// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #include "ast.h" #include "deoptimizer.h" #include "frames-inl.h" #include "full-codegen.h" #include "lazy-instance.h" #include "mark-compact.h" #include "safepoint-table.h" #include "scopeinfo.h" #include "string-stream.h" #include "allocation-inl.h" namespace v8 { namespace internal { static ReturnAddressLocationResolver return_address_location_resolver = NULL; // Resolves pc_address through the resolution address function if one is set. static inline Address* ResolveReturnAddressLocation(Address* pc_address) { if (return_address_location_resolver == NULL) { return pc_address; } else { return reinterpret_cast<Address*>( return_address_location_resolver( reinterpret_cast<uintptr_t>(pc_address))); } } // Iterator that supports traversing the stack handlers of a // particular frame. Needs to know the top of the handler chain. class StackHandlerIterator BASE_EMBEDDED { public: StackHandlerIterator(const StackFrame* frame, StackHandler* handler) : limit_(frame->fp()), handler_(handler) { // Make sure the handler has already been unwound to this frame. ASSERT(frame->sp() <= handler->address()); } StackHandler* handler() const { return handler_; } bool done() { return handler_ == NULL || handler_->address() > limit_; } void Advance() { ASSERT(!done()); handler_ = handler_->next(); } private: const Address limit_; StackHandler* handler_; }; // ------------------------------------------------------------------------- #define INITIALIZE_SINGLETON(type, field) field##_(this), StackFrameIterator::StackFrameIterator() : isolate_(Isolate::Current()), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(isolate_->thread_local_top()), fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) { Reset(); } StackFrameIterator::StackFrameIterator(Isolate* isolate) : isolate_(isolate), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(isolate_->thread_local_top()), fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) { Reset(); } StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t) : isolate_(isolate), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(t), fp_(NULL), sp_(NULL), advance_(&StackFrameIterator::AdvanceWithHandler) { Reset(); } StackFrameIterator::StackFrameIterator(Isolate* isolate, bool use_top, Address fp, Address sp) : isolate_(isolate), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(NULL), handler_(NULL), thread_(use_top ? isolate_->thread_local_top() : NULL), fp_(use_top ? NULL : fp), sp_(sp), advance_(use_top ? &StackFrameIterator::AdvanceWithHandler : &StackFrameIterator::AdvanceWithoutHandler) { if (use_top || fp != NULL) { Reset(); } } #undef INITIALIZE_SINGLETON void StackFrameIterator::AdvanceWithHandler() { ASSERT(!done()); // Compute the state of the calling frame before restoring // callee-saved registers and unwinding handlers. This allows the // frame code that computes the caller state to access the top // handler and the value of any callee-saved register if needed. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); // Unwind handlers corresponding to the current frame. StackHandlerIterator it(frame_, handler_); while (!it.done()) it.Advance(); handler_ = it.handler(); // Advance to the calling frame. frame_ = SingletonFor(type, &state); // When we're done iterating over the stack frames, the handler // chain must have been completely unwound. ASSERT(!done() || handler_ == NULL); } void StackFrameIterator::AdvanceWithoutHandler() { // A simpler version of Advance which doesn't care about handler. ASSERT(!done()); StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); frame_ = SingletonFor(type, &state); } void StackFrameIterator::Reset() { StackFrame::State state; StackFrame::Type type; if (thread_ != NULL) { type = ExitFrame::GetStateForFramePointer( Isolate::c_entry_fp(thread_), &state); handler_ = StackHandler::FromAddress( Isolate::handler(thread_)); } else { ASSERT(fp_ != NULL); state.fp = fp_; state.sp = sp_; state.pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(StandardFrame::ComputePCAddress(fp_))); type = StackFrame::ComputeType(isolate(), &state); } if (SingletonFor(type) == NULL) return; frame_ = SingletonFor(type, &state); } StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type, StackFrame::State* state) { if (type == StackFrame::NONE) return NULL; StackFrame* result = SingletonFor(type); ASSERT(result != NULL); result->state_ = *state; return result; } StackFrame* StackFrameIterator::SingletonFor(StackFrame::Type type) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: result = &field##_; break; StackFrame* result = NULL; switch (type) { case StackFrame::NONE: return NULL; STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: break; } return result; #undef FRAME_TYPE_CASE } // ------------------------------------------------------------------------- StackTraceFrameIterator::StackTraceFrameIterator() { if (!done() && !IsValidFrame()) Advance(); } StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate) : JavaScriptFrameIterator(isolate) { if (!done() && !IsValidFrame()) Advance(); } void StackTraceFrameIterator::Advance() { while (true) { JavaScriptFrameIterator::Advance(); if (done()) return; if (IsValidFrame()) return; } } bool StackTraceFrameIterator::IsValidFrame() { if (!frame()->function()->IsJSFunction()) return false; Object* script = JSFunction::cast(frame()->function())->shared()->script(); // Don't show functions from native scripts to user. return (script->IsScript() && Script::TYPE_NATIVE != Script::cast(script)->type()->value()); } // ------------------------------------------------------------------------- bool SafeStackFrameIterator::ExitFrameValidator::IsValidFP(Address fp) { if (!validator_.IsValid(fp)) return false; Address sp = ExitFrame::ComputeStackPointer(fp); if (!validator_.IsValid(sp)) return false; StackFrame::State state; ExitFrame::FillState(fp, sp, &state); if (!validator_.IsValid(reinterpret_cast<Address>(state.pc_address))) { return false; } return *state.pc_address != NULL; } SafeStackFrameIterator::ActiveCountMaintainer::ActiveCountMaintainer( Isolate* isolate) : isolate_(isolate) { isolate_->set_safe_stack_iterator_counter( isolate_->safe_stack_iterator_counter() + 1); } SafeStackFrameIterator::ActiveCountMaintainer::~ActiveCountMaintainer() { isolate_->set_safe_stack_iterator_counter( isolate_->safe_stack_iterator_counter() - 1); } SafeStackFrameIterator::SafeStackFrameIterator( Isolate* isolate, Address fp, Address sp, Address low_bound, Address high_bound) : maintainer_(isolate), stack_validator_(low_bound, high_bound), is_valid_top_(IsValidTop(isolate, low_bound, high_bound)), is_valid_fp_(IsWithinBounds(low_bound, high_bound, fp)), is_working_iterator_(is_valid_top_ || is_valid_fp_), iteration_done_(!is_working_iterator_), iterator_(isolate, is_valid_top_, is_valid_fp_ ? fp : NULL, sp) { } bool SafeStackFrameIterator::is_active(Isolate* isolate) { return isolate->safe_stack_iterator_counter() > 0; } bool SafeStackFrameIterator::IsValidTop(Isolate* isolate, Address low_bound, Address high_bound) { ThreadLocalTop* top = isolate->thread_local_top(); Address fp = Isolate::c_entry_fp(top); ExitFrameValidator validator(low_bound, high_bound); if (!validator.IsValidFP(fp)) return false; return Isolate::handler(top) != NULL; } void SafeStackFrameIterator::Advance() { ASSERT(is_working_iterator_); ASSERT(!done()); StackFrame* last_frame = iterator_.frame(); Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); // Before advancing to the next stack frame, perform pointer validity tests iteration_done_ = !IsValidFrame(last_frame) || !CanIterateHandles(last_frame, iterator_.handler()) || !IsValidCaller(last_frame); if (iteration_done_) return; iterator_.Advance(); if (iterator_.done()) return; // Check that we have actually moved to the previous frame in the stack StackFrame* prev_frame = iterator_.frame(); iteration_done_ = prev_frame->sp() < last_sp || prev_frame->fp() < last_fp; } bool SafeStackFrameIterator::CanIterateHandles(StackFrame* frame, StackHandler* handler) { // If StackIterator iterates over StackHandles, verify that // StackHandlerIterator can be instantiated (see StackHandlerIterator // constructor.) return !is_valid_top_ || (frame->sp() <= handler->address()); } bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const { return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); } bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) { StackFrame::State state; if (frame->is_entry() || frame->is_entry_construct()) { // See EntryFrame::GetCallerState. It computes the caller FP address // and calls ExitFrame::GetStateForFramePointer on it. We need to be // sure that caller FP address is valid. Address caller_fp = Memory::Address_at( frame->fp() + EntryFrameConstants::kCallerFPOffset); ExitFrameValidator validator(stack_validator_); if (!validator.IsValidFP(caller_fp)) return false; } else if (frame->is_arguments_adaptor()) { // See ArgumentsAdaptorFrame::GetCallerStackPointer. It assumes that // the number of arguments is stored on stack as Smi. We need to check // that it really an Smi. Object* number_of_args = reinterpret_cast<ArgumentsAdaptorFrame*>(frame)-> GetExpression(0); if (!number_of_args->IsSmi()) { return false; } } frame->ComputeCallerState(&state); return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) && iterator_.SingletonFor(frame->GetCallerState(&state)) != NULL; } void SafeStackFrameIterator::Reset() { if (is_working_iterator_) { iterator_.Reset(); iteration_done_ = false; } } // ------------------------------------------------------------------------- SafeStackTraceFrameIterator::SafeStackTraceFrameIterator( Isolate* isolate, Address fp, Address sp, Address low_bound, Address high_bound) : SafeJavaScriptFrameIterator(isolate, fp, sp, low_bound, high_bound) { if (!done() && !frame()->is_java_script()) Advance(); } void SafeStackTraceFrameIterator::Advance() { while (true) { SafeJavaScriptFrameIterator::Advance(); if (done()) return; if (frame()->is_java_script()) return; } } Code* StackFrame::GetSafepointData(Isolate* isolate, Address inner_pointer, SafepointEntry* safepoint_entry, unsigned* stack_slots) { InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); if (!entry->safepoint_entry.is_valid()) { entry->safepoint_entry = entry->code->GetSafepointEntry(inner_pointer); ASSERT(entry->safepoint_entry.is_valid()); } else { ASSERT(entry->safepoint_entry.Equals( entry->code->GetSafepointEntry(inner_pointer))); } // Fill in the results and return the code. Code* code = entry->code; *safepoint_entry = entry->safepoint_entry; *stack_slots = code->stack_slots(); return code; } bool StackFrame::HasHandler() const { StackHandlerIterator it(this, top_handler()); return !it.done(); } #ifdef DEBUG static bool GcSafeCodeContains(HeapObject* object, Address addr); #endif void StackFrame::IteratePc(ObjectVisitor* v, Address* pc_address, Code* holder) { Address pc = *pc_address; ASSERT(GcSafeCodeContains(holder, pc)); unsigned pc_offset = static_cast<unsigned>(pc - holder->instruction_start()); Object* code = holder; v->VisitPointer(&code); if (code != holder) { holder = reinterpret_cast<Code*>(code); pc = holder->instruction_start() + pc_offset; *pc_address = pc; } } void StackFrame::SetReturnAddressLocationResolver( ReturnAddressLocationResolver resolver) { ASSERT(return_address_location_resolver == NULL); return_address_location_resolver = resolver; } StackFrame::Type StackFrame::ComputeType(Isolate* isolate, State* state) { ASSERT(state->fp != NULL); if (StandardFrame::IsArgumentsAdaptorFrame(state->fp)) { return ARGUMENTS_ADAPTOR; } // The marker and function offsets overlap. If the marker isn't a // smi then the frame is a JavaScript frame -- and the marker is // really the function. const int offset = StandardFrameConstants::kMarkerOffset; Object* marker = Memory::Object_at(state->fp + offset); if (!marker->IsSmi()) { // If we're using a "safe" stack iterator, we treat optimized // frames as normal JavaScript frames to avoid having to look // into the heap to determine the state. This is safe as long // as nobody tries to GC... if (SafeStackFrameIterator::is_active(isolate)) return JAVA_SCRIPT; Code::Kind kind = GetContainingCode(isolate, *(state->pc_address))->kind(); ASSERT(kind == Code::FUNCTION || kind == Code::OPTIMIZED_FUNCTION); return (kind == Code::OPTIMIZED_FUNCTION) ? OPTIMIZED : JAVA_SCRIPT; } return static_cast<StackFrame::Type>(Smi::cast(marker)->value()); } StackFrame::Type StackFrame::GetCallerState(State* state) const { ComputeCallerState(state); return ComputeType(isolate(), state); } Code* EntryFrame::unchecked_code() const { return HEAP->raw_unchecked_js_entry_code(); } void EntryFrame::ComputeCallerState(State* state) const { GetCallerState(state); } void EntryFrame::SetCallerFp(Address caller_fp) { const int offset = EntryFrameConstants::kCallerFPOffset; Memory::Address_at(this->fp() + offset) = caller_fp; } StackFrame::Type EntryFrame::GetCallerState(State* state) const { const int offset = EntryFrameConstants::kCallerFPOffset; Address fp = Memory::Address_at(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } Code* EntryConstructFrame::unchecked_code() const { return HEAP->raw_unchecked_js_construct_entry_code(); } Object*& ExitFrame::code_slot() const { const int offset = ExitFrameConstants::kCodeOffset; return Memory::Object_at(fp() + offset); } Code* ExitFrame::unchecked_code() const { return reinterpret_cast<Code*>(code_slot()); } void ExitFrame::ComputeCallerState(State* state) const { // Set up the caller state. state->sp = caller_sp(); state->fp = Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(fp() + ExitFrameConstants::kCallerPCOffset)); } void ExitFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + ExitFrameConstants::kCallerFPOffset) = caller_fp; } void ExitFrame::Iterate(ObjectVisitor* v) const { // The arguments are traversed as part of the expression stack of // the calling frame. IteratePc(v, pc_address(), LookupCode()); v->VisitPointer(&code_slot()); } Address ExitFrame::GetCallerStackPointer() const { return fp() + ExitFrameConstants::kCallerSPDisplacement; } StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { if (fp == 0) return NONE; Address sp = ComputeStackPointer(fp); FillState(fp, sp, state); ASSERT(*state->pc_address != NULL); return EXIT; } void ExitFrame::FillState(Address fp, Address sp, State* state) { state->sp = sp; state->fp = fp; state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(sp - 1 * kPointerSize)); } Address StandardFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kPointerSize; } Object* StandardFrame::GetExpression(Address fp, int index) { return Memory::Object_at(GetExpressionAddress(fp, index)); } Address StandardFrame::GetExpressionAddress(Address fp, int n) { const int offset = StandardFrameConstants::kExpressionsOffset; return fp + offset - n * kPointerSize; } int StandardFrame::ComputeExpressionsCount() const { const int offset = StandardFrameConstants::kExpressionsOffset + kPointerSize; Address base = fp() + offset; Address limit = sp(); ASSERT(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast<int>((base - limit) / kPointerSize); } void StandardFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = caller_fp(); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast<Address*>(ComputePCAddress(fp()))); } void StandardFrame::SetCallerFp(Address caller_fp) { Memory::Address_at(fp() + StandardFrameConstants::kCallerFPOffset) = caller_fp; } bool StandardFrame::IsExpressionInsideHandler(int n) const { Address address = GetExpressionAddress(n); for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) { if (it.handler()->includes(address)) return true; } return false; } void OptimizedFrame::Iterate(ObjectVisitor* v) const { #ifdef DEBUG // Make sure that optimized frames do not contain any stack handlers. StackHandlerIterator it(this, top_handler()); ASSERT(it.done()); #endif // Make sure that we're not doing "safe" stack frame iteration. We cannot // possibly find pointers in optimized frames in that state. ASSERT(!SafeStackFrameIterator::is_active(isolate())); // Compute the safepoint information. unsigned stack_slots = 0; SafepointEntry safepoint_entry; Code* code = StackFrame::GetSafepointData( isolate(), pc(), &safepoint_entry, &stack_slots); unsigned slot_space = stack_slots * kPointerSize; // Visit the outgoing parameters. Object** parameters_base = &Memory::Object_at(sp()); Object** parameters_limit = &Memory::Object_at( fp() + JavaScriptFrameConstants::kFunctionOffset - slot_space); // Visit the parameters that may be on top of the saved registers. if (safepoint_entry.argument_count() > 0) { v->VisitPointers(parameters_base, parameters_base + safepoint_entry.argument_count()); parameters_base += safepoint_entry.argument_count(); } // Skip saved double registers. if (safepoint_entry.has_doubles()) { parameters_base += DoubleRegister::kNumAllocatableRegisters * kDoubleSize / kPointerSize; } // Visit the registers that contain pointers if any. if (safepoint_entry.HasRegisters()) { for (int i = kNumSafepointRegisters - 1; i >=0; i--) { if (safepoint_entry.HasRegisterAt(i)) { int reg_stack_index = MacroAssembler::SafepointRegisterStackIndex(i); v->VisitPointer(parameters_base + reg_stack_index); } } // Skip the words containing the register values. parameters_base += kNumSafepointRegisters; } // We're done dealing with the register bits. uint8_t* safepoint_bits = safepoint_entry.bits(); safepoint_bits += kNumSafepointRegisters >> kBitsPerByteLog2; // Visit the rest of the parameters. v->VisitPointers(parameters_base, parameters_limit); // Visit pointer spill slots and locals. for (unsigned index = 0; index < stack_slots; index++) { int byte_index = index >> kBitsPerByteLog2; int bit_index = index & (kBitsPerByte - 1); if ((safepoint_bits[byte_index] & (1U << bit_index)) != 0) { v->VisitPointer(parameters_limit + index); } } // Visit the context and the function. Object** fixed_base = &Memory::Object_at( fp() + JavaScriptFrameConstants::kFunctionOffset); Object** fixed_limit = &Memory::Object_at(fp()); v->VisitPointers(fixed_base, fixed_limit); // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), code); } bool JavaScriptFrame::IsConstructor() const { Address fp = caller_fp(); if (has_adapted_arguments()) { // Skip the arguments adaptor frame and look at the real caller. fp = Memory::Address_at(fp + StandardFrameConstants::kCallerFPOffset); } return IsConstructFrame(fp); } int JavaScriptFrame::GetArgumentsLength() const { // If there is an arguments adaptor frame get the arguments length from it. if (has_adapted_arguments()) { return Smi::cast(GetExpression(caller_fp(), 0))->value(); } else { return GetNumberOfIncomingArguments(); } } Code* JavaScriptFrame::unchecked_code() const { JSFunction* function = JSFunction::cast(this->function()); return function->unchecked_code(); } int JavaScriptFrame::GetNumberOfIncomingArguments() const { ASSERT(!SafeStackFrameIterator::is_active(isolate()) && isolate()->heap()->gc_state() == Heap::NOT_IN_GC); JSFunction* function = JSFunction::cast(this->function()); return function->shared()->formal_parameter_count(); } Address JavaScriptFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } void JavaScriptFrame::GetFunctions(List<JSFunction*>* functions) { ASSERT(functions->length() == 0); functions->Add(JSFunction::cast(function())); } void JavaScriptFrame::Summarize(List<FrameSummary>* functions) { ASSERT(functions->length() == 0); Code* code_pointer = LookupCode(); int offset = static_cast<int>(pc() - code_pointer->address()); FrameSummary summary(receiver(), JSFunction::cast(function()), code_pointer, offset, IsConstructor()); functions->Add(summary); } void JavaScriptFrame::PrintTop(FILE* file, bool print_args, bool print_line_number) { // constructor calls HandleScope scope; AssertNoAllocation no_allocation; JavaScriptFrameIterator it; while (!it.done()) { if (it.frame()->is_java_script()) { JavaScriptFrame* frame = it.frame(); if (frame->IsConstructor()) PrintF(file, "new "); // function name Object* maybe_fun = frame->function(); if (maybe_fun->IsJSFunction()) { JSFunction* fun = JSFunction::cast(maybe_fun); fun->PrintName(); Code* js_code = frame->unchecked_code(); Address pc = frame->pc(); int code_offset = static_cast<int>(pc - js_code->instruction_start()); PrintF("+%d", code_offset); SharedFunctionInfo* shared = fun->shared(); if (print_line_number) { Code* code = Code::cast( v8::internal::Isolate::Current()->heap()->FindCodeObject(pc)); int source_pos = code->SourcePosition(pc); Object* maybe_script = shared->script(); if (maybe_script->IsScript()) { Handle<Script> script(Script::cast(maybe_script)); int line = GetScriptLineNumberSafe(script, source_pos) + 1; Object* script_name_raw = script->name(); if (script_name_raw->IsString()) { String* script_name = String::cast(script->name()); SmartArrayPointer<char> c_script_name = script_name->ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); PrintF(file, " at %s:%d", *c_script_name, line); } else { PrintF(file, "at <unknown>:%d", line); } } else { PrintF(file, " at <unknown>:<unknown>"); } } } else { PrintF("<unknown>"); } if (print_args) { // function arguments // (we are intentionally only printing the actually // supplied parameters, not all parameters required) PrintF(file, "(this="); frame->receiver()->ShortPrint(file); const int length = frame->ComputeParametersCount(); for (int i = 0; i < length; i++) { PrintF(file, ", "); frame->GetParameter(i)->ShortPrint(file); } PrintF(file, ")"); } break; } it.Advance(); } } void FrameSummary::Print() { PrintF("receiver: "); receiver_->ShortPrint(); PrintF("\nfunction: "); function_->shared()->DebugName()->ShortPrint(); PrintF("\ncode: "); code_->ShortPrint(); if (code_->kind() == Code::FUNCTION) PrintF(" NON-OPT"); if (code_->kind() == Code::OPTIMIZED_FUNCTION) PrintF(" OPT"); PrintF("\npc: %d\n", offset_); } void OptimizedFrame::Summarize(List<FrameSummary>* frames) { ASSERT(frames->length() == 0); ASSERT(is_optimized()); int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index); // BUG(3243555): Since we don't have a lazy-deopt registered at // throw-statements, we can't use the translation at the call-site of // throw. An entry with no deoptimization index indicates a call-site // without a lazy-deopt. As a consequence we are not allowed to inline // functions containing throw. if (deopt_index == Safepoint::kNoDeoptimizationIndex) { JavaScriptFrame::Summarize(frames); return; } TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next()); ASSERT(opcode == Translation::BEGIN); it.Next(); // Drop frame count. int jsframe_count = it.Next(); // We create the summary in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. bool is_constructor = IsConstructor(); int i = jsframe_count; while (i > 0) { opcode = static_cast<Translation::Opcode>(it.Next()); if (opcode == Translation::JS_FRAME) { i--; int ast_id = it.Next(); int function_id = it.Next(); it.Next(); // Skip height. JSFunction* function = JSFunction::cast(data->LiteralArray()->get(function_id)); // The translation commands are ordered and the receiver is always // at the first position. Since we are always at a call when we need // to construct a stack trace, the receiver is always in a stack slot. opcode = static_cast<Translation::Opcode>(it.Next()); ASSERT(opcode == Translation::STACK_SLOT || opcode == Translation::LITERAL); int index = it.Next(); // Get the correct receiver in the optimized frame. Object* receiver = NULL; if (opcode == Translation::LITERAL) { receiver = data->LiteralArray()->get(index); } else { // Positive index means the value is spilled to the locals // area. Negative means it is stored in the incoming parameter // area. if (index >= 0) { receiver = GetExpression(index); } else { // Index -1 overlaps with last parameter, -n with the first parameter, // (-n - 1) with the receiver with n being the number of parameters // of the outermost, optimized frame. int parameter_count = ComputeParametersCount(); int parameter_index = index + parameter_count; receiver = (parameter_index == -1) ? this->receiver() : this->GetParameter(parameter_index); } } Code* code = function->shared()->code(); DeoptimizationOutputData* output_data = DeoptimizationOutputData::cast(code->deoptimization_data()); unsigned entry = Deoptimizer::GetOutputInfo(output_data, ast_id, function->shared()); unsigned pc_offset = FullCodeGenerator::PcField::decode(entry) + Code::kHeaderSize; ASSERT(pc_offset > 0); FrameSummary summary(receiver, function, code, pc_offset, is_constructor); frames->Add(summary); is_constructor = false; } else if (opcode == Translation::CONSTRUCT_STUB_FRAME) { // The next encountered JS_FRAME will be marked as a constructor call. it.Skip(Translation::NumberOfOperandsFor(opcode)); ASSERT(!is_constructor); is_constructor = true; } else { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); } } ASSERT(!is_constructor); } DeoptimizationInputData* OptimizedFrame::GetDeoptimizationData( int* deopt_index) { ASSERT(is_optimized()); JSFunction* opt_function = JSFunction::cast(function()); Code* code = opt_function->code(); // The code object may have been replaced by lazy deoptimization. Fall // back to a slow search in this case to find the original optimized // code object. if (!code->contains(pc())) { code = isolate()->inner_pointer_to_code_cache()-> GcSafeFindCodeForInnerPointer(pc()); } ASSERT(code != NULL); ASSERT(code->kind() == Code::OPTIMIZED_FUNCTION); SafepointEntry safepoint_entry = code->GetSafepointEntry(pc()); *deopt_index = safepoint_entry.deoptimization_index(); ASSERT(*deopt_index != Safepoint::kNoDeoptimizationIndex); return DeoptimizationInputData::cast(code->deoptimization_data()); } int OptimizedFrame::GetInlineCount() { ASSERT(is_optimized()); int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index); TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next()); ASSERT(opcode == Translation::BEGIN); USE(opcode); it.Next(); // Drop frame count. int jsframe_count = it.Next(); return jsframe_count; } void OptimizedFrame::GetFunctions(List<JSFunction*>* functions) { ASSERT(functions->length() == 0); ASSERT(is_optimized()); int deopt_index = Safepoint::kNoDeoptimizationIndex; DeoptimizationInputData* data = GetDeoptimizationData(&deopt_index); TranslationIterator it(data->TranslationByteArray(), data->TranslationIndex(deopt_index)->value()); Translation::Opcode opcode = static_cast<Translation::Opcode>(it.Next()); ASSERT(opcode == Translation::BEGIN); it.Next(); // Drop frame count. int jsframe_count = it.Next(); // We insert the frames in reverse order because the frames // in the deoptimization translation are ordered bottom-to-top. while (jsframe_count > 0) { opcode = static_cast<Translation::Opcode>(it.Next()); if (opcode == Translation::JS_FRAME) { jsframe_count--; it.Next(); // Skip ast id. int function_id = it.Next(); it.Next(); // Skip height. JSFunction* function = JSFunction::cast(data->LiteralArray()->get(function_id)); functions->Add(function); } else { // Skip over operands to advance to the next opcode. it.Skip(Translation::NumberOfOperandsFor(opcode)); } } } int ArgumentsAdaptorFrame::GetNumberOfIncomingArguments() const { return Smi::cast(GetExpression(0))->value(); } Address ArgumentsAdaptorFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } Address InternalFrame::GetCallerStackPointer() const { // Internal frames have no arguments. The stack pointer of the // caller is at a fixed offset from the frame pointer. return fp() + StandardFrameConstants::kCallerSPOffset; } Code* ArgumentsAdaptorFrame::unchecked_code() const { return isolate()->builtins()->builtin( Builtins::kArgumentsAdaptorTrampoline); } Code* InternalFrame::unchecked_code() const { const int offset = InternalFrameConstants::kCodeOffset; Object* code = Memory::Object_at(fp() + offset); ASSERT(code != NULL); return reinterpret_cast<Code*>(code); } void StackFrame::PrintIndex(StringStream* accumulator, PrintMode mode, int index) { accumulator->Add((mode == OVERVIEW) ? "%5d: " : "[%d]: ", index); } void JavaScriptFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { HandleScope scope; Object* receiver = this->receiver(); Object* function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); Code* code = NULL; if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver, &code); // Get scope information for nicer output, if possible. If code is NULL, or // doesn't contain scope info, scope_info will return 0 for the number of // parameters, stack local variables, context local variables, stack slots, // or context slots. Handle<ScopeInfo> scope_info(ScopeInfo::Empty()); if (function->IsJSFunction()) { Handle<SharedFunctionInfo> shared(JSFunction::cast(function)->shared()); scope_info = Handle<ScopeInfo>(shared->scope_info()); Object* script_obj = shared->script(); if (script_obj->IsScript()) { Handle<Script> script(Script::cast(script_obj)); accumulator->Add(" ["); accumulator->PrintName(script->name()); Address pc = this->pc(); if (code != NULL && code->kind() == Code::FUNCTION && pc >= code->instruction_start() && pc < code->instruction_end()) { int source_pos = code->SourcePosition(pc); int line = GetScriptLineNumberSafe(script, source_pos) + 1; accumulator->Add(":%d", line); } else { int function_start_pos = shared->start_position(); int line = GetScriptLineNumberSafe(script, function_start_pos) + 1; accumulator->Add(":~%d", line); } accumulator->Add("] "); } } accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(","); // If we have a name for the parameter we print it. Nameless // parameters are either because we have more actual parameters // than formal parameters or because we have no scope information. if (i < scope_info->ParameterCount()) { accumulator->PrintName(scope_info->ParameterName(i)); accumulator->Add("="); } accumulator->Add("%o", GetParameter(i)); } accumulator->Add(")"); if (mode == OVERVIEW) { accumulator->Add("\n"); return; } if (is_optimized()) { accumulator->Add(" {\n// optimized frame\n}\n"); return; } accumulator->Add(" {\n"); // Compute the number of locals and expression stack elements. int stack_locals_count = scope_info->StackLocalCount(); int heap_locals_count = scope_info->ContextLocalCount(); int expressions_count = ComputeExpressionsCount(); // Print stack-allocated local variables. if (stack_locals_count > 0) { accumulator->Add(" // stack-allocated locals\n"); } for (int i = 0; i < stack_locals_count; i++) { accumulator->Add(" var "); accumulator->PrintName(scope_info->StackLocalName(i)); accumulator->Add(" = "); if (i < expressions_count) { accumulator->Add("%o", GetExpression(i)); } else { accumulator->Add("// no expression found - inconsistent frame?"); } accumulator->Add("\n"); } // Try to get hold of the context of this frame. Context* context = NULL; if (this->context() != NULL && this->context()->IsContext()) { context = Context::cast(this->context()); } // Print heap-allocated local variables. if (heap_locals_count > 0) { accumulator->Add(" // heap-allocated locals\n"); } for (int i = 0; i < heap_locals_count; i++) { accumulator->Add(" var "); accumulator->PrintName(scope_info->ContextLocalName(i)); accumulator->Add(" = "); if (context != NULL) { if (i < context->length()) { accumulator->Add("%o", context->get(Context::MIN_CONTEXT_SLOTS + i)); } else { accumulator->Add( "// warning: missing context slot - inconsistent frame?"); } } else { accumulator->Add("// warning: no context found - inconsistent frame?"); } accumulator->Add("\n"); } // Print the expression stack. int expressions_start = stack_locals_count; if (expressions_start < expressions_count) { accumulator->Add(" // expression stack (top to bottom)\n"); } for (int i = expressions_count - 1; i >= expressions_start; i--) { if (IsExpressionInsideHandler(i)) continue; accumulator->Add(" [%02d] : %o\n", i, GetExpression(i)); } // Print details about the function. if (FLAG_max_stack_trace_source_length != 0 && code != NULL) { SharedFunctionInfo* shared = JSFunction::cast(function)->shared(); accumulator->Add("--------- s o u r c e c o d e ---------\n"); shared->SourceCodePrint(accumulator, FLAG_max_stack_trace_source_length); accumulator->Add("\n-----------------------------------------\n"); } accumulator->Add("}\n\n"); } void ArgumentsAdaptorFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { int actual = ComputeParametersCount(); int expected = -1; Object* function = this->function(); if (function->IsJSFunction()) { expected = JSFunction::cast(function)->shared()->formal_parameter_count(); } PrintIndex(accumulator, mode, index); accumulator->Add("arguments adaptor frame: %d->%d", actual, expected); if (mode == OVERVIEW) { accumulator->Add("\n"); return; } accumulator->Add(" {\n"); // Print actual arguments. if (actual > 0) accumulator->Add(" // actual arguments\n"); for (int i = 0; i < actual; i++) { accumulator->Add(" [%02d] : %o", i, GetParameter(i)); if (expected != -1 && i >= expected) { accumulator->Add(" // not passed to callee"); } accumulator->Add("\n"); } accumulator->Add("}\n\n"); } void EntryFrame::Iterate(ObjectVisitor* v) const { StackHandlerIterator it(this, top_handler()); ASSERT(!it.done()); StackHandler* handler = it.handler(); ASSERT(handler->is_js_entry()); handler->Iterate(v, LookupCode()); #ifdef DEBUG // Make sure that the entry frame does not contain more than one // stack handler. it.Advance(); ASSERT(it.done()); #endif IteratePc(v, pc_address(), LookupCode()); } void StandardFrame::IterateExpressions(ObjectVisitor* v) const { const int offset = StandardFrameConstants::kContextOffset; Object** base = &Memory::Object_at(sp()); Object** limit = &Memory::Object_at(fp() + offset) + 1; for (StackHandlerIterator it(this, top_handler()); !it.done(); it.Advance()) { StackHandler* handler = it.handler(); // Traverse pointers down to - but not including - the next // handler in the handler chain. Update the base to skip the // handler and allow the handler to traverse its own pointers. const Address address = handler->address(); v->VisitPointers(base, reinterpret_cast<Object**>(address)); base = reinterpret_cast<Object**>(address + StackHandlerConstants::kSize); // Traverse the pointers in the handler itself. handler->Iterate(v, LookupCode()); } v->VisitPointers(base, limit); } void JavaScriptFrame::Iterate(ObjectVisitor* v) const { IterateExpressions(v); IteratePc(v, pc_address(), LookupCode()); } void InternalFrame::Iterate(ObjectVisitor* v) const { // Internal frames only have object pointers on the expression stack // as they never have any arguments. IterateExpressions(v); IteratePc(v, pc_address(), LookupCode()); } // ------------------------------------------------------------------------- JavaScriptFrame* StackFrameLocator::FindJavaScriptFrame(int n) { ASSERT(n >= 0); for (int i = 0; i <= n; i++) { while (!iterator_.frame()->is_java_script()) iterator_.Advance(); if (i == n) return JavaScriptFrame::cast(iterator_.frame()); iterator_.Advance(); } UNREACHABLE(); return NULL; } // ------------------------------------------------------------------------- static Map* GcSafeMapOfCodeSpaceObject(HeapObject* object) { MapWord map_word = object->map_word(); return map_word.IsForwardingAddress() ? map_word.ToForwardingAddress()->map() : map_word.ToMap(); } static int GcSafeSizeOfCodeSpaceObject(HeapObject* object) { return object->SizeFromMap(GcSafeMapOfCodeSpaceObject(object)); } #ifdef DEBUG static bool GcSafeCodeContains(HeapObject* code, Address addr) { Map* map = GcSafeMapOfCodeSpaceObject(code); ASSERT(map == code->GetHeap()->code_map()); Address start = code->address(); Address end = code->address() + code->SizeFromMap(map); return start <= addr && addr < end; } #endif Code* InnerPointerToCodeCache::GcSafeCastToCode(HeapObject* object, Address inner_pointer) { Code* code = reinterpret_cast<Code*>(object); ASSERT(code != NULL && GcSafeCodeContains(code, inner_pointer)); return code; } Code* InnerPointerToCodeCache::GcSafeFindCodeForInnerPointer( Address inner_pointer) { Heap* heap = isolate_->heap(); // Check if the inner pointer points into a large object chunk. LargePage* large_page = heap->lo_space()->FindPage(inner_pointer); if (large_page != NULL) { return GcSafeCastToCode(large_page->GetObject(), inner_pointer); } // Iterate through the page until we reach the end or find an object starting // after the inner pointer. Page* page = Page::FromAddress(inner_pointer); Address addr = page->skip_list()->StartFor(inner_pointer); Address top = heap->code_space()->top(); Address limit = heap->code_space()->limit(); while (true) { if (addr == top && addr != limit) { addr = limit; continue; } HeapObject* obj = HeapObject::FromAddress(addr); int obj_size = GcSafeSizeOfCodeSpaceObject(obj); Address next_addr = addr + obj_size; if (next_addr > inner_pointer) return GcSafeCastToCode(obj, inner_pointer); addr = next_addr; } } InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* InnerPointerToCodeCache::GetCacheEntry(Address inner_pointer) { isolate_->counters()->pc_to_code()->Increment(); ASSERT(IsPowerOf2(kInnerPointerToCodeCacheSize)); uint32_t hash = ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<uintptr_t>(inner_pointer)), v8::internal::kZeroHashSeed); uint32_t index = hash & (kInnerPointerToCodeCacheSize - 1); InnerPointerToCodeCacheEntry* entry = cache(index); if (entry->inner_pointer == inner_pointer) { isolate_->counters()->pc_to_code_cached()->Increment(); ASSERT(entry->code == GcSafeFindCodeForInnerPointer(inner_pointer)); } else { // Because this code may be interrupted by a profiling signal that // also queries the cache, we cannot update inner_pointer before the code // has been set. Otherwise, we risk trying to use a cache entry before // the code has been computed. entry->code = GcSafeFindCodeForInnerPointer(inner_pointer); entry->safepoint_entry.Reset(); entry->inner_pointer = inner_pointer; } return entry; } // ------------------------------------------------------------------------- int NumRegs(RegList reglist) { int n = 0; while (reglist != 0) { n++; reglist &= reglist - 1; // clear one bit } return n; } struct JSCallerSavedCodeData { JSCallerSavedCodeData() { int i = 0; for (int r = 0; r < kNumRegs; r++) if ((kJSCallerSaved & (1 << r)) != 0) reg_code[i++] = r; ASSERT(i == kNumJSCallerSaved); } int reg_code[kNumJSCallerSaved]; }; static LazyInstance<JSCallerSavedCodeData>::type caller_saved_code_data = LAZY_INSTANCE_INITIALIZER; int JSCallerSavedCode(int n) { ASSERT(0 <= n && n < kNumJSCallerSaved); return caller_saved_code_data.Get().reg_code[n]; } #define DEFINE_WRAPPER(type, field) \ class field##_Wrapper : public ZoneObject { \ public: /* NOLINT */ \ field##_Wrapper(const field& original) : frame_(original) { \ } \ field frame_; \ }; STACK_FRAME_TYPE_LIST(DEFINE_WRAPPER) #undef DEFINE_WRAPPER static StackFrame* AllocateFrameCopy(StackFrame* frame) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: { \ field##_Wrapper* wrapper = \ new field##_Wrapper(*(reinterpret_cast<field*>(frame))); \ return &wrapper->frame_; \ } switch (frame->type()) { STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: UNREACHABLE(); } #undef FRAME_TYPE_CASE return NULL; } Vector<StackFrame*> CreateStackMap() { ZoneList<StackFrame*> list(10); for (StackFrameIterator it; !it.done(); it.Advance()) { StackFrame* frame = AllocateFrameCopy(it.frame()); list.Add(frame); } return list.ToVector(); } } } // namespace v8::internal