStub : public CodeStub { public: static const int kMaximumSlots = 64; explicit FastNewBlockContextStub(int slots) : slots_(slots) { ASSERT(slots_ > 0 && slots_ <= kMaximumSlots); } void Generate(MacroAssembler* masm); private: int slots_; Major MajorKey() { return FastNewBlockContext; } int MinorKey() { return slots_; } }; class FastCloneShallowArrayStub : public CodeStub { public: // Maximum length of copied elements array. static const int kMaximumClonedLength = 8; enum Mode { CLONE_ELEMENTS, CLONE_DOUBLE_ELEMENTS, COPY_ON_WRITE_ELEMENTS, CLONE_ANY_ELEMENTS }; FastCloneShallowArrayStub(Mode mode, int length) : mode_(mode), length_((mode == COPY_ON_WRITE_ELEMENTS) ? 0 : length) { ASSERT_GE(length_, 0); ASSERT_LE(length_, kMaximumClonedLength); } void Generate(MacroAssembler* masm); private: Mode mode_; int length_; Major MajorKey() { return FastCloneShallowArray; } int MinorKey() { ASSERT(mode_ == 0 || mode_ == 1 || mode_ == 2 || mode_ == 3); return length_ * 4 + mode_; } }; class FastCloneShallowObjectStub : public CodeStub { public: // Maximum number of properties in copied object. static const int kMaximumClonedProperties = 6; explicit FastCloneShallowObjectStub(int length) : length_(length) { ASSERT_GE(length_, 0); ASSERT_LE(length_, kMaximumClonedProperties); } void Generate(MacroAssembler* masm); private: int length_; Major MajorKey() { return FastCloneShallowObject; } int MinorKey() { return length_; } }; class InstanceofStub: public CodeStub { public: enum Flags { kNoFlags = 0, kArgsInRegisters = 1 << 0, kCallSiteInlineCheck = 1 << 1, kReturnTrueFalseObject = 1 << 2 }; explicit InstanceofStub(Flags flags) : flags_(flags) { } static Register left(); static Register right(); void Generate(MacroAssembler* masm); private: Major MajorKey() { return Instanceof; } int MinorKey() { return static_cast<int>(flags_); } bool HasArgsInRegisters() const { return (flags_ & kArgsInRegisters) != 0; } bool HasCallSiteInlineCheck() const { return (flags_ & kCallSiteInlineCheck) != 0; } bool ReturnTrueFalseObject() const { return (flags_ & kReturnTrueFalseObject) != 0; } virtual void PrintName(StringStream* stream); Flags flags_; }; class MathPowStub: public CodeStub { public: enum ExponentType { INTEGER, DOUBLE, TAGGED, ON_STACK}; explicit MathPowStub(ExponentType exponent_type) : exponent_type_(exponent_type) { } virtual void Generate(MacroAssembler* masm); private: virtual CodeStub::Major MajorKey() { return MathPow; } virtual int MinorKey() { return exponent_type_; } ExponentType exponent_type_; }; class ICCompareStub: public CodeStub { public: ICCompareStub(Token::Value op, CompareIC::State state) : op_(op), state_(state) { ASSERT(Token::IsCompareOp(op)); } virtual void Generate(MacroAssembler* masm); void set_known_map(Handle<Map> map) { known_map_ = map; } private: class OpField: public BitField<int, 0, 3> { }; class StateField: public BitField<int, 3, 5> { }; virtual void FinishCode(Handle<Code> code) { code->set_compare_state(state_); } virtual CodeStub::Major MajorKey() { return CompareIC; } virtual int MinorKey(); virtual int GetCodeKind() { return Code::COMPARE_IC; } void GenerateSmis(MacroAssembler* masm); void GenerateHeapNumbers(MacroAssembler* masm); void GenerateSymbols(MacroAssembler* masm); void GenerateStrings(MacroAssembler* masm); void GenerateObjects(MacroAssembler* masm); void GenerateMiss(MacroAssembler* masm); void GenerateKnownObjects(MacroAssembler* masm); bool strict() const { return op_ == Token::EQ_STRICT; } Condition GetCondition() const { return CompareIC::ComputeCondition(op_); } virtual void AddToSpecialCache(Handle<Code> new_object); virtual bool FindCodeInSpecialCache(Code** code_out); virtual bool UseSpecialCache() { return state_ == CompareIC::KNOWN_OBJECTS; } Token::Value op_; CompareIC::State state_; Handle<Map> known_map_; }; // Flags that control the compare stub code generation. enum CompareFlags { NO_COMPARE_FLAGS = 0, NO_SMI_COMPARE_IN_STUB = 1 << 0, NO_NUMBER_COMPARE_IN_STUB = 1 << 1, CANT_BOTH_BE_NAN = 1 << 2 }; enum NaNInformation { kBothCouldBeNaN, kCantBothBeNaN }; class CompareStub: public CodeStub { public: CompareStub(Condition cc, bool strict, CompareFlags flags, Register lhs, Register rhs) : cc_(cc), strict_(strict), never_nan_nan_((flags & CANT_BOTH_BE_NAN) != 0), include_number_compare_((flags & NO_NUMBER_COMPARE_IN_STUB) == 0), include_smi_compare_((flags & NO_SMI_COMPARE_IN_STUB) == 0), lhs_(lhs), rhs_(rhs) { } CompareStub(Condition cc, bool strict, CompareFlags flags) : cc_(cc), strict_(strict), never_nan_nan_((flags & CANT_BOTH_BE_NAN) != 0), include_number_compare_((flags & NO_NUMBER_COMPARE_IN_STUB) == 0), include_smi_compare_((flags & NO_SMI_COMPARE_IN_STUB) == 0), lhs_(no_reg), rhs_(no_reg) { } void Generate(MacroAssembler* masm); private: Condition cc_; bool strict_; // Only used for 'equal' comparisons. Tells the stub that we already know // that at least one side of the comparison is not NaN. This allows the // stub to use object identity in the positive case. We ignore it when // generating the minor key for other comparisons to avoid creating more // stubs. bool never_nan_nan_; // Do generate the number comparison code in the stub. Stubs without number // comparison code is used when the number comparison has been inlined, and // the stub will be called if one of the operands is not a number. bool include_number_compare_; // Generate the comparison code for two smi operands in the stub. bool include_smi_compare_; // Register holding the left hand side of the comparison if the stub gives // a choice, no_reg otherwise. Register lhs_; // Register holding the right hand side of the comparison if the stub gives // a choice, no_reg otherwise. Register rhs_; // Encoding of the minor key in 16 bits. class StrictField: public BitField<bool, 0, 1> {}; class NeverNanNanField: public BitField<bool, 1, 1> {}; class IncludeNumberCompareField: public BitField<bool, 2, 1> {}; class IncludeSmiCompareField: public BitField<bool, 3, 1> {}; class RegisterField: public BitField<bool, 4, 1> {}; class ConditionField: public BitField<int, 5, 11> {}; Major MajorKey() { return Compare; } int MinorKey(); virtual int GetCodeKind() { return Code::COMPARE_IC; } virtual void FinishCode(Handle<Code> code) { code->set_compare_state(CompareIC::GENERIC); } // Branch to the label if the given object isn't a symbol. void BranchIfNonSymbol(MacroAssembler* masm, Label* label, Register object, Register scratch); // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. virtual void PrintName(StringStream* stream); }; class CEntryStub : public CodeStub { public: explicit CEntryStub(int result_size, SaveFPRegsMode save_doubles = kDontSaveFPRegs) : result_size_(result_size), save_doubles_(save_doubles) { } void Generate(MacroAssembler* masm); // The version of this stub that doesn't save doubles is generated ahead of // time, so it's OK to call it from other stubs that can't cope with GC during // their code generation. On machines that always have gp registers (x64) we // can generate both variants ahead of time. virtual bool IsPregenerated(); static void GenerateAheadOfTime(); private: void GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate_scope); // Number of pointers/values returned. const int result_size_; SaveFPRegsMode save_doubles_; Major MajorKey() { return CEntry; } int MinorKey(); bool NeedsImmovableCode(); }; class JSEntryStub : public CodeStub { public: JSEntryStub() { } void Generate(MacroAssembler* masm) { GenerateBody(masm, false); } protected: void GenerateBody(MacroAssembler* masm, bool is_construct); private: Major MajorKey() { return JSEntry; } int MinorKey() { return 0; } virtual void FinishCode(Handle<Code> code); int handler_offset_; }; class JSConstructEntryStub : public JSEntryStub { public: JSConstructEntryStub() { } void Generate(MacroAssembler* masm) { GenerateBody(masm, true); } private: int MinorKey() { return 1; } virtual void PrintName(StringStream* stream) { stream->Add("JSConstructEntryStub"); } }; class ArgumentsAccessStub: public CodeStub { public: enum Type { READ_ELEMENT, NEW_NON_STRICT_FAST, NEW_NON_STRICT_SLOW, NEW_STRICT }; explicit ArgumentsAccessStub(Type type) : type_(type) { } private: Type type_; Major MajorKey() { return ArgumentsAccess; } int MinorKey() { return type_; } void Generate(MacroAssembler* masm); void GenerateReadElement(MacroAssembler* masm); void GenerateNewStrict(MacroAssembler* masm); void GenerateNewNonStrictFast(MacroAssembler* masm); void GenerateNewNonStrictSlow(MacroAssembler* masm); virtual void PrintName(StringStream* stream); }; class RegExpExecStub: public CodeStub { public: RegExpExecStub() { } private: Major MajorKey() { return RegExpExec; } int MinorKey() { return 0; } void Generate(MacroAssembler* masm); }; class RegExpConstructResultStub: public CodeStub { public: RegExpConstructResultStub() { } private: Major MajorKey() { return RegExpConstructResult; } int MinorKey() { return 0; } void Generate(MacroAssembler* masm); }; class CallFunctionStub: public CodeStub { public: CallFunctionStub(int argc, CallFunctionFlags flags) : argc_(argc), flags_(flags) { } void Generate(MacroAssembler* masm); virtual void FinishCode(Handle<Code> code) { code->set_has_function_cache(RecordCallTarget()); } static int ExtractArgcFromMinorKey(int minor_key) { return ArgcBits::decode(minor_key); } private: int argc_; CallFunctionFlags flags_; virtual void PrintName(StringStream* stream); // Minor key encoding in 32 bits with Bitfield <Type, shift, size>. class FlagBits: public BitField<CallFunctionFlags, 0, 2> {}; class ArgcBits: public BitField<unsigned, 2, 32 - 2> {}; Major MajorKey() { return CallFunction; } int MinorKey() { // Encode the parameters in a unique 32 bit value. return FlagBits::encode(flags_) | ArgcBits::encode(argc_); } bool ReceiverMightBeImplicit() { return (flags_ & RECEIVER_MIGHT_BE_IMPLICIT) != 0; } bool RecordCallTarget() { return (flags_ & RECORD_CALL_TARGET) != 0; } }; class CallConstructStub: public CodeStub { public: explicit CallConstructStub(CallFunctionFlags flags) : flags_(flags) {} void Generate(MacroAssembler* masm); virtual void FinishCode(Handle<Code> code) { code->set_has_function_cache(RecordCallTarget()); } private: CallFunctionFlags flags_; virtual void PrintName(StringStream* stream); Major MajorKey() { return CallConstruct; } int MinorKey() { return flags_; } bool RecordCallTarget() { return (flags_ & RECORD_CALL_TARGET) != 0; } }; enum StringIndexFlags { // Accepts smis or heap numbers. STRING_INDEX_IS_NUMBER, // Accepts smis or heap numbers that are valid array indices // (ECMA-262 15.4). Invalid indices are reported as being out of // range. STRING_INDEX_IS_ARRAY_INDEX }; // Generates code implementing String.prototype.charCodeAt. // // Only supports the case when the receiver is a string and the index // is a number (smi or heap number) that is a valid index into the // string. Additional index constraints are specified by the // flags. Otherwise, bails out to the provided labels. // // Register usage: |object| may be changed to another string in a way // that doesn't affect charCodeAt/charAt semantics, |index| is // preserved, |scratch| and |result| are clobbered. class StringCharCodeAtGenerator { public: StringCharCodeAtGenerator(Register object, Register index, Register result, Label* receiver_not_string, Label* index_not_number, Label* index_out_of_range, StringIndexFlags index_flags) : object_(object), index_(index), result_(result), receiver_not_string_(receiver_not_string), index_not_number_(index_not_number), index_out_of_range_(index_out_of_range), index_flags_(index_flags) { ASSERT(!result_.is(object_)); ASSERT(!result_.is(index_)); } // Generates the fast case code. On the fallthrough path |result| // register contains the result. void GenerateFast(MacroAssembler* masm); // Generates the slow case code. Must not be naturally // reachable. Expected to be put after a ret instruction (e.g., in // deferred code). Always jumps back to the fast case. void GenerateSlow(MacroAssembler* masm, const RuntimeCallHelper& call_helper); private: Register object_; Register index_; Register result_; Label* receiver_not_string_; Label* index_not_number_; Label* index_out_of_range_; StringIndexFlags index_flags_; Label call_runtime_; Label index_not_smi_; Label got_smi_index_; Label exit_; DISALLOW_COPY_AND_ASSIGN(StringCharCodeAtGenerator); }; // Generates code for creating a one-char string from a char code. class StringCharFromCodeGenerator { public: StringCharFromCodeGenerator(Register code, Register result) : code_(code), result_(result) { ASSERT(!code_.is(result_)); } // Generates the fast case code. On the fallthrough path |result| // register contains the result. void GenerateFast(MacroAssembler* masm); // Generates the slow case code. Must not be naturally // reachable. Expected to be put after a ret instruction (e.g., in // deferred code). Always jumps back to the fast case. void GenerateSlow(MacroAssembler* masm, const RuntimeCallHelper& call_helper); private: Register code_; Register result_; Label slow_case_; Label exit_; DISALLOW_COPY_AND_ASSIGN(StringCharFromCodeGenerator); }; // Generates code implementing String.prototype.charAt. // // Only supports the case when the receiver is a string and the index // is a number (smi or heap number) that is a valid index into the // string. Additional index constraints are specified by the // flags. Otherwise, bails out to the provided labels. // // Register usage: |object| may be changed to another string in a way // that doesn't affect charCodeAt/charAt semantics, |index| is // preserved, |scratch1|, |scratch2|, and |result| are clobbered. class StringCharAtGenerator { public: StringCharAtGenerator(Register object, Register index, Register scratch, Register result, Label* receiver_not_string, Label* index_not_number, Label* index_out_of_range, StringIndexFlags index_flags) : char_code_at_generator_(object, index, scratch, receiver_not_string, index_not_number, index_out_of_range, index_flags), char_from_code_generator_(scratch, result) {} // Generates the fast case code. On the fallthrough path |result| // register contains the result. void GenerateFast(MacroAssembler* masm); // Generates the slow case code. Must not be naturally // reachable. Expected to be put after a ret instruction (e.g., in // deferred code). Always jumps back to the fast case. void GenerateSlow(MacroAssembler* masm, const RuntimeCallHelper& call_helper); private: StringCharCodeAtGenerator char_code_at_generator_; StringCharFromCodeGenerator char_from_code_generator_; DISALLOW_COPY_AND_ASSIGN(StringCharAtGenerator); }; class AllowStubCallsScope { public: AllowStubCallsScope(MacroAssembler* masm, bool allow) : masm_(masm), previous_allow_(masm->allow_stub_calls()) { masm_->set_allow_stub_calls(allow); } ~AllowStubCallsScope() { masm_->set_allow_stub_calls(previous_allow_); } private: MacroAssembler* masm_; bool previous_allow_; DISALLOW_COPY_AND_ASSIGN(AllowStubCallsScope); }; class KeyedLoadElementStub : public CodeStub { public: explicit KeyedLoadElementStub(ElementsKind elements_kind) : elements_kind_(elements_kind) { } Major MajorKey() { return KeyedLoadElement; } int MinorKey() { return elements_kind_; } void Generate(MacroAssembler* masm); private: ElementsKind elements_kind_; DISALLOW_COPY_AND_ASSIGN(KeyedLoadElementStub); }; class KeyedStoreElementStub : public CodeStub { public: KeyedStoreElementStub(bool is_js_array, ElementsKind elements_kind, KeyedAccessGrowMode grow_mode) : is_js_array_(is_js_array), elements_kind_(elements_kind), grow_mode_(grow_mode) { } Major MajorKey() { return KeyedStoreElement; } int MinorKey() { return ElementsKindBits::encode(elements_kind_) | IsJSArrayBits::encode(is_js_array_) | GrowModeBits::encode(grow_mode_); } void Generate(MacroAssembler* masm); private: class ElementsKindBits: public BitField<ElementsKind, 0, 8> {}; class GrowModeBits: public BitField<KeyedAccessGrowMode, 8, 1> {}; class IsJSArrayBits: public BitField<bool, 9, 1> {}; bool is_js_array_; ElementsKind elements_kind_; KeyedAccessGrowMode grow_mode_; DISALLOW_COPY_AND_ASSIGN(KeyedStoreElementStub); }; class ToBooleanStub: public CodeStub { public: enum Type { UNDEFINED, BOOLEAN, NULL_TYPE, SMI, SPEC_OBJECT, STRING, HEAP_NUMBER, NUMBER_OF_TYPES }; // At most 8 different types can be distinguished, because the Code object // only has room for a single byte to hold a set of these types. :-P STATIC_ASSERT(NUMBER_OF_TYPES <= 8); class Types { public: Types() {} explicit Types(byte bits) : set_(bits) {} bool IsEmpty() const { return set_.IsEmpty(); } bool Contains(Type type) const { return set_.Contains(type); } void Add(Type type) { set_.Add(type); } byte ToByte() const { return set_.ToIntegral(); } void Print(StringStream* stream) const; void TraceTransition(Types to) const; bool Record(Handle<Object> object); bool NeedsMap() const; bool CanBeUndetectable() const; private: EnumSet<Type, byte> set_; }; static Types no_types() { return Types(); } static Types all_types() { return Types((1 << NUMBER_OF_TYPES) - 1); } explicit ToBooleanStub(Register tos, Types types = Types()) : tos_(tos), types_(types) { } void Generate(MacroAssembler* masm); virtual int GetCodeKind() { return Code::TO_BOOLEAN_IC; } virtual void PrintName(StringStream* stream); virtual bool SometimesSetsUpAFrame() { return false; } private: Major MajorKey() { return ToBoolean; } int MinorKey() { return (tos_.code() << NUMBER_OF_TYPES) | types_.ToByte(); } virtual void FinishCode(Handle<Code> code) { code->set_to_boolean_state(types_.ToByte()); } void CheckOddball(MacroAssembler* masm, Type type, Heap::RootListIndex value, bool result); void GenerateTypeTransition(MacroAssembler* masm); Register tos_; Types types_; }; class ElementsTransitionAndStoreStub : public CodeStub { public: ElementsTransitionAndStoreStub(ElementsKind from, ElementsKind to, bool is_jsarray, StrictModeFlag strict_mode, KeyedAccessGrowMode grow_mode) : from_(from), to_(to), is_jsarray_(is_jsarray), strict_mode_(strict_mode), grow_mode_(grow_mode) {} private: class FromBits: public BitField<ElementsKind, 0, 8> {}; class ToBits: public BitField<ElementsKind, 8, 8> {}; class IsJSArrayBits: public BitField<bool, 16, 1> {}; class StrictModeBits: public BitField<StrictModeFlag, 17, 1> {}; class GrowModeBits: public BitField<KeyedAccessGrowMode, 18, 1> {}; Major MajorKey() { return ElementsTransitionAndStore; } int MinorKey() { return FromBits::encode(from_) | ToBits::encode(to_) | IsJSArrayBits::encode(is_jsarray_) | StrictModeBits::encode(strict_mode_) | GrowModeBits::encode(grow_mode_); } void Generate(MacroAssembler* masm); ElementsKind from_; ElementsKind to_; bool is_jsarray_; StrictModeFlag strict_mode_; KeyedAccessGrowMode grow_mode_; DISALLOW_COPY_AND_ASSIGN(ElementsTransitionAndStoreStub); }; class StoreArrayLiteralElementStub : public CodeStub { public: explicit StoreArrayLiteralElementStub() {} private: Major MajorKey() { return StoreArrayLiteralElement; } int MinorKey() { return 0; } void Generate(MacroAssembler* masm); DISALLOW_COPY_AND_ASSIGN(StoreArrayLiteralElementStub); }; } } // namespace v8::internal #endif // V8_CODE_STUBS_H_