// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_IA32) #include "bootstrapper.h" #include "code-stubs.h" #include "isolate.h" #include "jsregexp.h" #include "regexp-macro-assembler.h" #include "stub-cache.h" #include "codegen.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void ToNumberStub::Generate(MacroAssembler* masm) { // The ToNumber stub takes one argument in eax. Label check_heap_number, call_builtin; __ JumpIfNotSmi(eax, &check_heap_number, Label::kNear); __ ret(0); __ bind(&check_heap_number); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); Factory* factory = masm->isolate()->factory(); __ cmp(ebx, Immediate(factory->heap_number_map())); __ j(not_equal, &call_builtin, Label::kNear); __ ret(0); __ bind(&call_builtin); __ pop(ecx); // Pop return address. __ push(eax); __ push(ecx); // Push return address. __ InvokeBuiltin(Builtins::TO_NUMBER, JUMP_FUNCTION); } void FastNewClosureStub::Generate(MacroAssembler* masm) { // Create a new closure from the given function info in new // space. Set the context to the current context in esi. Label gc; __ AllocateInNewSpace(JSFunction::kSize, eax, ebx, ecx, &gc, TAG_OBJECT); // Get the function info from the stack. __ mov(edx, Operand(esp, 1 * kPointerSize)); int map_index = (language_mode_ == CLASSIC_MODE) ? Context::FUNCTION_MAP_INDEX : Context::STRICT_MODE_FUNCTION_MAP_INDEX; // Compute the function map in the current global context and set that // as the map of the allocated object. __ mov(ecx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); __ mov(ecx, Operand(ecx, Context::SlotOffset(map_index))); __ mov(FieldOperand(eax, JSObject::kMapOffset), ecx); // Initialize the rest of the function. We don't have to update the // write barrier because the allocated object is in new space. Factory* factory = masm->isolate()->factory(); __ mov(ebx, Immediate(factory->empty_fixed_array())); __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ebx); __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx); __ mov(FieldOperand(eax, JSFunction::kPrototypeOrInitialMapOffset), Immediate(factory->the_hole_value())); __ mov(FieldOperand(eax, JSFunction::kSharedFunctionInfoOffset), edx); __ mov(FieldOperand(eax, JSFunction::kContextOffset), esi); __ mov(FieldOperand(eax, JSFunction::kLiteralsOffset), ebx); __ mov(FieldOperand(eax, JSFunction::kNextFunctionLinkOffset), Immediate(factory->undefined_value())); // Initialize the code pointer in the function to be the one // found in the shared function info object. __ mov(edx, FieldOperand(edx, SharedFunctionInfo::kCodeOffset)); __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); __ mov(FieldOperand(eax, JSFunction::kCodeEntryOffset), edx); // Return and remove the on-stack parameter. __ ret(1 * kPointerSize); // Create a new closure through the slower runtime call. __ bind(&gc); __ pop(ecx); // Temporarily remove return address. __ pop(edx); __ push(esi); __ push(edx); __ push(Immediate(factory->false_value())); __ push(ecx); // Restore return address. __ TailCallRuntime(Runtime::kNewClosure, 3, 1); } void FastNewContextStub::Generate(MacroAssembler* masm) { // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; __ AllocateInNewSpace((length * kPointerSize) + FixedArray::kHeaderSize, eax, ebx, ecx, &gc, TAG_OBJECT); // Get the function from the stack. __ mov(ecx, Operand(esp, 1 * kPointerSize)); // Set up the object header. Factory* factory = masm->isolate()->factory(); __ mov(FieldOperand(eax, HeapObject::kMapOffset), factory->function_context_map()); __ mov(FieldOperand(eax, Context::kLengthOffset), Immediate(Smi::FromInt(length))); // Set up the fixed slots. __ Set(ebx, Immediate(0)); // Set to NULL. __ mov(Operand(eax, Context::SlotOffset(Context::CLOSURE_INDEX)), ecx); __ mov(Operand(eax, Context::SlotOffset(Context::PREVIOUS_INDEX)), esi); __ mov(Operand(eax, Context::SlotOffset(Context::EXTENSION_INDEX)), ebx); // Copy the global object from the previous context. __ mov(ebx, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ mov(Operand(eax, Context::SlotOffset(Context::GLOBAL_INDEX)), ebx); // Initialize the rest of the slots to undefined. __ mov(ebx, factory->undefined_value()); for (int i = Context::MIN_CONTEXT_SLOTS; i < length; i++) { __ mov(Operand(eax, Context::SlotOffset(i)), ebx); } // Return and remove the on-stack parameter. __ mov(esi, eax); __ ret(1 * kPointerSize); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kNewFunctionContext, 1, 1); } void FastNewBlockContextStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [esp + (1 * kPointerSize)]: function // [esp + (2 * kPointerSize)]: serialized scope info // Try to allocate the context in new space. Label gc; int length = slots_ + Context::MIN_CONTEXT_SLOTS; __ AllocateInNewSpace(FixedArray::SizeFor(length), eax, ebx, ecx, &gc, TAG_OBJECT); // Get the function or sentinel from the stack. __ mov(ecx, Operand(esp, 1 * kPointerSize)); // Get the serialized scope info from the stack. __ mov(ebx, Operand(esp, 2 * kPointerSize)); // Set up the object header. Factory* factory = masm->isolate()->factory(); __ mov(FieldOperand(eax, HeapObject::kMapOffset), factory->block_context_map()); __ mov(FieldOperand(eax, Context::kLengthOffset), Immediate(Smi::FromInt(length))); // If this block context is nested in the global context we get a smi // sentinel instead of a function. The block context should get the // canonical empty function of the global context as its closure which // we still have to look up. Label after_sentinel; __ JumpIfNotSmi(ecx, &after_sentinel, Label::kNear); if (FLAG_debug_code) { const char* message = "Expected 0 as a Smi sentinel"; __ cmp(ecx, 0); __ Assert(equal, message); } __ mov(ecx, GlobalObjectOperand()); __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalContextOffset)); __ mov(ecx, ContextOperand(ecx, Context::CLOSURE_INDEX)); __ bind(&after_sentinel); // Set up the fixed slots. __ mov(ContextOperand(eax, Context::CLOSURE_INDEX), ecx); __ mov(ContextOperand(eax, Context::PREVIOUS_INDEX), esi); __ mov(ContextOperand(eax, Context::EXTENSION_INDEX), ebx); // Copy the global object from the previous context. __ mov(ebx, ContextOperand(esi, Context::GLOBAL_INDEX)); __ mov(ContextOperand(eax, Context::GLOBAL_INDEX), ebx); // Initialize the rest of the slots to the hole value. if (slots_ == 1) { __ mov(ContextOperand(eax, Context::MIN_CONTEXT_SLOTS), factory->the_hole_value()); } else { __ mov(ebx, factory->the_hole_value()); for (int i = 0; i < slots_; i++) { __ mov(ContextOperand(eax, i + Context::MIN_CONTEXT_SLOTS), ebx); } } // Return and remove the on-stack parameters. __ mov(esi, eax); __ ret(2 * kPointerSize); // Need to collect. Call into runtime system. __ bind(&gc); __ TailCallRuntime(Runtime::kPushBlockContext, 2, 1); } static void GenerateFastCloneShallowArrayCommon( MacroAssembler* masm, int length, FastCloneShallowArrayStub::Mode mode, Label* fail) { // Registers on entry: // // ecx: boilerplate literal array. ASSERT(mode != FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS); // All sizes here are multiples of kPointerSize. int elements_size = 0; if (length > 0) { elements_size = mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS ? FixedDoubleArray::SizeFor(length) : FixedArray::SizeFor(length); } int size = JSArray::kSize + elements_size; // Allocate both the JS array and the elements array in one big // allocation. This avoids multiple limit checks. __ AllocateInNewSpace(size, eax, ebx, edx, fail, TAG_OBJECT); // Copy the JS array part. for (int i = 0; i < JSArray::kSize; i += kPointerSize) { if ((i != JSArray::kElementsOffset) || (length == 0)) { __ mov(ebx, FieldOperand(ecx, i)); __ mov(FieldOperand(eax, i), ebx); } } if (length > 0) { // Get hold of the elements array of the boilerplate and setup the // elements pointer in the resulting object. __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); __ lea(edx, Operand(eax, JSArray::kSize)); __ mov(FieldOperand(eax, JSArray::kElementsOffset), edx); // Copy the elements array. if (mode == FastCloneShallowArrayStub::CLONE_ELEMENTS) { for (int i = 0; i < elements_size; i += kPointerSize) { __ mov(ebx, FieldOperand(ecx, i)); __ mov(FieldOperand(edx, i), ebx); } } else { ASSERT(mode == FastCloneShallowArrayStub::CLONE_DOUBLE_ELEMENTS); int i; for (i = 0; i < FixedDoubleArray::kHeaderSize; i += kPointerSize) { __ mov(ebx, FieldOperand(ecx, i)); __ mov(FieldOperand(edx, i), ebx); } while (i < elements_size) { __ fld_d(FieldOperand(ecx, i)); __ fstp_d(FieldOperand(edx, i)); i += kDoubleSize; } ASSERT(i == elements_size); } } } void FastCloneShallowArrayStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [esp + kPointerSize]: constant elements. // [esp + (2 * kPointerSize)]: literal index. // [esp + (3 * kPointerSize)]: literals array. // Load boilerplate object into ecx and check if we need to create a // boilerplate. __ mov(ecx, Operand(esp, 3 * kPointerSize)); __ mov(eax, Operand(esp, 2 * kPointerSize)); STATIC_ASSERT(kPointerSize == 4); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); __ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size, FixedArray::kHeaderSize)); Factory* factory = masm->isolate()->factory(); __ cmp(ecx, factory->undefined_value()); Label slow_case; __ j(equal, &slow_case); FastCloneShallowArrayStub::Mode mode = mode_; // ecx is boilerplate object. if (mode == CLONE_ANY_ELEMENTS) { Label double_elements, check_fast_elements; __ mov(ebx, FieldOperand(ecx, JSArray::kElementsOffset)); __ CheckMap(ebx, factory->fixed_cow_array_map(), &check_fast_elements, DONT_DO_SMI_CHECK); GenerateFastCloneShallowArrayCommon(masm, 0, COPY_ON_WRITE_ELEMENTS, &slow_case); __ ret(3 * kPointerSize); __ bind(&check_fast_elements); __ CheckMap(ebx, factory->fixed_array_map(), &double_elements, DONT_DO_SMI_CHECK); GenerateFastCloneShallowArrayCommon(masm, length_, CLONE_ELEMENTS, &slow_case); __ ret(3 * kPointerSize); __ bind(&double_elements); mode = CLONE_DOUBLE_ELEMENTS; // Fall through to generate the code to handle double elements. } if (FLAG_debug_code) { const char* message; Handle<Map> expected_map; if (mode == CLONE_ELEMENTS) { message = "Expected (writable) fixed array"; expected_map = factory->fixed_array_map(); } else if (mode == CLONE_DOUBLE_ELEMENTS) { message = "Expected (writable) fixed double array"; expected_map = factory->fixed_double_array_map(); } else { ASSERT(mode == COPY_ON_WRITE_ELEMENTS); message = "Expected copy-on-write fixed array"; expected_map = factory->fixed_cow_array_map(); } __ push(ecx); __ mov(ecx, FieldOperand(ecx, JSArray::kElementsOffset)); __ cmp(FieldOperand(ecx, HeapObject::kMapOffset), expected_map); __ Assert(equal, message); __ pop(ecx); } GenerateFastCloneShallowArrayCommon(masm, length_, mode, &slow_case); // Return and remove the on-stack parameters. __ ret(3 * kPointerSize); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateArrayLiteralShallow, 3, 1); } void FastCloneShallowObjectStub::Generate(MacroAssembler* masm) { // Stack layout on entry: // // [esp + kPointerSize]: object literal flags. // [esp + (2 * kPointerSize)]: constant properties. // [esp + (3 * kPointerSize)]: literal index. // [esp + (4 * kPointerSize)]: literals array. // Load boilerplate object into ecx and check if we need to create a // boilerplate. Label slow_case; __ mov(ecx, Operand(esp, 4 * kPointerSize)); __ mov(eax, Operand(esp, 3 * kPointerSize)); STATIC_ASSERT(kPointerSize == 4); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); __ mov(ecx, FieldOperand(ecx, eax, times_half_pointer_size, FixedArray::kHeaderSize)); Factory* factory = masm->isolate()->factory(); __ cmp(ecx, factory->undefined_value()); __ j(equal, &slow_case); // Check that the boilerplate contains only fast properties and we can // statically determine the instance size. int size = JSObject::kHeaderSize + length_ * kPointerSize; __ mov(eax, FieldOperand(ecx, HeapObject::kMapOffset)); __ movzx_b(eax, FieldOperand(eax, Map::kInstanceSizeOffset)); __ cmp(eax, Immediate(size >> kPointerSizeLog2)); __ j(not_equal, &slow_case); // Allocate the JS object and copy header together with all in-object // properties from the boilerplate. __ AllocateInNewSpace(size, eax, ebx, edx, &slow_case, TAG_OBJECT); for (int i = 0; i < size; i += kPointerSize) { __ mov(ebx, FieldOperand(ecx, i)); __ mov(FieldOperand(eax, i), ebx); } // Return and remove the on-stack parameters. __ ret(4 * kPointerSize); __ bind(&slow_case); __ TailCallRuntime(Runtime::kCreateObjectLiteralShallow, 4, 1); } // The stub expects its argument on the stack and returns its result in tos_: // zero for false, and a non-zero value for true. void ToBooleanStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. Label patch; Factory* factory = masm->isolate()->factory(); const Register argument = eax; const Register map = edx; if (!types_.IsEmpty()) { __ mov(argument, Operand(esp, 1 * kPointerSize)); } // undefined -> false CheckOddball(masm, UNDEFINED, Heap::kUndefinedValueRootIndex, false); // Boolean -> its value CheckOddball(masm, BOOLEAN, Heap::kFalseValueRootIndex, false); CheckOddball(masm, BOOLEAN, Heap::kTrueValueRootIndex, true); // 'null' -> false. CheckOddball(masm, NULL_TYPE, Heap::kNullValueRootIndex, false); if (types_.Contains(SMI)) { // Smis: 0 -> false, all other -> true Label not_smi; __ JumpIfNotSmi(argument, ¬_smi, Label::kNear); // argument contains the correct return value already. if (!tos_.is(argument)) { __ mov(tos_, argument); } __ ret(1 * kPointerSize); __ bind(¬_smi); } else if (types_.NeedsMap()) { // If we need a map later and have a Smi -> patch. __ JumpIfSmi(argument, &patch, Label::kNear); } if (types_.NeedsMap()) { __ mov(map, FieldOperand(argument, HeapObject::kMapOffset)); if (types_.CanBeUndetectable()) { __ test_b(FieldOperand(map, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); // Undetectable -> false. Label not_undetectable; __ j(zero, ¬_undetectable, Label::kNear); __ Set(tos_, Immediate(0)); __ ret(1 * kPointerSize); __ bind(¬_undetectable); } } if (types_.Contains(SPEC_OBJECT)) { // spec object -> true. Label not_js_object; __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE); __ j(below, ¬_js_object, Label::kNear); // argument contains the correct return value already. if (!tos_.is(argument)) { __ Set(tos_, Immediate(1)); } __ ret(1 * kPointerSize); __ bind(¬_js_object); } if (types_.Contains(STRING)) { // String value -> false iff empty. Label not_string; __ CmpInstanceType(map, FIRST_NONSTRING_TYPE); __ j(above_equal, ¬_string, Label::kNear); __ mov(tos_, FieldOperand(argument, String::kLengthOffset)); __ ret(1 * kPointerSize); // the string length is OK as the return value __ bind(¬_string); } if (types_.Contains(HEAP_NUMBER)) { // heap number -> false iff +0, -0, or NaN. Label not_heap_number, false_result; __ cmp(map, factory->heap_number_map()); __ j(not_equal, ¬_heap_number, Label::kNear); __ fldz(); __ fld_d(FieldOperand(argument, HeapNumber::kValueOffset)); __ FCmp(); __ j(zero, &false_result, Label::kNear); // argument contains the correct return value already. if (!tos_.is(argument)) { __ Set(tos_, Immediate(1)); } __ ret(1 * kPointerSize); __ bind(&false_result); __ Set(tos_, Immediate(0)); __ ret(1 * kPointerSize); __ bind(¬_heap_number); } __ bind(&patch); GenerateTypeTransition(masm); } void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. __ pushad(); if (save_doubles_ == kSaveFPRegs) { CpuFeatures::Scope scope(SSE2); __ sub(esp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); __ movdbl(Operand(esp, i * kDoubleSize), reg); } } const int argument_count = 1; AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(argument_count, ecx); __ mov(Operand(esp, 0 * kPointerSize), Immediate(ExternalReference::isolate_address())); __ CallCFunction( ExternalReference::store_buffer_overflow_function(masm->isolate()), argument_count); if (save_doubles_ == kSaveFPRegs) { CpuFeatures::Scope scope(SSE2); for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); __ movdbl(reg, Operand(esp, i * kDoubleSize)); } __ add(esp, Immediate(kDoubleSize * XMMRegister::kNumRegisters)); } __ popad(); __ ret(0); } void ToBooleanStub::CheckOddball(MacroAssembler* masm, Type type, Heap::RootListIndex value, bool result) { const Register argument = eax; if (types_.Contains(type)) { // If we see an expected oddball, return its ToBoolean value tos_. Label different_value; __ CompareRoot(argument, value); __ j(not_equal, &different_value, Label::kNear); if (!result) { // If we have to return zero, there is no way around clearing tos_. __ Set(tos_, Immediate(0)); } else if (!tos_.is(argument)) { // If we have to return non-zero, we can re-use the argument if it is the // same register as the result, because we never see Smi-zero here. __ Set(tos_, Immediate(1)); } __ ret(1 * kPointerSize); __ bind(&different_value); } } void ToBooleanStub::GenerateTypeTransition(MacroAssembler* masm) { __ pop(ecx); // Get return address, operand is now on top of stack. __ push(Immediate(Smi::FromInt(tos_.code()))); __ push(Immediate(Smi::FromInt(types_.ToByte()))); __ push(ecx); // Push return address. // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kToBoolean_Patch), masm->isolate()), 3, 1); } class FloatingPointHelper : public AllStatic { public: enum ArgLocation { ARGS_ON_STACK, ARGS_IN_REGISTERS }; // Code pattern for loading a floating point value. Input value must // be either a smi or a heap number object (fp value). Requirements: // operand in register number. Returns operand as floating point number // on FPU stack. static void LoadFloatOperand(MacroAssembler* masm, Register number); // Code pattern for loading floating point values. Input values must // be either smi or heap number objects (fp values). Requirements: // operand_1 on TOS+1 or in edx, operand_2 on TOS+2 or in eax. // Returns operands as floating point numbers on FPU stack. static void LoadFloatOperands(MacroAssembler* masm, Register scratch, ArgLocation arg_location = ARGS_ON_STACK); // Similar to LoadFloatOperand but assumes that both operands are smis. // Expects operands in edx, eax. static void LoadFloatSmis(MacroAssembler* masm, Register scratch); // Test if operands are smi or number objects (fp). Requirements: // operand_1 in eax, operand_2 in edx; falls through on float // operands, jumps to the non_float label otherwise. static void CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch); // Checks that the two floating point numbers on top of the FPU stack // have int32 values. static void CheckFloatOperandsAreInt32(MacroAssembler* masm, Label* non_int32); // Takes the operands in edx and eax and loads them as integers in eax // and ecx. static void LoadUnknownsAsIntegers(MacroAssembler* masm, bool use_sse3, Label* operand_conversion_failure); // Must only be called after LoadUnknownsAsIntegers. Assumes that the // operands are pushed on the stack, and that their conversions to int32 // are in eax and ecx. Checks that the original numbers were in the int32 // range. static void CheckLoadedIntegersWereInt32(MacroAssembler* masm, bool use_sse3, Label* not_int32); // Assumes that operands are smis or heap numbers and loads them // into xmm0 and xmm1. Operands are in edx and eax. // Leaves operands unchanged. static void LoadSSE2Operands(MacroAssembler* masm); // Test if operands are numbers (smi or HeapNumber objects), and load // them into xmm0 and xmm1 if they are. Jump to label not_numbers if // either operand is not a number. Operands are in edx and eax. // Leaves operands unchanged. static void LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers); // Similar to LoadSSE2Operands but assumes that both operands are smis. // Expects operands in edx, eax. static void LoadSSE2Smis(MacroAssembler* masm, Register scratch); // Checks that the two floating point numbers loaded into xmm0 and xmm1 // have int32 values. static void CheckSSE2OperandsAreInt32(MacroAssembler* masm, Label* non_int32, Register scratch); }; // Get the integer part of a heap number. Surprisingly, all this bit twiddling // is faster than using the built-in instructions on floating point registers. // Trashes edi and ebx. Dest is ecx. Source cannot be ecx or one of the // trashed registers. static void IntegerConvert(MacroAssembler* masm, Register source, bool use_sse3, Label* conversion_failure) { ASSERT(!source.is(ecx) && !source.is(edi) && !source.is(ebx)); Label done, right_exponent, normal_exponent; Register scratch = ebx; Register scratch2 = edi; // Get exponent word. __ mov(scratch, FieldOperand(source, HeapNumber::kExponentOffset)); // Get exponent alone in scratch2. __ mov(scratch2, scratch); __ and_(scratch2, HeapNumber::kExponentMask); if (use_sse3) { CpuFeatures::Scope scope(SSE3); // Check whether the exponent is too big for a 64 bit signed integer. static const uint32_t kTooBigExponent = (HeapNumber::kExponentBias + 63) << HeapNumber::kExponentShift; __ cmp(scratch2, Immediate(kTooBigExponent)); __ j(greater_equal, conversion_failure); // Load x87 register with heap number. __ fld_d(FieldOperand(source, HeapNumber::kValueOffset)); // Reserve space for 64 bit answer. __ sub(esp, Immediate(sizeof(uint64_t))); // Nolint. // Do conversion, which cannot fail because we checked the exponent. __ fisttp_d(Operand(esp, 0)); __ mov(ecx, Operand(esp, 0)); // Load low word of answer into ecx. __ add(esp, Immediate(sizeof(uint64_t))); // Nolint. } else { // Load ecx with zero. We use this either for the final shift or // for the answer. __ xor_(ecx, ecx); // Check whether the exponent matches a 32 bit signed int that cannot be // represented by a Smi. A non-smi 32 bit integer is 1.xxx * 2^30 so the // exponent is 30 (biased). This is the exponent that we are fastest at and // also the highest exponent we can handle here. const uint32_t non_smi_exponent = (HeapNumber::kExponentBias + 30) << HeapNumber::kExponentShift; __ cmp(scratch2, Immediate(non_smi_exponent)); // If we have a match of the int32-but-not-Smi exponent then skip some // logic. __ j(equal, &right_exponent, Label::kNear); // If the exponent is higher than that then go to slow case. This catches // numbers that don't fit in a signed int32, infinities and NaNs. __ j(less, &normal_exponent, Label::kNear); { // Handle a big exponent. The only reason we have this code is that the // >>> operator has a tendency to generate numbers with an exponent of 31. const uint32_t big_non_smi_exponent = (HeapNumber::kExponentBias + 31) << HeapNumber::kExponentShift; __ cmp(scratch2, Immediate(big_non_smi_exponent)); __ j(not_equal, conversion_failure); // We have the big exponent, typically from >>>. This means the number is // in the range 2^31 to 2^32 - 1. Get the top bits of the mantissa. __ mov(scratch2, scratch); __ and_(scratch2, HeapNumber::kMantissaMask); // Put back the implicit 1. __ or_(scratch2, 1 << HeapNumber::kExponentShift); // Shift up the mantissa bits to take up the space the exponent used to // take. We just orred in the implicit bit so that took care of one and // we want to use the full unsigned range so we subtract 1 bit from the // shift distance. const int big_shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 1; __ shl(scratch2, big_shift_distance); // Get the second half of the double. __ mov(ecx, FieldOperand(source, HeapNumber::kMantissaOffset)); // Shift down 21 bits to get the most significant 11 bits or the low // mantissa word. __ shr(ecx, 32 - big_shift_distance); __ or_(ecx, scratch2); // We have the answer in ecx, but we may need to negate it. __ test(scratch, scratch); __ j(positive, &done, Label::kNear); __ neg(ecx); __ jmp(&done, Label::kNear); } __ bind(&normal_exponent); // Exponent word in scratch, exponent part of exponent word in scratch2. // Zero in ecx. // We know the exponent is smaller than 30 (biased). If it is less than // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e. // it rounds to zero. const uint32_t zero_exponent = (HeapNumber::kExponentBias + 0) << HeapNumber::kExponentShift; __ sub(scratch2, Immediate(zero_exponent)); // ecx already has a Smi zero. __ j(less, &done, Label::kNear); // We have a shifted exponent between 0 and 30 in scratch2. __ shr(scratch2, HeapNumber::kExponentShift); __ mov(ecx, Immediate(30)); __ sub(ecx, scratch2); __ bind(&right_exponent); // Here ecx is the shift, scratch is the exponent word. // Get the top bits of the mantissa. __ and_(scratch, HeapNumber::kMantissaMask); // Put back the implicit 1. __ or_(scratch, 1 << HeapNumber::kExponentShift); // Shift up the mantissa bits to take up the space the exponent used to // take. We have kExponentShift + 1 significant bits int he low end of the // word. Shift them to the top bits. const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; __ shl(scratch, shift_distance); // Get the second half of the double. For some exponents we don't // actually need this because the bits get shifted out again, but // it's probably slower to test than just to do it. __ mov(scratch2, FieldOperand(source, HeapNumber::kMantissaOffset)); // Shift down 22 bits to get the most significant 10 bits or the low // mantissa word. __ shr(scratch2, 32 - shift_distance); __ or_(scratch2, scratch); // Move down according to the exponent. __ shr_cl(scratch2); // Now the unsigned answer is in scratch2. We need to move it to ecx and // we may need to fix the sign. Label negative; __ xor_(ecx, ecx); __ cmp(ecx, FieldOperand(source, HeapNumber::kExponentOffset)); __ j(greater, &negative, Label::kNear); __ mov(ecx, scratch2); __ jmp(&done, Label::kNear); __ bind(&negative); __ sub(ecx, scratch2); __ bind(&done); } } void UnaryOpStub::PrintName(StringStream* stream) { const char* op_name = Token::Name(op_); const char* overwrite_name = NULL; // Make g++ happy. switch (mode_) { case UNARY_NO_OVERWRITE: overwrite_name = "Alloc"; break; case UNARY_OVERWRITE: overwrite_name = "Overwrite"; break; } stream->Add("UnaryOpStub_%s_%s_%s", op_name, overwrite_name, UnaryOpIC::GetName(operand_type_)); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::Generate(MacroAssembler* masm) { switch (operand_type_) { case UnaryOpIC::UNINITIALIZED: GenerateTypeTransition(masm); break; case UnaryOpIC::SMI: GenerateSmiStub(masm); break; case UnaryOpIC::HEAP_NUMBER: GenerateHeapNumberStub(masm); break; case UnaryOpIC::GENERIC: GenerateGenericStub(masm); break; } } void UnaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { __ pop(ecx); // Save return address. __ push(eax); // the operand __ push(Immediate(Smi::FromInt(op_))); __ push(Immediate(Smi::FromInt(mode_))); __ push(Immediate(Smi::FromInt(operand_type_))); __ push(ecx); // Push return address. // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kUnaryOp_Patch), masm->isolate()), 4, 1); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateSmiStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateSmiStubSub(masm); break; case Token::BIT_NOT: GenerateSmiStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateSmiStubSub(MacroAssembler* masm) { Label non_smi, undo, slow; GenerateSmiCodeSub(masm, &non_smi, &undo, &slow, Label::kNear, Label::kNear, Label::kNear); __ bind(&undo); GenerateSmiCodeUndo(masm); __ bind(&non_smi); __ bind(&slow); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateSmiStubBitNot(MacroAssembler* masm) { Label non_smi; GenerateSmiCodeBitNot(masm, &non_smi); __ bind(&non_smi); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateSmiCodeSub(MacroAssembler* masm, Label* non_smi, Label* undo, Label* slow, Label::Distance non_smi_near, Label::Distance undo_near, Label::Distance slow_near) { // Check whether the value is a smi. __ JumpIfNotSmi(eax, non_smi, non_smi_near); // We can't handle -0 with smis, so use a type transition for that case. __ test(eax, eax); __ j(zero, slow, slow_near); // Try optimistic subtraction '0 - value', saving operand in eax for undo. __ mov(edx, eax); __ Set(eax, Immediate(0)); __ sub(eax, edx); __ j(overflow, undo, undo_near); __ ret(0); } void UnaryOpStub::GenerateSmiCodeBitNot( MacroAssembler* masm, Label* non_smi, Label::Distance non_smi_near) { // Check whether the value is a smi. __ JumpIfNotSmi(eax, non_smi, non_smi_near); // Flip bits and revert inverted smi-tag. __ not_(eax); __ and_(eax, ~kSmiTagMask); __ ret(0); } void UnaryOpStub::GenerateSmiCodeUndo(MacroAssembler* masm) { __ mov(eax, edx); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateHeapNumberStubSub(masm); break; case Token::BIT_NOT: GenerateHeapNumberStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateHeapNumberStubSub(MacroAssembler* masm) { Label non_smi, undo, slow, call_builtin; GenerateSmiCodeSub(masm, &non_smi, &undo, &call_builtin, Label::kNear); __ bind(&non_smi); GenerateHeapNumberCodeSub(masm, &slow); __ bind(&undo); GenerateSmiCodeUndo(masm); __ bind(&slow); GenerateTypeTransition(masm); __ bind(&call_builtin); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateHeapNumberStubBitNot( MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear); __ bind(&non_smi); GenerateHeapNumberCodeBitNot(masm, &slow); __ bind(&slow); GenerateTypeTransition(masm); } void UnaryOpStub::GenerateHeapNumberCodeSub(MacroAssembler* masm, Label* slow) { __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(edx, masm->isolate()->factory()->heap_number_map()); __ j(not_equal, slow); if (mode_ == UNARY_OVERWRITE) { __ xor_(FieldOperand(eax, HeapNumber::kExponentOffset), Immediate(HeapNumber::kSignMask)); // Flip sign. } else { __ mov(edx, eax); // edx: operand Label slow_allocate_heapnumber, heapnumber_allocated; __ AllocateHeapNumber(eax, ebx, ecx, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated, Label::kNear); __ bind(&slow_allocate_heapnumber); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(edx); __ CallRuntime(Runtime::kNumberAlloc, 0); __ pop(edx); } __ bind(&heapnumber_allocated); // eax: allocated 'empty' number __ mov(ecx, FieldOperand(edx, HeapNumber::kExponentOffset)); __ xor_(ecx, HeapNumber::kSignMask); // Flip sign. __ mov(FieldOperand(eax, HeapNumber::kExponentOffset), ecx); __ mov(ecx, FieldOperand(edx, HeapNumber::kMantissaOffset)); __ mov(FieldOperand(eax, HeapNumber::kMantissaOffset), ecx); } __ ret(0); } void UnaryOpStub::GenerateHeapNumberCodeBitNot(MacroAssembler* masm, Label* slow) { __ mov(edx, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(edx, masm->isolate()->factory()->heap_number_map()); __ j(not_equal, slow); // Convert the heap number in eax to an untagged integer in ecx. IntegerConvert(masm, eax, CpuFeatures::IsSupported(SSE3), slow); // Do the bitwise operation and check if the result fits in a smi. Label try_float; __ not_(ecx); __ cmp(ecx, 0xc0000000); __ j(sign, &try_float, Label::kNear); // Tag the result as a smi and we're done. STATIC_ASSERT(kSmiTagSize == 1); __ lea(eax, Operand(ecx, times_2, kSmiTag)); __ ret(0); // Try to store the result in a heap number. __ bind(&try_float); if (mode_ == UNARY_NO_OVERWRITE) { Label slow_allocate_heapnumber, heapnumber_allocated; __ mov(ebx, eax); __ AllocateHeapNumber(eax, edx, edi, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); { FrameScope scope(masm, StackFrame::INTERNAL); // Push the original HeapNumber on the stack. The integer value can't // be stored since it's untagged and not in the smi range (so we can't // smi-tag it). We'll recalculate the value after the GC instead. __ push(ebx); __ CallRuntime(Runtime::kNumberAlloc, 0); // New HeapNumber is in eax. __ pop(edx); } // IntegerConvert uses ebx and edi as scratch registers. // This conversion won't go slow-case. IntegerConvert(masm, edx, CpuFeatures::IsSupported(SSE3), slow); __ not_(ecx); __ bind(&heapnumber_allocated); } if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); __ cvtsi2sd(xmm0, ecx); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); } else { __ push(ecx); __ fild_s(Operand(esp, 0)); __ pop(ecx); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); } __ ret(0); } // TODO(svenpanne): Use virtual functions instead of switch. void UnaryOpStub::GenerateGenericStub(MacroAssembler* masm) { switch (op_) { case Token::SUB: GenerateGenericStubSub(masm); break; case Token::BIT_NOT: GenerateGenericStubBitNot(masm); break; default: UNREACHABLE(); } } void UnaryOpStub::GenerateGenericStubSub(MacroAssembler* masm) { Label non_smi, undo, slow; GenerateSmiCodeSub(masm, &non_smi, &undo, &slow, Label::kNear); __ bind(&non_smi); GenerateHeapNumberCodeSub(masm, &slow); __ bind(&undo); GenerateSmiCodeUndo(masm); __ bind(&slow); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateGenericStubBitNot(MacroAssembler* masm) { Label non_smi, slow; GenerateSmiCodeBitNot(masm, &non_smi, Label::kNear); __ bind(&non_smi); GenerateHeapNumberCodeBitNot(masm, &slow); __ bind(&slow); GenerateGenericCodeFallback(masm); } void UnaryOpStub::GenerateGenericCodeFallback(MacroAssembler* masm) { // Handle the slow case by jumping to the corresponding JavaScript builtin. __ pop(ecx); // pop return address. __ push(eax); __ push(ecx); // push return address switch (op_) { case Token::SUB: __ InvokeBuiltin(Builtins::UNARY_MINUS, JUMP_FUNCTION); break; case Token::BIT_NOT: __ InvokeBuiltin(Builtins::BIT_NOT, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateTypeTransition(MacroAssembler* masm) { __ pop(ecx); // Save return address. __ push(edx); __ push(eax); // Left and right arguments are now on top. // Push this stub's key. Although the operation and the type info are // encoded into the key, the encoding is opaque, so push them too. __ push(Immediate(Smi::FromInt(MinorKey()))); __ push(Immediate(Smi::FromInt(op_))); __ push(Immediate(Smi::FromInt(operands_type_))); __ push(ecx); // Push return address. // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kBinaryOp_Patch), masm->isolate()), 5, 1); } // Prepare for a type transition runtime call when the args are already on // the stack, under the return address. void BinaryOpStub::GenerateTypeTransitionWithSavedArgs(MacroAssembler* masm) { __ pop(ecx); // Save return address. // Left and right arguments are already on top of the stack. // Push this stub's key. Although the operation and the type info are // encoded into the key, the encoding is opaque, so push them too. __ push(Immediate(Smi::FromInt(MinorKey()))); __ push(Immediate(Smi::FromInt(op_))); __ push(Immediate(Smi::FromInt(operands_type_))); __ push(ecx); // Push return address. // Patch the caller to an appropriate specialized stub and return the // operation result to the caller of the stub. __ TailCallExternalReference( ExternalReference(IC_Utility(IC::kBinaryOp_Patch), masm->isolate()), 5, 1); } void BinaryOpStub::Generate(MacroAssembler* masm) { // Explicitly allow generation of nested stubs. It is safe here because // generation code does not use any raw pointers. AllowStubCallsScope allow_stub_calls(masm, true); switch (operands_type_) { case BinaryOpIC::UNINITIALIZED: GenerateTypeTransition(masm); break; case BinaryOpIC::SMI: GenerateSmiStub(masm); break; case BinaryOpIC::INT32: GenerateInt32Stub(masm); break; case BinaryOpIC::HEAP_NUMBER: GenerateHeapNumberStub(masm); break; case BinaryOpIC::ODDBALL: GenerateOddballStub(masm); break; case BinaryOpIC::BOTH_STRING: GenerateBothStringStub(masm); break; case BinaryOpIC::STRING: GenerateStringStub(masm); break; case BinaryOpIC::GENERIC: GenerateGeneric(masm); break; default: UNREACHABLE(); } } void BinaryOpStub::PrintName(StringStream* stream) { const char* op_name = Token::Name(op_); const char* overwrite_name; switch (mode_) { case NO_OVERWRITE: overwrite_name = "Alloc"; break; case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; default: overwrite_name = "UnknownOverwrite"; break; } stream->Add("BinaryOpStub_%s_%s_%s", op_name, overwrite_name, BinaryOpIC::GetName(operands_type_)); } void BinaryOpStub::GenerateSmiCode( MacroAssembler* masm, Label* slow, SmiCodeGenerateHeapNumberResults allow_heapnumber_results) { // 1. Move arguments into edx, eax except for DIV and MOD, which need the // dividend in eax and edx free for the division. Use eax, ebx for those. Comment load_comment(masm, "-- Load arguments"); Register left = edx; Register right = eax; if (op_ == Token::DIV || op_ == Token::MOD) { left = eax; right = ebx; __ mov(ebx, eax); __ mov(eax, edx); } // 2. Prepare the smi check of both operands by oring them together. Comment smi_check_comment(masm, "-- Smi check arguments"); Label not_smis; Register combined = ecx; ASSERT(!left.is(combined) && !right.is(combined)); switch (op_) { case Token::BIT_OR: // Perform the operation into eax and smi check the result. Preserve // eax in case the result is not a smi. ASSERT(!left.is(ecx) && !right.is(ecx)); __ mov(ecx, right); __ or_(right, left); // Bitwise or is commutative. combined = right; break; case Token::BIT_XOR: case Token::BIT_AND: case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: case Token::MOD: __ mov(combined, right); __ or_(combined, left); break; case Token::SHL: case Token::SAR: case Token::SHR: // Move the right operand into ecx for the shift operation, use eax // for the smi check register. ASSERT(!left.is(ecx) && !right.is(ecx)); __ mov(ecx, right); __ or_(right, left); combined = right; break; default: break; } // 3. Perform the smi check of the operands. STATIC_ASSERT(kSmiTag == 0); // Adjust zero check if not the case. __ JumpIfNotSmi(combined, ¬_smis); // 4. Operands are both smis, perform the operation leaving the result in // eax and check the result if necessary. Comment perform_smi(masm, "-- Perform smi operation"); Label use_fp_on_smis; switch (op_) { case Token::BIT_OR: // Nothing to do. break; case Token::BIT_XOR: ASSERT(right.is(eax)); __ xor_(right, left); // Bitwise xor is commutative. break; case Token::BIT_AND: ASSERT(right.is(eax)); __ and_(right, left); // Bitwise and is commutative. break; case Token::SHL: // Remove tags from operands (but keep sign). __ SmiUntag(left); __ SmiUntag(ecx); // Perform the operation. __ shl_cl(left); // Check that the *signed* result fits in a smi. __ cmp(left, 0xc0000000); __ j(sign, &use_fp_on_smis); // Tag the result and store it in register eax. __ SmiTag(left); __ mov(eax, left); break; case Token::SAR: // Remove tags from operands (but keep sign). __ SmiUntag(left); __ SmiUntag(ecx); // Perform the operation. __ sar_cl(left); // Tag the result and store it in register eax. __ SmiTag(left); __ mov(eax, left); break; case Token::SHR: // Remove tags from operands (but keep sign). __ SmiUntag(left); __ SmiUntag(ecx); // Perform the operation. __ shr_cl(left); // Check that the *unsigned* result fits in a smi. // Neither of the two high-order bits can be set: // - 0x80000000: high bit would be lost when smi tagging. // - 0x40000000: this number would convert to negative when // Smi tagging these two cases can only happen with shifts // by 0 or 1 when handed a valid smi. __ test(left, Immediate(0xc0000000)); __ j(not_zero, &use_fp_on_smis); // Tag the result and store it in register eax. __ SmiTag(left); __ mov(eax, left); break; case Token::ADD: ASSERT(right.is(eax)); __ add(right, left); // Addition is commutative. __ j(overflow, &use_fp_on_smis); break; case Token::SUB: __ sub(left, right); __ j(overflow, &use_fp_on_smis); __ mov(eax, left); break; case Token::MUL: // If the smi tag is 0 we can just leave the tag on one operand. STATIC_ASSERT(kSmiTag == 0); // Adjust code below if not the case. // We can't revert the multiplication if the result is not a smi // so save the right operand. __ mov(ebx, right); // Remove tag from one of the operands (but keep sign). __ SmiUntag(right); // Do multiplication. __ imul(right, left); // Multiplication is commutative. __ j(overflow, &use_fp_on_smis); // Check for negative zero result. Use combined = left | right. __ NegativeZeroTest(right, combined, &use_fp_on_smis); break; case Token::DIV: // We can't revert the division if the result is not a smi so // save the left operand. __ mov(edi, left); // Check for 0 divisor. __ test(right, right); __ j(zero, &use_fp_on_smis); // Sign extend left into edx:eax. ASSERT(left.is(eax)); __ cdq(); // Divide edx:eax by right. __ idiv(right); // Check for the corner case of dividing the most negative smi by // -1. We cannot use the overflow flag, since it is not set by idiv // instruction. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ cmp(eax, 0x40000000); __ j(equal, &use_fp_on_smis); // Check for negative zero result. Use combined = left | right. __ NegativeZeroTest(eax, combined, &use_fp_on_smis); // Check that the remainder is zero. __ test(edx, edx); __ j(not_zero, &use_fp_on_smis); // Tag the result and store it in register eax. __ SmiTag(eax); break; case Token::MOD: // Check for 0 divisor. __ test(right, right); __ j(zero, ¬_smis); // Sign extend left into edx:eax. ASSERT(left.is(eax)); __ cdq(); // Divide edx:eax by right. __ idiv(right); // Check for negative zero result. Use combined = left | right. __ NegativeZeroTest(edx, combined, slow); // Move remainder to register eax. __ mov(eax, edx); break; default: UNREACHABLE(); } // 5. Emit return of result in eax. Some operations have registers pushed. switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: __ ret(0); break; case Token::MOD: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: __ ret(2 * kPointerSize); break; default: UNREACHABLE(); } // 6. For some operations emit inline code to perform floating point // operations on known smis (e.g., if the result of the operation // overflowed the smi range). if (allow_heapnumber_results == NO_HEAPNUMBER_RESULTS) { __ bind(&use_fp_on_smis); switch (op_) { // Undo the effects of some operations, and some register moves. case Token::SHL: // The arguments are saved on the stack, and only used from there. break; case Token::ADD: // Revert right = right + left. __ sub(right, left); break; case Token::SUB: // Revert left = left - right. __ add(left, right); break; case Token::MUL: // Right was clobbered but a copy is in ebx. __ mov(right, ebx); break; case Token::DIV: // Left was clobbered but a copy is in edi. Right is in ebx for // division. They should be in eax, ebx for jump to not_smi. __ mov(eax, edi); break; default: // No other operators jump to use_fp_on_smis. break; } __ jmp(¬_smis); } else { ASSERT(allow_heapnumber_results == ALLOW_HEAPNUMBER_RESULTS); switch (op_) { case Token::SHL: case Token::SHR: { Comment perform_float(masm, "-- Perform float operation on smis"); __ bind(&use_fp_on_smis); // Result we want is in left == edx, so we can put the allocated heap // number in eax. __ AllocateHeapNumber(eax, ecx, ebx, slow); // Store the result in the HeapNumber and return. // It's OK to overwrite the arguments on the stack because we // are about to return. if (op_ == Token::SHR) { __ mov(Operand(esp, 1 * kPointerSize), left); __ mov(Operand(esp, 2 * kPointerSize), Immediate(0)); __ fild_d(Operand(esp, 1 * kPointerSize)); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); } else { ASSERT_EQ(Token::SHL, op_); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); __ cvtsi2sd(xmm0, left); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); } else { __ mov(Operand(esp, 1 * kPointerSize), left); __ fild_s(Operand(esp, 1 * kPointerSize)); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); } } __ ret(2 * kPointerSize); break; } case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { Comment perform_float(masm, "-- Perform float operation on smis"); __ bind(&use_fp_on_smis); // Restore arguments to edx, eax. switch (op_) { case Token::ADD: // Revert right = right + left. __ sub(right, left); break; case Token::SUB: // Revert left = left - right. __ add(left, right); break; case Token::MUL: // Right was clobbered but a copy is in ebx. __ mov(right, ebx); break; case Token::DIV: // Left was clobbered but a copy is in edi. Right is in ebx for // division. __ mov(edx, edi); __ mov(eax, right); break; default: UNREACHABLE(); break; } __ AllocateHeapNumber(ecx, ebx, no_reg, slow); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); FloatingPointHelper::LoadSSE2Smis(masm, ebx); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } __ movdbl(FieldOperand(ecx, HeapNumber::kValueOffset), xmm0); } else { // SSE2 not available, use FPU. FloatingPointHelper::LoadFloatSmis(masm, ebx); switch (op_) { case Token::ADD: __ faddp(1); break; case Token::SUB: __ fsubp(1); break; case Token::MUL: __ fmulp(1); break; case Token::DIV: __ fdivp(1); break; default: UNREACHABLE(); } __ fstp_d(FieldOperand(ecx, HeapNumber::kValueOffset)); } __ mov(eax, ecx); __ ret(0); break; } default: break; } } // 7. Non-smi operands, fall out to the non-smi code with the operands in // edx and eax. Comment done_comment(masm, "-- Enter non-smi code"); __ bind(¬_smis); switch (op_) { case Token::BIT_OR: case Token::SHL: case Token::SAR: case Token::SHR: // Right operand is saved in ecx and eax was destroyed by the smi // check. __ mov(eax, ecx); break; case Token::DIV: case Token::MOD: // Operands are in eax, ebx at this point. __ mov(edx, eax); __ mov(eax, ebx); break; default: break; } } void BinaryOpStub::GenerateSmiStub(MacroAssembler* masm) { Label call_runtime; switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: break; case Token::MOD: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: GenerateRegisterArgsPush(masm); break; default: UNREACHABLE(); } if (result_type_ == BinaryOpIC::UNINITIALIZED || result_type_ == BinaryOpIC::SMI) { GenerateSmiCode(masm, &call_runtime, NO_HEAPNUMBER_RESULTS); } else { GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); } __ bind(&call_runtime); switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: GenerateTypeTransition(masm); break; case Token::MOD: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: GenerateTypeTransitionWithSavedArgs(masm); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateStringStub(MacroAssembler* masm) { ASSERT(operands_type_ == BinaryOpIC::STRING); ASSERT(op_ == Token::ADD); // Try to add arguments as strings, otherwise, transition to the generic // BinaryOpIC type. GenerateAddStrings(masm); GenerateTypeTransition(masm); } void BinaryOpStub::GenerateBothStringStub(MacroAssembler* masm) { Label call_runtime; ASSERT(operands_type_ == BinaryOpIC::BOTH_STRING); ASSERT(op_ == Token::ADD); // If both arguments are strings, call the string add stub. // Otherwise, do a transition. // Registers containing left and right operands respectively. Register left = edx; Register right = eax; // Test if left operand is a string. __ JumpIfSmi(left, &call_runtime, Label::kNear); __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx); __ j(above_equal, &call_runtime, Label::kNear); // Test if right operand is a string. __ JumpIfSmi(right, &call_runtime, Label::kNear); __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx); __ j(above_equal, &call_runtime, Label::kNear); StringAddStub string_add_stub(NO_STRING_CHECK_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_stub); __ bind(&call_runtime); GenerateTypeTransition(masm); } void BinaryOpStub::GenerateInt32Stub(MacroAssembler* masm) { Label call_runtime; ASSERT(operands_type_ == BinaryOpIC::INT32); // Floating point case. switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { Label not_floats; Label not_int32; if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, ¬_int32, ecx); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } // Check result type if it is currently Int32. if (result_type_ <= BinaryOpIC::INT32) { __ cvttsd2si(ecx, Operand(xmm0)); __ cvtsi2sd(xmm2, ecx); __ ucomisd(xmm0, xmm2); __ j(not_zero, ¬_int32); __ j(carry, ¬_int32); } GenerateHeapResultAllocation(masm, &call_runtime); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); __ ret(0); } else { // SSE2 not available, use FPU. FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); FloatingPointHelper::LoadFloatOperands( masm, ecx, FloatingPointHelper::ARGS_IN_REGISTERS); FloatingPointHelper::CheckFloatOperandsAreInt32(masm, ¬_int32); switch (op_) { case Token::ADD: __ faddp(1); break; case Token::SUB: __ fsubp(1); break; case Token::MUL: __ fmulp(1); break; case Token::DIV: __ fdivp(1); break; default: UNREACHABLE(); } Label after_alloc_failure; GenerateHeapResultAllocation(masm, &after_alloc_failure); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ ret(0); __ bind(&after_alloc_failure); __ ffree(); __ jmp(&call_runtime); } __ bind(¬_floats); __ bind(¬_int32); GenerateTypeTransition(masm); break; } case Token::MOD: { // For MOD we go directly to runtime in the non-smi case. break; } case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: { GenerateRegisterArgsPush(masm); Label not_floats; Label not_int32; Label non_smi_result; /* { CpuFeatures::Scope use_sse2(SSE2); FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); FloatingPointHelper::CheckSSE2OperandsAreInt32(masm, ¬_int32, ecx); }*/ FloatingPointHelper::LoadUnknownsAsIntegers(masm, use_sse3_, ¬_floats); FloatingPointHelper::CheckLoadedIntegersWereInt32(masm, use_sse3_, ¬_int32); switch (op_) { case Token::BIT_OR: __ or_(eax, ecx); break; case Token::BIT_AND: __ and_(eax, ecx); break; case Token::BIT_XOR: __ xor_(eax, ecx); break; case Token::SAR: __ sar_cl(eax); break; case Token::SHL: __ shl_cl(eax); break; case Token::SHR: __ shr_cl(eax); break; default: UNREACHABLE(); } if (op_ == Token::SHR) { // Check if result is non-negative and fits in a smi. __ test(eax, Immediate(0xc0000000)); __ j(not_zero, &call_runtime); } else { // Check if result fits in a smi. __ cmp(eax, 0xc0000000); __ j(negative, &non_smi_result, Label::kNear); } // Tag smi result and return. __ SmiTag(eax); __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. // All ops except SHR return a signed int32 that we load in // a HeapNumber. if (op_ != Token::SHR) { __ bind(&non_smi_result); // Allocate a heap number if needed. __ mov(ebx, eax); // ebx: result Label skip_allocation; switch (mode_) { case OVERWRITE_LEFT: case OVERWRITE_RIGHT: // If the operand was an object, we skip the // allocation of a heap number. __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? 1 * kPointerSize : 2 * kPointerSize)); __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear); // Fall through! case NO_OVERWRITE: __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); __ bind(&skip_allocation); break; default: UNREACHABLE(); } // Store the result in the HeapNumber and return. if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); __ cvtsi2sd(xmm0, ebx); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); } else { __ mov(Operand(esp, 1 * kPointerSize), ebx); __ fild_s(Operand(esp, 1 * kPointerSize)); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); } __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. } __ bind(¬_floats); __ bind(¬_int32); GenerateTypeTransitionWithSavedArgs(masm); break; } default: UNREACHABLE(); break; } // If an allocation fails, or SHR or MOD hit a hard case, // use the runtime system to get the correct result. __ bind(&call_runtime); switch (op_) { case Token::ADD: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); break; case Token::SUB: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); break; case Token::MUL: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); break; case Token::DIV: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); break; case Token::MOD: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); break; case Token::BIT_OR: __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); break; case Token::BIT_AND: __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); break; case Token::BIT_XOR: __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); break; case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); break; case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); break; case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateOddballStub(MacroAssembler* masm) { if (op_ == Token::ADD) { // Handle string addition here, because it is the only operation // that does not do a ToNumber conversion on the operands. GenerateAddStrings(masm); } Factory* factory = masm->isolate()->factory(); // Convert odd ball arguments to numbers. Label check, done; __ cmp(edx, factory->undefined_value()); __ j(not_equal, &check, Label::kNear); if (Token::IsBitOp(op_)) { __ xor_(edx, edx); } else { __ mov(edx, Immediate(factory->nan_value())); } __ jmp(&done, Label::kNear); __ bind(&check); __ cmp(eax, factory->undefined_value()); __ j(not_equal, &done, Label::kNear); if (Token::IsBitOp(op_)) { __ xor_(eax, eax); } else { __ mov(eax, Immediate(factory->nan_value())); } __ bind(&done); GenerateHeapNumberStub(masm); } void BinaryOpStub::GenerateHeapNumberStub(MacroAssembler* masm) { Label call_runtime; // Floating point case. switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { Label not_floats; if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } GenerateHeapResultAllocation(masm, &call_runtime); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); __ ret(0); } else { // SSE2 not available, use FPU. FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); FloatingPointHelper::LoadFloatOperands( masm, ecx, FloatingPointHelper::ARGS_IN_REGISTERS); switch (op_) { case Token::ADD: __ faddp(1); break; case Token::SUB: __ fsubp(1); break; case Token::MUL: __ fmulp(1); break; case Token::DIV: __ fdivp(1); break; default: UNREACHABLE(); } Label after_alloc_failure; GenerateHeapResultAllocation(masm, &after_alloc_failure); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ ret(0); __ bind(&after_alloc_failure); __ ffree(); __ jmp(&call_runtime); } __ bind(¬_floats); GenerateTypeTransition(masm); break; } case Token::MOD: { // For MOD we go directly to runtime in the non-smi case. break; } case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: { GenerateRegisterArgsPush(masm); Label not_floats; Label non_smi_result; FloatingPointHelper::LoadUnknownsAsIntegers(masm, use_sse3_, ¬_floats); switch (op_) { case Token::BIT_OR: __ or_(eax, ecx); break; case Token::BIT_AND: __ and_(eax, ecx); break; case Token::BIT_XOR: __ xor_(eax, ecx); break; case Token::SAR: __ sar_cl(eax); break; case Token::SHL: __ shl_cl(eax); break; case Token::SHR: __ shr_cl(eax); break; default: UNREACHABLE(); } if (op_ == Token::SHR) { // Check if result is non-negative and fits in a smi. __ test(eax, Immediate(0xc0000000)); __ j(not_zero, &call_runtime); } else { // Check if result fits in a smi. __ cmp(eax, 0xc0000000); __ j(negative, &non_smi_result, Label::kNear); } // Tag smi result and return. __ SmiTag(eax); __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. // All ops except SHR return a signed int32 that we load in // a HeapNumber. if (op_ != Token::SHR) { __ bind(&non_smi_result); // Allocate a heap number if needed. __ mov(ebx, eax); // ebx: result Label skip_allocation; switch (mode_) { case OVERWRITE_LEFT: case OVERWRITE_RIGHT: // If the operand was an object, we skip the // allocation of a heap number. __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? 1 * kPointerSize : 2 * kPointerSize)); __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear); // Fall through! case NO_OVERWRITE: __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); __ bind(&skip_allocation); break; default: UNREACHABLE(); } // Store the result in the HeapNumber and return. if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); __ cvtsi2sd(xmm0, ebx); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); } else { __ mov(Operand(esp, 1 * kPointerSize), ebx); __ fild_s(Operand(esp, 1 * kPointerSize)); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); } __ ret(2 * kPointerSize); // Drop two pushed arguments from the stack. } __ bind(¬_floats); GenerateTypeTransitionWithSavedArgs(masm); break; } default: UNREACHABLE(); break; } // If an allocation fails, or SHR or MOD hit a hard case, // use the runtime system to get the correct result. __ bind(&call_runtime); switch (op_) { case Token::ADD: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); break; case Token::SUB: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); break; case Token::MUL: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); break; case Token::DIV: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); break; case Token::MOD: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); break; case Token::BIT_OR: __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); break; case Token::BIT_AND: __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); break; case Token::BIT_XOR: __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); break; case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); break; case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); break; case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateGeneric(MacroAssembler* masm) { Label call_runtime; Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->generic_binary_stub_calls(), 1); switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: break; case Token::MOD: case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: GenerateRegisterArgsPush(masm); break; default: UNREACHABLE(); } GenerateSmiCode(masm, &call_runtime, ALLOW_HEAPNUMBER_RESULTS); // Floating point case. switch (op_) { case Token::ADD: case Token::SUB: case Token::MUL: case Token::DIV: { Label not_floats; if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); FloatingPointHelper::LoadSSE2Operands(masm, ¬_floats); switch (op_) { case Token::ADD: __ addsd(xmm0, xmm1); break; case Token::SUB: __ subsd(xmm0, xmm1); break; case Token::MUL: __ mulsd(xmm0, xmm1); break; case Token::DIV: __ divsd(xmm0, xmm1); break; default: UNREACHABLE(); } GenerateHeapResultAllocation(masm, &call_runtime); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); __ ret(0); } else { // SSE2 not available, use FPU. FloatingPointHelper::CheckFloatOperands(masm, ¬_floats, ebx); FloatingPointHelper::LoadFloatOperands( masm, ecx, FloatingPointHelper::ARGS_IN_REGISTERS); switch (op_) { case Token::ADD: __ faddp(1); break; case Token::SUB: __ fsubp(1); break; case Token::MUL: __ fmulp(1); break; case Token::DIV: __ fdivp(1); break; default: UNREACHABLE(); } Label after_alloc_failure; GenerateHeapResultAllocation(masm, &after_alloc_failure); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ ret(0); __ bind(&after_alloc_failure); __ ffree(); __ jmp(&call_runtime); } __ bind(¬_floats); break; } case Token::MOD: { // For MOD we go directly to runtime in the non-smi case. break; } case Token::BIT_OR: case Token::BIT_AND: case Token::BIT_XOR: case Token::SAR: case Token::SHL: case Token::SHR: { Label non_smi_result; FloatingPointHelper::LoadUnknownsAsIntegers(masm, use_sse3_, &call_runtime); switch (op_) { case Token::BIT_OR: __ or_(eax, ecx); break; case Token::BIT_AND: __ and_(eax, ecx); break; case Token::BIT_XOR: __ xor_(eax, ecx); break; case Token::SAR: __ sar_cl(eax); break; case Token::SHL: __ shl_cl(eax); break; case Token::SHR: __ shr_cl(eax); break; default: UNREACHABLE(); } if (op_ == Token::SHR) { // Check if result is non-negative and fits in a smi. __ test(eax, Immediate(0xc0000000)); __ j(not_zero, &call_runtime); } else { // Check if result fits in a smi. __ cmp(eax, 0xc0000000); __ j(negative, &non_smi_result, Label::kNear); } // Tag smi result and return. __ SmiTag(eax); __ ret(2 * kPointerSize); // Drop the arguments from the stack. // All ops except SHR return a signed int32 that we load in // a HeapNumber. if (op_ != Token::SHR) { __ bind(&non_smi_result); // Allocate a heap number if needed. __ mov(ebx, eax); // ebx: result Label skip_allocation; switch (mode_) { case OVERWRITE_LEFT: case OVERWRITE_RIGHT: // If the operand was an object, we skip the // allocation of a heap number. __ mov(eax, Operand(esp, mode_ == OVERWRITE_RIGHT ? 1 * kPointerSize : 2 * kPointerSize)); __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear); // Fall through! case NO_OVERWRITE: __ AllocateHeapNumber(eax, ecx, edx, &call_runtime); __ bind(&skip_allocation); break; default: UNREACHABLE(); } // Store the result in the HeapNumber and return. if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); __ cvtsi2sd(xmm0, ebx); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm0); } else { __ mov(Operand(esp, 1 * kPointerSize), ebx); __ fild_s(Operand(esp, 1 * kPointerSize)); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); } __ ret(2 * kPointerSize); } break; } default: UNREACHABLE(); break; } // If all else fails, use the runtime system to get the correct // result. __ bind(&call_runtime); switch (op_) { case Token::ADD: { GenerateAddStrings(masm); GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::ADD, JUMP_FUNCTION); break; } case Token::SUB: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::SUB, JUMP_FUNCTION); break; case Token::MUL: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::MUL, JUMP_FUNCTION); break; case Token::DIV: GenerateRegisterArgsPush(masm); __ InvokeBuiltin(Builtins::DIV, JUMP_FUNCTION); break; case Token::MOD: __ InvokeBuiltin(Builtins::MOD, JUMP_FUNCTION); break; case Token::BIT_OR: __ InvokeBuiltin(Builtins::BIT_OR, JUMP_FUNCTION); break; case Token::BIT_AND: __ InvokeBuiltin(Builtins::BIT_AND, JUMP_FUNCTION); break; case Token::BIT_XOR: __ InvokeBuiltin(Builtins::BIT_XOR, JUMP_FUNCTION); break; case Token::SAR: __ InvokeBuiltin(Builtins::SAR, JUMP_FUNCTION); break; case Token::SHL: __ InvokeBuiltin(Builtins::SHL, JUMP_FUNCTION); break; case Token::SHR: __ InvokeBuiltin(Builtins::SHR, JUMP_FUNCTION); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateAddStrings(MacroAssembler* masm) { ASSERT(op_ == Token::ADD); Label left_not_string, call_runtime; // Registers containing left and right operands respectively. Register left = edx; Register right = eax; // Test if left operand is a string. __ JumpIfSmi(left, &left_not_string, Label::kNear); __ CmpObjectType(left, FIRST_NONSTRING_TYPE, ecx); __ j(above_equal, &left_not_string, Label::kNear); StringAddStub string_add_left_stub(NO_STRING_CHECK_LEFT_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_left_stub); // Left operand is not a string, test right. __ bind(&left_not_string); __ JumpIfSmi(right, &call_runtime, Label::kNear); __ CmpObjectType(right, FIRST_NONSTRING_TYPE, ecx); __ j(above_equal, &call_runtime, Label::kNear); StringAddStub string_add_right_stub(NO_STRING_CHECK_RIGHT_IN_STUB); GenerateRegisterArgsPush(masm); __ TailCallStub(&string_add_right_stub); // Neither argument is a string. __ bind(&call_runtime); } void BinaryOpStub::GenerateHeapResultAllocation( MacroAssembler* masm, Label* alloc_failure) { Label skip_allocation; OverwriteMode mode = mode_; switch (mode) { case OVERWRITE_LEFT: { // If the argument in edx is already an object, we skip the // allocation of a heap number. __ JumpIfNotSmi(edx, &skip_allocation, Label::kNear); // Allocate a heap number for the result. Keep eax and edx intact // for the possible runtime call. __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); // Now edx can be overwritten losing one of the arguments as we are // now done and will not need it any more. __ mov(edx, ebx); __ bind(&skip_allocation); // Use object in edx as a result holder __ mov(eax, edx); break; } case OVERWRITE_RIGHT: // If the argument in eax is already an object, we skip the // allocation of a heap number. __ JumpIfNotSmi(eax, &skip_allocation, Label::kNear); // Fall through! case NO_OVERWRITE: // Allocate a heap number for the result. Keep eax and edx intact // for the possible runtime call. __ AllocateHeapNumber(ebx, ecx, no_reg, alloc_failure); // Now eax can be overwritten losing one of the arguments as we are // now done and will not need it any more. __ mov(eax, ebx); __ bind(&skip_allocation); break; default: UNREACHABLE(); } } void BinaryOpStub::GenerateRegisterArgsPush(MacroAssembler* masm) { __ pop(ecx); __ push(edx); __ push(eax); __ push(ecx); } void TranscendentalCacheStub::Generate(MacroAssembler* masm) { // TAGGED case: // Input: // esp[4]: tagged number input argument (should be number). // esp[0]: return address. // Output: // eax: tagged double result. // UNTAGGED case: // Input:: // esp[0]: return address. // xmm1: untagged double input argument // Output: // xmm1: untagged double result. Label runtime_call; Label runtime_call_clear_stack; Label skip_cache; const bool tagged = (argument_type_ == TAGGED); if (tagged) { // Test that eax is a number. Label input_not_smi; Label loaded; __ mov(eax, Operand(esp, kPointerSize)); __ JumpIfNotSmi(eax, &input_not_smi, Label::kNear); // Input is a smi. Untag and load it onto the FPU stack. // Then load the low and high words of the double into ebx, edx. STATIC_ASSERT(kSmiTagSize == 1); __ sar(eax, 1); __ sub(esp, Immediate(2 * kPointerSize)); __ mov(Operand(esp, 0), eax); __ fild_s(Operand(esp, 0)); __ fst_d(Operand(esp, 0)); __ pop(edx); __ pop(ebx); __ jmp(&loaded, Label::kNear); __ bind(&input_not_smi); // Check if input is a HeapNumber. __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); Factory* factory = masm->isolate()->factory(); __ cmp(ebx, Immediate(factory->heap_number_map())); __ j(not_equal, &runtime_call); // Input is a HeapNumber. Push it on the FPU stack and load its // low and high words into ebx, edx. __ fld_d(FieldOperand(eax, HeapNumber::kValueOffset)); __ mov(edx, FieldOperand(eax, HeapNumber::kExponentOffset)); __ mov(ebx, FieldOperand(eax, HeapNumber::kMantissaOffset)); __ bind(&loaded); } else { // UNTAGGED. if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatures::Scope sse4_scope(SSE4_1); __ pextrd(edx, xmm1, 0x1); // copy xmm1[63..32] to edx. } else { __ pshufd(xmm0, xmm1, 0x1); __ movd(edx, xmm0); } __ movd(ebx, xmm1); } // ST[0] or xmm1 == double value // ebx = low 32 bits of double value // edx = high 32 bits of double value // Compute hash (the shifts are arithmetic): // h = (low ^ high); h ^= h >> 16; h ^= h >> 8; h = h & (cacheSize - 1); __ mov(ecx, ebx); __ xor_(ecx, edx); __ mov(eax, ecx); __ sar(eax, 16); __ xor_(ecx, eax); __ mov(eax, ecx); __ sar(eax, 8); __ xor_(ecx, eax); ASSERT(IsPowerOf2(TranscendentalCache::SubCache::kCacheSize)); __ and_(ecx, Immediate(TranscendentalCache::SubCache::kCacheSize - 1)); // ST[0] or xmm1 == double value. // ebx = low 32 bits of double value. // edx = high 32 bits of double value. // ecx = TranscendentalCache::hash(double value). ExternalReference cache_array = ExternalReference::transcendental_cache_array_address(masm->isolate()); __ mov(eax, Immediate(cache_array)); int cache_array_index = type_ * sizeof(masm->isolate()->transcendental_cache()->caches_[0]); __ mov(eax, Operand(eax, cache_array_index)); // Eax points to the cache for the type type_. // If NULL, the cache hasn't been initialized yet, so go through runtime. __ test(eax, eax); __ j(zero, &runtime_call_clear_stack); #ifdef DEBUG // Check that the layout of cache elements match expectations. { TranscendentalCache::SubCache::Element test_elem[2]; char* elem_start = reinterpret_cast<char*>(&test_elem[0]); char* elem2_start = reinterpret_cast<char*>(&test_elem[1]); char* elem_in0 = reinterpret_cast<char*>(&(test_elem[0].in[0])); char* elem_in1 = reinterpret_cast<char*>(&(test_elem[0].in[1])); char* elem_out = reinterpret_cast<char*>(&(test_elem[0].output)); CHECK_EQ(12, elem2_start - elem_start); // Two uint_32's and a pointer. CHECK_EQ(0, elem_in0 - elem_start); CHECK_EQ(kIntSize, elem_in1 - elem_start); CHECK_EQ(2 * kIntSize, elem_out - elem_start); } #endif // Find the address of the ecx'th entry in the cache, i.e., &eax[ecx*12]. __ lea(ecx, Operand(ecx, ecx, times_2, 0)); __ lea(ecx, Operand(eax, ecx, times_4, 0)); // Check if cache matches: Double value is stored in uint32_t[2] array. Label cache_miss; __ cmp(ebx, Operand(ecx, 0)); __ j(not_equal, &cache_miss, Label::kNear); __ cmp(edx, Operand(ecx, kIntSize)); __ j(not_equal, &cache_miss, Label::kNear); // Cache hit! Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->transcendental_cache_hit(), 1); __ mov(eax, Operand(ecx, 2 * kIntSize)); if (tagged) { __ fstp(0); __ ret(kPointerSize); } else { // UNTAGGED. __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ Ret(); } __ bind(&cache_miss); __ IncrementCounter(counters->transcendental_cache_miss(), 1); // Update cache with new value. // We are short on registers, so use no_reg as scratch. // This gives slightly larger code. if (tagged) { __ AllocateHeapNumber(eax, edi, no_reg, &runtime_call_clear_stack); } else { // UNTAGGED. __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); __ sub(esp, Immediate(kDoubleSize)); __ movdbl(Operand(esp, 0), xmm1); __ fld_d(Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); } GenerateOperation(masm, type_); __ mov(Operand(ecx, 0), ebx); __ mov(Operand(ecx, kIntSize), edx); __ mov(Operand(ecx, 2 * kIntSize), eax); __ fstp_d(FieldOperand(eax, HeapNumber::kValueOffset)); if (tagged) { __ ret(kPointerSize); } else { // UNTAGGED. __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ Ret(); // Skip cache and return answer directly, only in untagged case. __ bind(&skip_cache); __ sub(esp, Immediate(kDoubleSize)); __ movdbl(Operand(esp, 0), xmm1); __ fld_d(Operand(esp, 0)); GenerateOperation(masm, type_); __ fstp_d(Operand(esp, 0)); __ movdbl(xmm1, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); // We return the value in xmm1 without adding it to the cache, but // we cause a scavenging GC so that future allocations will succeed. { FrameScope scope(masm, StackFrame::INTERNAL); // Allocate an unused object bigger than a HeapNumber. __ push(Immediate(Smi::FromInt(2 * kDoubleSize))); __ CallRuntimeSaveDoubles(Runtime::kAllocateInNewSpace); } __ Ret(); } // Call runtime, doing whatever allocation and cleanup is necessary. if (tagged) { __ bind(&runtime_call_clear_stack); __ fstp(0); __ bind(&runtime_call); ExternalReference runtime = ExternalReference(RuntimeFunction(), masm->isolate()); __ TailCallExternalReference(runtime, 1, 1); } else { // UNTAGGED. __ bind(&runtime_call_clear_stack); __ bind(&runtime_call); __ AllocateHeapNumber(eax, edi, no_reg, &skip_cache); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), xmm1); { FrameScope scope(masm, StackFrame::INTERNAL); __ push(eax); __ CallRuntime(RuntimeFunction(), 1); } __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ Ret(); } } Runtime::FunctionId TranscendentalCacheStub::RuntimeFunction() { switch (type_) { case TranscendentalCache::SIN: return Runtime::kMath_sin; case TranscendentalCache::COS: return Runtime::kMath_cos; case TranscendentalCache::TAN: return Runtime::kMath_tan; case TranscendentalCache::LOG: return Runtime::kMath_log; default: UNIMPLEMENTED(); return Runtime::kAbort; } } void TranscendentalCacheStub::GenerateOperation( MacroAssembler* masm, TranscendentalCache::Type type) { // Only free register is edi. // Input value is on FP stack, and also in ebx/edx. // Input value is possibly in xmm1. // Address of result (a newly allocated HeapNumber) may be in eax. if (type == TranscendentalCache::SIN || type == TranscendentalCache::COS || type == TranscendentalCache::TAN) { // Both fsin and fcos require arguments in the range +/-2^63 and // return NaN for infinities and NaN. They can share all code except // the actual fsin/fcos operation. Label in_range, done; // If argument is outside the range -2^63..2^63, fsin/cos doesn't // work. We must reduce it to the appropriate range. __ mov(edi, edx); __ and_(edi, Immediate(0x7ff00000)); // Exponent only. int supported_exponent_limit = (63 + HeapNumber::kExponentBias) << HeapNumber::kExponentShift; __ cmp(edi, Immediate(supported_exponent_limit)); __ j(below, &in_range, Label::kNear); // Check for infinity and NaN. Both return NaN for sin. __ cmp(edi, Immediate(0x7ff00000)); Label non_nan_result; __ j(not_equal, &non_nan_result, Label::kNear); // Input is +/-Infinity or NaN. Result is NaN. __ fstp(0); // NaN is represented by 0x7ff8000000000000. __ push(Immediate(0x7ff80000)); __ push(Immediate(0)); __ fld_d(Operand(esp, 0)); __ add(esp, Immediate(2 * kPointerSize)); __ jmp(&done, Label::kNear); __ bind(&non_nan_result); // Use fpmod to restrict argument to the range +/-2*PI. __ mov(edi, eax); // Save eax before using fnstsw_ax. __ fldpi(); __ fadd(0); __ fld(1); // FPU Stack: input, 2*pi, input. { Label no_exceptions; __ fwait(); __ fnstsw_ax(); // Clear if Illegal Operand or Zero Division exceptions are set. __ test(eax, Immediate(5)); __ j(zero, &no_exceptions, Label::kNear); __ fnclex(); __ bind(&no_exceptions); } // Compute st(0) % st(1) { Label partial_remainder_loop; __ bind(&partial_remainder_loop); __ fprem1(); __ fwait(); __ fnstsw_ax(); __ test(eax, Immediate(0x400 /* C2 */)); // If C2 is set, computation only has partial result. Loop to // continue computation. __ j(not_zero, &partial_remainder_loop); } // FPU Stack: input, 2*pi, input % 2*pi __ fstp(2); __ fstp(0); __ mov(eax, edi); // Restore eax (allocated HeapNumber pointer). // FPU Stack: input % 2*pi __ bind(&in_range); switch (type) { case TranscendentalCache::SIN: __ fsin(); break; case TranscendentalCache::COS: __ fcos(); break; case TranscendentalCache::TAN: // FPTAN calculates tangent onto st(0) and pushes 1.0 onto the // FP register stack. __ fptan(); __ fstp(0); // Pop FP register stack. break; default: UNREACHABLE(); } __ bind(&done); } else { ASSERT(type == TranscendentalCache::LOG); __ fldln2(); __ fxch(); __ fyl2x(); } } // Input: edx, eax are the left and right objects of a bit op. // Output: eax, ecx are left and right integers for a bit op. void FloatingPointHelper::LoadUnknownsAsIntegers(MacroAssembler* masm, bool use_sse3, Label* conversion_failure) { // Check float operands. Label arg1_is_object, check_undefined_arg1; Label arg2_is_object, check_undefined_arg2; Label load_arg2, done; // Test if arg1 is a Smi. __ JumpIfNotSmi(edx, &arg1_is_object, Label::kNear); __ SmiUntag(edx); __ jmp(&load_arg2); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg1); Factory* factory = masm->isolate()->factory(); __ cmp(edx, factory->undefined_value()); __ j(not_equal, conversion_failure); __ mov(edx, Immediate(0)); __ jmp(&load_arg2); __ bind(&arg1_is_object); __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); __ cmp(ebx, factory->heap_number_map()); __ j(not_equal, &check_undefined_arg1); // Get the untagged integer version of the edx heap number in ecx. IntegerConvert(masm, edx, use_sse3, conversion_failure); __ mov(edx, ecx); // Here edx has the untagged integer, eax has a Smi or a heap number. __ bind(&load_arg2); // Test if arg2 is a Smi. __ JumpIfNotSmi(eax, &arg2_is_object, Label::kNear); __ SmiUntag(eax); __ mov(ecx, eax); __ jmp(&done); // If the argument is undefined it converts to zero (ECMA-262, section 9.5). __ bind(&check_undefined_arg2); __ cmp(eax, factory->undefined_value()); __ j(not_equal, conversion_failure); __ mov(ecx, Immediate(0)); __ jmp(&done); __ bind(&arg2_is_object); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(ebx, factory->heap_number_map()); __ j(not_equal, &check_undefined_arg2); // Get the untagged integer version of the eax heap number in ecx. IntegerConvert(masm, eax, use_sse3, conversion_failure); __ bind(&done); __ mov(eax, edx); } void FloatingPointHelper::CheckLoadedIntegersWereInt32(MacroAssembler* masm, bool use_sse3, Label* not_int32) { return; } void FloatingPointHelper::LoadFloatOperand(MacroAssembler* masm, Register number) { Label load_smi, done; __ JumpIfSmi(number, &load_smi, Label::kNear); __ fld_d(FieldOperand(number, HeapNumber::kValueOffset)); __ jmp(&done, Label::kNear); __ bind(&load_smi); __ SmiUntag(number); __ push(number); __ fild_s(Operand(esp, 0)); __ pop(number); __ bind(&done); } void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm) { Label load_smi_edx, load_eax, load_smi_eax, done; // Load operand in edx into xmm0. __ JumpIfSmi(edx, &load_smi_edx, Label::kNear); __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ bind(&load_eax); // Load operand in eax into xmm1. __ JumpIfSmi(eax, &load_smi_eax, Label::kNear); __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ jmp(&done, Label::kNear); __ bind(&load_smi_edx); __ SmiUntag(edx); // Untag smi before converting to float. __ cvtsi2sd(xmm0, edx); __ SmiTag(edx); // Retag smi for heap number overwriting test. __ jmp(&load_eax); __ bind(&load_smi_eax); __ SmiUntag(eax); // Untag smi before converting to float. __ cvtsi2sd(xmm1, eax); __ SmiTag(eax); // Retag smi for heap number overwriting test. __ bind(&done); } void FloatingPointHelper::LoadSSE2Operands(MacroAssembler* masm, Label* not_numbers) { Label load_smi_edx, load_eax, load_smi_eax, load_float_eax, done; // Load operand in edx into xmm0, or branch to not_numbers. __ JumpIfSmi(edx, &load_smi_edx, Label::kNear); Factory* factory = masm->isolate()->factory(); __ cmp(FieldOperand(edx, HeapObject::kMapOffset), factory->heap_number_map()); __ j(not_equal, not_numbers); // Argument in edx is not a number. __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ bind(&load_eax); // Load operand in eax into xmm1, or branch to not_numbers. __ JumpIfSmi(eax, &load_smi_eax, Label::kNear); __ cmp(FieldOperand(eax, HeapObject::kMapOffset), factory->heap_number_map()); __ j(equal, &load_float_eax, Label::kNear); __ jmp(not_numbers); // Argument in eax is not a number. __ bind(&load_smi_edx); __ SmiUntag(edx); // Untag smi before converting to float. __ cvtsi2sd(xmm0, edx); __ SmiTag(edx); // Retag smi for heap number overwriting test. __ jmp(&load_eax); __ bind(&load_smi_eax); __ SmiUntag(eax); // Untag smi before converting to float. __ cvtsi2sd(xmm1, eax); __ SmiTag(eax); // Retag smi for heap number overwriting test. __ jmp(&done, Label::kNear); __ bind(&load_float_eax); __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); __ bind(&done); } void FloatingPointHelper::LoadSSE2Smis(MacroAssembler* masm, Register scratch) { const Register left = edx; const Register right = eax; __ mov(scratch, left); ASSERT(!scratch.is(right)); // We're about to clobber scratch. __ SmiUntag(scratch); __ cvtsi2sd(xmm0, scratch); __ mov(scratch, right); __ SmiUntag(scratch); __ cvtsi2sd(xmm1, scratch); } void FloatingPointHelper::CheckSSE2OperandsAreInt32(MacroAssembler* masm, Label* non_int32, Register scratch) { __ cvttsd2si(scratch, Operand(xmm0)); __ cvtsi2sd(xmm2, scratch); __ ucomisd(xmm0, xmm2); __ j(not_zero, non_int32); __ j(carry, non_int32); __ cvttsd2si(scratch, Operand(xmm1)); __ cvtsi2sd(xmm2, scratch); __ ucomisd(xmm1, xmm2); __ j(not_zero, non_int32); __ j(carry, non_int32); } void FloatingPointHelper::LoadFloatOperands(MacroAssembler* masm, Register scratch, ArgLocation arg_location) { Label load_smi_1, load_smi_2, done_load_1, done; if (arg_location == ARGS_IN_REGISTERS) { __ mov(scratch, edx); } else { __ mov(scratch, Operand(esp, 2 * kPointerSize)); } __ JumpIfSmi(scratch, &load_smi_1, Label::kNear); __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); __ bind(&done_load_1); if (arg_location == ARGS_IN_REGISTERS) { __ mov(scratch, eax); } else { __ mov(scratch, Operand(esp, 1 * kPointerSize)); } __ JumpIfSmi(scratch, &load_smi_2, Label::kNear); __ fld_d(FieldOperand(scratch, HeapNumber::kValueOffset)); __ jmp(&done, Label::kNear); __ bind(&load_smi_1); __ SmiUntag(scratch); __ push(scratch); __ fild_s(Operand(esp, 0)); __ pop(scratch); __ jmp(&done_load_1); __ bind(&load_smi_2); __ SmiUntag(scratch); __ push(scratch); __ fild_s(Operand(esp, 0)); __ pop(scratch); __ bind(&done); } void FloatingPointHelper::LoadFloatSmis(MacroAssembler* masm, Register scratch) { const Register left = edx; const Register right = eax; __ mov(scratch, left); ASSERT(!scratch.is(right)); // We're about to clobber scratch. __ SmiUntag(scratch); __ push(scratch); __ fild_s(Operand(esp, 0)); __ mov(scratch, right); __ SmiUntag(scratch); __ mov(Operand(esp, 0), scratch); __ fild_s(Operand(esp, 0)); __ pop(scratch); } void FloatingPointHelper::CheckFloatOperands(MacroAssembler* masm, Label* non_float, Register scratch) { Label test_other, done; // Test if both operands are floats or smi -> scratch=k_is_float; // Otherwise scratch = k_not_float. __ JumpIfSmi(edx, &test_other, Label::kNear); __ mov(scratch, FieldOperand(edx, HeapObject::kMapOffset)); Factory* factory = masm->isolate()->factory(); __ cmp(scratch, factory->heap_number_map()); __ j(not_equal, non_float); // argument in edx is not a number -> NaN __ bind(&test_other); __ JumpIfSmi(eax, &done, Label::kNear); __ mov(scratch, FieldOperand(eax, HeapObject::kMapOffset)); __ cmp(scratch, factory->heap_number_map()); __ j(not_equal, non_float); // argument in eax is not a number -> NaN // Fall-through: Both operands are numbers. __ bind(&done); } void FloatingPointHelper::CheckFloatOperandsAreInt32(MacroAssembler* masm, Label* non_int32) { return; } void MathPowStub::Generate(MacroAssembler* masm) { CpuFeatures::Scope use_sse2(SSE2); Factory* factory = masm->isolate()->factory(); const Register exponent = eax; const Register base = edx; const Register scratch = ecx; const XMMRegister double_result = xmm3; const XMMRegister double_base = xmm2; const XMMRegister double_exponent = xmm1; const XMMRegister double_scratch = xmm4; Label call_runtime, done, exponent_not_smi, int_exponent; // Save 1 in double_result - we need this several times later on. __ mov(scratch, Immediate(1)); __ cvtsi2sd(double_result, scratch); if (exponent_type_ == ON_STACK) { Label base_is_smi, unpack_exponent; // The exponent and base are supplied as arguments on the stack. // This can only happen if the stub is called from non-optimized code. // Load input parameters from stack. __ mov(base, Operand(esp, 2 * kPointerSize)); __ mov(exponent, Operand(esp, 1 * kPointerSize)); __ JumpIfSmi(base, &base_is_smi, Label::kNear); __ cmp(FieldOperand(base, HeapObject::kMapOffset), factory->heap_number_map()); __ j(not_equal, &call_runtime); __ movdbl(double_base, FieldOperand(base, HeapNumber::kValueOffset)); __ jmp(&unpack_exponent, Label::kNear); __ bind(&base_is_smi); __ SmiUntag(base); __ cvtsi2sd(double_base, base); __ bind(&unpack_exponent); __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); __ SmiUntag(exponent); __ jmp(&int_exponent); __ bind(&exponent_not_smi); __ cmp(FieldOperand(exponent, HeapObject::kMapOffset), factory->heap_number_map()); __ j(not_equal, &call_runtime); __ movdbl(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); } else if (exponent_type_ == TAGGED) { __ JumpIfNotSmi(exponent, &exponent_not_smi, Label::kNear); __ SmiUntag(exponent); __ jmp(&int_exponent); __ bind(&exponent_not_smi); __ movdbl(double_exponent, FieldOperand(exponent, HeapNumber::kValueOffset)); } if (exponent_type_ != INTEGER) { Label fast_power; // Detect integer exponents stored as double. __ cvttsd2si(exponent, Operand(double_exponent)); // Skip to runtime if possibly NaN (indicated by the indefinite integer). __ cmp(exponent, Immediate(0x80000000u)); __ j(equal, &call_runtime); __ cvtsi2sd(double_scratch, exponent); // Already ruled out NaNs for exponent. __ ucomisd(double_exponent, double_scratch); __ j(equal, &int_exponent); if (exponent_type_ == ON_STACK) { // Detect square root case. Crankshaft detects constant +/-0.5 at // compile time and uses DoMathPowHalf instead. We then skip this check // for non-constant cases of +/-0.5 as these hardly occur. Label continue_sqrt, continue_rsqrt, not_plus_half; // Test for 0.5. // Load double_scratch with 0.5. __ mov(scratch, Immediate(0x3F000000u)); __ movd(double_scratch, scratch); __ cvtss2sd(double_scratch, double_scratch); // Already ruled out NaNs for exponent. __ ucomisd(double_scratch, double_exponent); __ j(not_equal, ¬_plus_half, Label::kNear); // Calculates square root of base. Check for the special case of // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). // According to IEEE-754, single-precision -Infinity has the highest // 9 bits set and the lowest 23 bits cleared. __ mov(scratch, 0xFF800000u); __ movd(double_scratch, scratch); __ cvtss2sd(double_scratch, double_scratch); __ ucomisd(double_base, double_scratch); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &continue_sqrt, Label::kNear); __ j(carry, &continue_sqrt, Label::kNear); // Set result to Infinity in the special case. __ xorps(double_result, double_result); __ subsd(double_result, double_scratch); __ jmp(&done); __ bind(&continue_sqrt); // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorps(double_scratch, double_scratch); __ addsd(double_scratch, double_base); // Convert -0 to +0. __ sqrtsd(double_result, double_scratch); __ jmp(&done); // Test for -0.5. __ bind(¬_plus_half); // Load double_exponent with -0.5 by substracting 1. __ subsd(double_scratch, double_result); // Already ruled out NaNs for exponent. __ ucomisd(double_scratch, double_exponent); __ j(not_equal, &fast_power, Label::kNear); // Calculates reciprocal of square root of base. Check for the special // case of Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). // According to IEEE-754, single-precision -Infinity has the highest // 9 bits set and the lowest 23 bits cleared. __ mov(scratch, 0xFF800000u); __ movd(double_scratch, scratch); __ cvtss2sd(double_scratch, double_scratch); __ ucomisd(double_base, double_scratch); // Comparing -Infinity with NaN results in "unordered", which sets the // zero flag as if both were equal. However, it also sets the carry flag. __ j(not_equal, &continue_rsqrt, Label::kNear); __ j(carry, &continue_rsqrt, Label::kNear); // Set result to 0 in the special case. __ xorps(double_result, double_result); __ jmp(&done); __ bind(&continue_rsqrt); // sqrtsd returns -0 when input is -0. ECMA spec requires +0. __ xorps(double_exponent, double_exponent); __ addsd(double_exponent, double_base); // Convert -0 to +0. __ sqrtsd(double_exponent, double_exponent); __ divsd(double_result, double_exponent); __ jmp(&done); } // Using FPU instructions to calculate power. Label fast_power_failed; __ bind(&fast_power); __ fnclex(); // Clear flags to catch exceptions later. // Transfer (B)ase and (E)xponent onto the FPU register stack. __ sub(esp, Immediate(kDoubleSize)); __ movdbl(Operand(esp, 0), double_exponent); __ fld_d(Operand(esp, 0)); // E __ movdbl(Operand(esp, 0), double_base); __ fld_d(Operand(esp, 0)); // B, E // Exponent is in st(1) and base is in st(0) // B ^ E = (2^(E * log2(B)) - 1) + 1 = (2^X - 1) + 1 for X = E * log2(B) // FYL2X calculates st(1) * log2(st(0)) __ fyl2x(); // X __ fld(0); // X, X __ frndint(); // rnd(X), X __ fsub(1); // rnd(X), X-rnd(X) __ fxch(1); // X - rnd(X), rnd(X) // F2XM1 calculates 2^st(0) - 1 for -1 < st(0) < 1 __ f2xm1(); // 2^(X-rnd(X)) - 1, rnd(X) __ fld1(); // 1, 2^(X-rnd(X)) - 1, rnd(X) __ faddp(1); // 1, 2^(X-rnd(X)), rnd(X) // FSCALE calculates st(0) * 2^st(1) __ fscale(); // 2^X, rnd(X) __ fstp(1); // Bail out to runtime in case of exceptions in the status word. __ fnstsw_ax(); __ test_b(eax, 0x5F); // We check for all but precision exception. __ j(not_zero, &fast_power_failed, Label::kNear); __ fstp_d(Operand(esp, 0)); __ movdbl(double_result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); __ jmp(&done); __ bind(&fast_power_failed); __ fninit(); __ add(esp, Immediate(kDoubleSize)); __ jmp(&call_runtime); } // Calculate power with integer exponent. __ bind(&int_exponent); const XMMRegister double_scratch2 = double_exponent; __ mov(scratch, exponent); // Back up exponent. __ movsd(double_scratch, double_base); // Back up base. __ movsd(double_scratch2, double_result); // Load double_exponent with 1. // Get absolute value of exponent. Label no_neg, while_true, no_multiply; __ test(scratch, scratch); __ j(positive, &no_neg, Label::kNear); __ neg(scratch); __ bind(&no_neg); __ bind(&while_true); __ shr(scratch, 1); __ j(not_carry, &no_multiply, Label::kNear); __ mulsd(double_result, double_scratch); __ bind(&no_multiply); __ mulsd(double_scratch, double_scratch); __ j(not_zero, &while_true); // scratch has the original value of the exponent - if the exponent is // negative, return 1/result. __ test(exponent, exponent); __ j(positive, &done); __ divsd(double_scratch2, double_result); __ movsd(double_result, double_scratch2); // Test whether result is zero. Bail out to check for subnormal result. // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. __ xorps(double_scratch2, double_scratch2); __ ucomisd(double_scratch2, double_result); // Result cannot be NaN. // double_exponent aliased as double_scratch2 has already been overwritten // and may not have contained the exponent value in the first place when the // exponent is a smi. We reset it with exponent value before bailing out. __ j(not_equal, &done); __ cvtsi2sd(double_exponent, exponent); // Returning or bailing out. Counters* counters = masm->isolate()->counters(); if (exponent_type_ == ON_STACK) { // The arguments are still on the stack. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kMath_pow_cfunction, 2, 1); // The stub is called from non-optimized code, which expects the result // as heap number in exponent. __ bind(&done); __ AllocateHeapNumber(eax, scratch, base, &call_runtime); __ movdbl(FieldOperand(eax, HeapNumber::kValueOffset), double_result); __ IncrementCounter(counters->math_pow(), 1); __ ret(2 * kPointerSize); } else { __ bind(&call_runtime); { AllowExternalCallThatCantCauseGC scope(masm); __ PrepareCallCFunction(4, scratch); __ movdbl(Operand(esp, 0 * kDoubleSize), double_base); __ movdbl(Operand(esp, 1 * kDoubleSize), double_exponent); __ CallCFunction( ExternalReference::power_double_double_function(masm->isolate()), 4); } // Return value is in st(0) on ia32. // Store it into the (fixed) result register. __ sub(esp, Immediate(kDoubleSize)); __ fstp_d(Operand(esp, 0)); __ movdbl(double_result, Operand(esp, 0)); __ add(esp, Immediate(kDoubleSize)); __ bind(&done); __ IncrementCounter(counters->math_pow(), 1); __ ret(0); } } void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { // The key is in edx and the parameter count is in eax. // The displacement is used for skipping the frame pointer on the // stack. It is the offset of the last parameter (if any) relative // to the frame pointer. static const int kDisplacement = 1 * kPointerSize; // Check that the key is a smi. Label slow; __ JumpIfNotSmi(edx, &slow, Label::kNear); // Check if the calling frame is an arguments adaptor frame. Label adaptor; __ mov(ebx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(ebx, StandardFrameConstants::kContextOffset)); __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor, Label::kNear); // Check index against formal parameters count limit passed in // through register eax. Use unsigned comparison to get negative // check for free. __ cmp(edx, eax); __ j(above_equal, &slow, Label::kNear); // Read the argument from the stack and return it. STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. __ lea(ebx, Operand(ebp, eax, times_2, 0)); __ neg(edx); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ ret(0); // Arguments adaptor case: Check index against actual arguments // limit found in the arguments adaptor frame. Use unsigned // comparison to get negative check for free. __ bind(&adaptor); __ mov(ecx, Operand(ebx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ cmp(edx, ecx); __ j(above_equal, &slow, Label::kNear); // Read the argument from the stack and return it. STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); // Shifting code depends on these. __ lea(ebx, Operand(ebx, ecx, times_2, 0)); __ neg(edx); __ mov(eax, Operand(ebx, edx, times_2, kDisplacement)); __ ret(0); // Slow-case: Handle non-smi or out-of-bounds access to arguments // by calling the runtime system. __ bind(&slow); __ pop(ebx); // Return address. __ push(edx); __ push(ebx); __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); } void ArgumentsAccessStub::GenerateNewNonStrictSlow(MacroAssembler* masm) { // esp[0] : return address // esp[4] : number of parameters // esp[8] : receiver displacement // esp[12] : function // Check if the calling frame is an arguments adaptor frame. Label runtime; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(not_equal, &runtime, Label::kNear); // Patch the arguments.length and the parameters pointer. __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ mov(Operand(esp, 1 * kPointerSize), ecx); __ lea(edx, Operand(edx, ecx, times_2, StandardFrameConstants::kCallerSPOffset)); __ mov(Operand(esp, 2 * kPointerSize), edx); __ bind(&runtime); __ TailCallRuntime(Runtime::kNewArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewNonStrictFast(MacroAssembler* masm) { // esp[0] : return address // esp[4] : number of parameters (tagged) // esp[8] : receiver displacement // esp[12] : function // ebx = parameter count (tagged) __ mov(ebx, Operand(esp, 1 * kPointerSize)); // Check if the calling frame is an arguments adaptor frame. // TODO(rossberg): Factor out some of the bits that are shared with the other // Generate* functions. Label runtime; Label adaptor_frame, try_allocate; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor_frame, Label::kNear); // No adaptor, parameter count = argument count. __ mov(ecx, ebx); __ jmp(&try_allocate, Label::kNear); // We have an adaptor frame. Patch the parameters pointer. __ bind(&adaptor_frame); __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ lea(edx, Operand(edx, ecx, times_2, StandardFrameConstants::kCallerSPOffset)); __ mov(Operand(esp, 2 * kPointerSize), edx); // ebx = parameter count (tagged) // ecx = argument count (tagged) // esp[4] = parameter count (tagged) // esp[8] = address of receiver argument // Compute the mapped parameter count = min(ebx, ecx) in ebx. __ cmp(ebx, ecx); __ j(less_equal, &try_allocate, Label::kNear); __ mov(ebx, ecx); __ bind(&try_allocate); // Save mapped parameter count. __ push(ebx); // Compute the sizes of backing store, parameter map, and arguments object. // 1. Parameter map, has 2 extra words containing context and backing store. const int kParameterMapHeaderSize = FixedArray::kHeaderSize + 2 * kPointerSize; Label no_parameter_map; __ test(ebx, ebx); __ j(zero, &no_parameter_map, Label::kNear); __ lea(ebx, Operand(ebx, times_2, kParameterMapHeaderSize)); __ bind(&no_parameter_map); // 2. Backing store. __ lea(ebx, Operand(ebx, ecx, times_2, FixedArray::kHeaderSize)); // 3. Arguments object. __ add(ebx, Immediate(Heap::kArgumentsObjectSize)); // Do the allocation of all three objects in one go. __ AllocateInNewSpace(ebx, eax, edx, edi, &runtime, TAG_OBJECT); // eax = address of new object(s) (tagged) // ecx = argument count (tagged) // esp[0] = mapped parameter count (tagged) // esp[8] = parameter count (tagged) // esp[12] = address of receiver argument // Get the arguments boilerplate from the current (global) context into edi. Label has_mapped_parameters, copy; __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); __ mov(ebx, Operand(esp, 0 * kPointerSize)); __ test(ebx, ebx); __ j(not_zero, &has_mapped_parameters, Label::kNear); __ mov(edi, Operand(edi, Context::SlotOffset(Context::ARGUMENTS_BOILERPLATE_INDEX))); __ jmp(©, Label::kNear); __ bind(&has_mapped_parameters); __ mov(edi, Operand(edi, Context::SlotOffset(Context::ALIASED_ARGUMENTS_BOILERPLATE_INDEX))); __ bind(©); // eax = address of new object (tagged) // ebx = mapped parameter count (tagged) // ecx = argument count (tagged) // edi = address of boilerplate object (tagged) // esp[0] = mapped parameter count (tagged) // esp[8] = parameter count (tagged) // esp[12] = address of receiver argument // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ mov(edx, FieldOperand(edi, i)); __ mov(FieldOperand(eax, i), edx); } // Set up the callee in-object property. STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); __ mov(edx, Operand(esp, 4 * kPointerSize)); __ mov(FieldOperand(eax, JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize), edx); // Use the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ mov(FieldOperand(eax, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize), ecx); // Set up the elements pointer in the allocated arguments object. // If we allocated a parameter map, edi will point there, otherwise to the // backing store. __ lea(edi, Operand(eax, Heap::kArgumentsObjectSize)); __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); // eax = address of new object (tagged) // ebx = mapped parameter count (tagged) // ecx = argument count (tagged) // edi = address of parameter map or backing store (tagged) // esp[0] = mapped parameter count (tagged) // esp[8] = parameter count (tagged) // esp[12] = address of receiver argument // Free a register. __ push(eax); // Initialize parameter map. If there are no mapped arguments, we're done. Label skip_parameter_map; __ test(ebx, ebx); __ j(zero, &skip_parameter_map); __ mov(FieldOperand(edi, FixedArray::kMapOffset), Immediate(FACTORY->non_strict_arguments_elements_map())); __ lea(eax, Operand(ebx, reinterpret_cast<intptr_t>(Smi::FromInt(2)))); __ mov(FieldOperand(edi, FixedArray::kLengthOffset), eax); __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 0 * kPointerSize), esi); __ lea(eax, Operand(edi, ebx, times_2, kParameterMapHeaderSize)); __ mov(FieldOperand(edi, FixedArray::kHeaderSize + 1 * kPointerSize), eax); // Copy the parameter slots and the holes in the arguments. // We need to fill in mapped_parameter_count slots. They index the context, // where parameters are stored in reverse order, at // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 // The mapped parameter thus need to get indices // MIN_CONTEXT_SLOTS+parameter_count-1 .. // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count // We loop from right to left. Label parameters_loop, parameters_test; __ push(ecx); __ mov(eax, Operand(esp, 2 * kPointerSize)); __ mov(ebx, Immediate(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); __ add(ebx, Operand(esp, 4 * kPointerSize)); __ sub(ebx, eax); __ mov(ecx, FACTORY->the_hole_value()); __ mov(edx, edi); __ lea(edi, Operand(edi, eax, times_2, kParameterMapHeaderSize)); // eax = loop variable (tagged) // ebx = mapping index (tagged) // ecx = the hole value // edx = address of parameter map (tagged) // edi = address of backing store (tagged) // esp[0] = argument count (tagged) // esp[4] = address of new object (tagged) // esp[8] = mapped parameter count (tagged) // esp[16] = parameter count (tagged) // esp[20] = address of receiver argument __ jmp(¶meters_test, Label::kNear); __ bind(¶meters_loop); __ sub(eax, Immediate(Smi::FromInt(1))); __ mov(FieldOperand(edx, eax, times_2, kParameterMapHeaderSize), ebx); __ mov(FieldOperand(edi, eax, times_2, FixedArray::kHeaderSize), ecx); __ add(ebx, Immediate(Smi::FromInt(1))); __ bind(¶meters_test); __ test(eax, eax); __ j(not_zero, ¶meters_loop, Label::kNear); __ pop(ecx); __ bind(&skip_parameter_map); // ecx = argument count (tagged) // edi = address of backing store (tagged) // esp[0] = address of new object (tagged) // esp[4] = mapped parameter count (tagged) // esp[12] = parameter count (tagged) // esp[16] = address of receiver argument // Copy arguments header and remaining slots (if there are any). __ mov(FieldOperand(edi, FixedArray::kMapOffset), Immediate(FACTORY->fixed_array_map())); __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); Label arguments_loop, arguments_test; __ mov(ebx, Operand(esp, 1 * kPointerSize)); __ mov(edx, Operand(esp, 4 * kPointerSize)); __ sub(edx, ebx); // Is there a smarter way to do negative scaling? __ sub(edx, ebx); __ jmp(&arguments_test, Label::kNear); __ bind(&arguments_loop); __ sub(edx, Immediate(kPointerSize)); __ mov(eax, Operand(edx, 0)); __ mov(FieldOperand(edi, ebx, times_2, FixedArray::kHeaderSize), eax); __ add(ebx, Immediate(Smi::FromInt(1))); __ bind(&arguments_test); __ cmp(ebx, ecx); __ j(less, &arguments_loop, Label::kNear); // Restore. __ pop(eax); // Address of arguments object. __ pop(ebx); // Parameter count. // Return and remove the on-stack parameters. __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ pop(eax); // Remove saved parameter count. __ mov(Operand(esp, 1 * kPointerSize), ecx); // Patch argument count. __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); } void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { // esp[0] : return address // esp[4] : number of parameters // esp[8] : receiver displacement // esp[12] : function // Check if the calling frame is an arguments adaptor frame. Label adaptor_frame, try_allocate, runtime; __ mov(edx, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); __ mov(ecx, Operand(edx, StandardFrameConstants::kContextOffset)); __ cmp(ecx, Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ j(equal, &adaptor_frame, Label::kNear); // Get the length from the frame. __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ jmp(&try_allocate, Label::kNear); // Patch the arguments.length and the parameters pointer. __ bind(&adaptor_frame); __ mov(ecx, Operand(edx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ mov(Operand(esp, 1 * kPointerSize), ecx); __ lea(edx, Operand(edx, ecx, times_2, StandardFrameConstants::kCallerSPOffset)); __ mov(Operand(esp, 2 * kPointerSize), edx); // Try the new space allocation. Start out with computing the size of // the arguments object and the elements array. Label add_arguments_object; __ bind(&try_allocate); __ test(ecx, ecx); __ j(zero, &add_arguments_object, Label::kNear); __ lea(ecx, Operand(ecx, times_2, FixedArray::kHeaderSize)); __ bind(&add_arguments_object); __ add(ecx, Immediate(Heap::kArgumentsObjectSizeStrict)); // Do the allocation of both objects in one go. __ AllocateInNewSpace(ecx, eax, edx, ebx, &runtime, TAG_OBJECT); // Get the arguments boilerplate from the current (global) context. __ mov(edi, Operand(esi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ mov(edi, FieldOperand(edi, GlobalObject::kGlobalContextOffset)); const int offset = Context::SlotOffset(Context::STRICT_MODE_ARGUMENTS_BOILERPLATE_INDEX); __ mov(edi, Operand(edi, offset)); // Copy the JS object part. for (int i = 0; i < JSObject::kHeaderSize; i += kPointerSize) { __ mov(ebx, FieldOperand(edi, i)); __ mov(FieldOperand(eax, i), ebx); } // Get the length (smi tagged) and set that as an in-object property too. STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); __ mov(ecx, Operand(esp, 1 * kPointerSize)); __ mov(FieldOperand(eax, JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize), ecx); // If there are no actual arguments, we're done. Label done; __ test(ecx, ecx); __ j(zero, &done, Label::kNear); // Get the parameters pointer from the stack. __ mov(edx, Operand(esp, 2 * kPointerSize)); // Set up the elements pointer in the allocated arguments object and // initialize the header in the elements fixed array. __ lea(edi, Operand(eax, Heap::kArgumentsObjectSizeStrict)); __ mov(FieldOperand(eax, JSObject::kElementsOffset), edi); __ mov(FieldOperand(edi, FixedArray::kMapOffset), Immediate(FACTORY->fixed_array_map())); __ mov(FieldOperand(edi, FixedArray::kLengthOffset), ecx); // Untag the length for the loop below. __ SmiUntag(ecx); // Copy the fixed array slots. Label loop; __ bind(&loop); __ mov(ebx, Operand(edx, -1 * kPointerSize)); // Skip receiver. __ mov(FieldOperand(edi, FixedArray::kHeaderSize), ebx); __ add(edi, Immediate(kPointerSize)); __ sub(edx, Immediate(kPointerSize)); __ dec(ecx); __ j(not_zero, &loop); // Return and remove the on-stack parameters. __ bind(&done); __ ret(3 * kPointerSize); // Do the runtime call to allocate the arguments object. __ bind(&runtime); __ TailCallRuntime(Runtime::kNewStrictArgumentsFast, 3, 1); } void RegExpExecStub::Generate(MacroAssembler* masm) { // Just jump directly to runtime if native RegExp is not selected at compile // time or if regexp entry in generated code is turned off runtime switch or // at compilation. #ifdef V8_INTERPRETED_REGEXP __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #else // V8_INTERPRETED_REGEXP // Stack frame on entry. // esp[0]: return address // esp[4]: last_match_info (expected JSArray) // esp[8]: previous index // esp[12]: subject string // esp[16]: JSRegExp object static const int kLastMatchInfoOffset = 1 * kPointerSize; static const int kPreviousIndexOffset = 2 * kPointerSize; static const int kSubjectOffset = 3 * kPointerSize; static const int kJSRegExpOffset = 4 * kPointerSize; Label runtime, invoke_regexp; // Ensure that a RegExp stack is allocated. ExternalReference address_of_regexp_stack_memory_address = ExternalReference::address_of_regexp_stack_memory_address( masm->isolate()); ExternalReference address_of_regexp_stack_memory_size = ExternalReference::address_of_regexp_stack_memory_size(masm->isolate()); __ mov(ebx, Operand::StaticVariable(address_of_regexp_stack_memory_size)); __ test(ebx, ebx); __ j(zero, &runtime); // Check that the first argument is a JSRegExp object. __ mov(eax, Operand(esp, kJSRegExpOffset)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(eax, &runtime); __ CmpObjectType(eax, JS_REGEXP_TYPE, ecx); __ j(not_equal, &runtime); // Check that the RegExp has been compiled (data contains a fixed array). __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); if (FLAG_debug_code) { __ test(ecx, Immediate(kSmiTagMask)); __ Check(not_zero, "Unexpected type for RegExp data, FixedArray expected"); __ CmpObjectType(ecx, FIXED_ARRAY_TYPE, ebx); __ Check(equal, "Unexpected type for RegExp data, FixedArray expected"); } // ecx: RegExp data (FixedArray) // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. __ mov(ebx, FieldOperand(ecx, JSRegExp::kDataTagOffset)); __ cmp(ebx, Immediate(Smi::FromInt(JSRegExp::IRREGEXP))); __ j(not_equal, &runtime); // ecx: RegExp data (FixedArray) // Check that the number of captures fit in the static offsets vector buffer. __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. This // uses the asumption that smis are 2 * their untagged value. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ add(edx, Immediate(2)); // edx was a smi. // Check that the static offsets vector buffer is large enough. __ cmp(edx, OffsetsVector::kStaticOffsetsVectorSize); __ j(above, &runtime); // ecx: RegExp data (FixedArray) // edx: Number of capture registers // Check that the second argument is a string. __ mov(eax, Operand(esp, kSubjectOffset)); __ JumpIfSmi(eax, &runtime); Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); __ j(NegateCondition(is_string), &runtime); // Get the length of the string to ebx. __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); // ebx: Length of subject string as a smi // ecx: RegExp data (FixedArray) // edx: Number of capture registers // Check that the third argument is a positive smi less than the subject // string length. A negative value will be greater (unsigned comparison). __ mov(eax, Operand(esp, kPreviousIndexOffset)); __ JumpIfNotSmi(eax, &runtime); __ cmp(eax, ebx); __ j(above_equal, &runtime); // ecx: RegExp data (FixedArray) // edx: Number of capture registers // Check that the fourth object is a JSArray object. __ mov(eax, Operand(esp, kLastMatchInfoOffset)); __ JumpIfSmi(eax, &runtime); __ CmpObjectType(eax, JS_ARRAY_TYPE, ebx); __ j(not_equal, &runtime); // Check that the JSArray is in fast case. __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); __ mov(eax, FieldOperand(ebx, HeapObject::kMapOffset)); Factory* factory = masm->isolate()->factory(); __ cmp(eax, factory->fixed_array_map()); __ j(not_equal, &runtime); // Check that the last match info has space for the capture registers and the // additional information. __ mov(eax, FieldOperand(ebx, FixedArray::kLengthOffset)); __ SmiUntag(eax); __ add(edx, Immediate(RegExpImpl::kLastMatchOverhead)); __ cmp(edx, eax); __ j(greater, &runtime); // Reset offset for possibly sliced string. __ Set(edi, Immediate(0)); // ecx: RegExp data (FixedArray) // Check the representation and encoding of the subject string. Label seq_ascii_string, seq_two_byte_string, check_code; __ mov(eax, Operand(esp, kSubjectOffset)); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); // First check for flat two byte string. __ and_(ebx, kIsNotStringMask | kStringRepresentationMask | kStringEncodingMask | kShortExternalStringMask); STATIC_ASSERT((kStringTag | kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string, Label::kNear); // Any other flat string must be a flat ASCII string. None of the following // string type tests will succeed if subject is not a string or a short // external string. __ and_(ebx, Immediate(kIsNotStringMask | kStringRepresentationMask | kShortExternalStringMask)); __ j(zero, &seq_ascii_string, Label::kNear); // ebx: whether subject is a string and if yes, its string representation // Check for flat cons string or sliced string. // A flat cons string is a cons string where the second part is the empty // string. In that case the subject string is just the first part of the cons // string. Also in this case the first part of the cons string is known to be // a sequential string or an external string. // In the case of a sliced string its offset has to be taken into account. Label cons_string, external_string, check_encoding; STATIC_ASSERT(kConsStringTag < kExternalStringTag); STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); __ cmp(ebx, Immediate(kExternalStringTag)); __ j(less, &cons_string); __ j(equal, &external_string); // Catch non-string subject or short external string. STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); __ test(ebx, Immediate(kIsNotStringMask | kShortExternalStringTag)); __ j(not_zero, &runtime); // String is sliced. __ mov(edi, FieldOperand(eax, SlicedString::kOffsetOffset)); __ mov(eax, FieldOperand(eax, SlicedString::kParentOffset)); // edi: offset of sliced string, smi-tagged. // eax: parent string. __ jmp(&check_encoding, Label::kNear); // String is a cons string, check whether it is flat. __ bind(&cons_string); __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string()); __ j(not_equal, &runtime); __ mov(eax, FieldOperand(eax, ConsString::kFirstOffset)); __ bind(&check_encoding); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); // eax: first part of cons string or parent of sliced string. // ebx: map of first part of cons string or map of parent of sliced string. // Is first part of cons or parent of slice a flat two byte string? __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), kStringRepresentationMask | kStringEncodingMask); STATIC_ASSERT((kSeqStringTag | kTwoByteStringTag) == 0); __ j(zero, &seq_two_byte_string, Label::kNear); // Any other flat string must be sequential ASCII or external. __ test_b(FieldOperand(ebx, Map::kInstanceTypeOffset), kStringRepresentationMask); __ j(not_zero, &external_string); __ bind(&seq_ascii_string); // eax: subject string (flat ASCII) // ecx: RegExp data (FixedArray) __ mov(edx, FieldOperand(ecx, JSRegExp::kDataAsciiCodeOffset)); __ Set(ecx, Immediate(1)); // Type is ASCII. __ jmp(&check_code, Label::kNear); __ bind(&seq_two_byte_string); // eax: subject string (flat two byte) // ecx: RegExp data (FixedArray) __ mov(edx, FieldOperand(ecx, JSRegExp::kDataUC16CodeOffset)); __ Set(ecx, Immediate(0)); // Type is two byte. __ bind(&check_code); // Check that the irregexp code has been generated for the actual string // encoding. If it has, the field contains a code object otherwise it contains // a smi (code flushing support). __ JumpIfSmi(edx, &runtime); // eax: subject string // edx: code // ecx: encoding of subject string (1 if ASCII, 0 if two_byte); // Load used arguments before starting to push arguments for call to native // RegExp code to avoid handling changing stack height. __ mov(ebx, Operand(esp, kPreviousIndexOffset)); __ SmiUntag(ebx); // Previous index from smi. // eax: subject string // ebx: previous index // edx: code // ecx: encoding of subject string (1 if ASCII 0 if two_byte); // All checks done. Now push arguments for native regexp code. Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->regexp_entry_native(), 1); // Isolates: note we add an additional parameter here (isolate pointer). static const int kRegExpExecuteArguments = 8; __ EnterApiExitFrame(kRegExpExecuteArguments); // Argument 8: Pass current isolate address. __ mov(Operand(esp, 7 * kPointerSize), Immediate(ExternalReference::isolate_address())); // Argument 7: Indicate that this is a direct call from JavaScript. __ mov(Operand(esp, 6 * kPointerSize), Immediate(1)); // Argument 6: Start (high end) of backtracking stack memory area. __ mov(esi, Operand::StaticVariable(address_of_regexp_stack_memory_address)); __ add(esi, Operand::StaticVariable(address_of_regexp_stack_memory_size)); __ mov(Operand(esp, 5 * kPointerSize), esi); // Argument 5: static offsets vector buffer. __ mov(Operand(esp, 4 * kPointerSize), Immediate(ExternalReference::address_of_static_offsets_vector( masm->isolate()))); // Argument 2: Previous index. __ mov(Operand(esp, 1 * kPointerSize), ebx); // Argument 1: Original subject string. // The original subject is in the previous stack frame. Therefore we have to // use ebp, which points exactly to one pointer size below the previous esp. // (Because creating a new stack frame pushes the previous ebp onto the stack // and thereby moves up esp by one kPointerSize.) __ mov(esi, Operand(ebp, kSubjectOffset + kPointerSize)); __ mov(Operand(esp, 0 * kPointerSize), esi); // esi: original subject string // eax: underlying subject string // ebx: previous index // ecx: encoding of subject string (1 if ASCII 0 if two_byte); // edx: code // Argument 4: End of string data // Argument 3: Start of string data // Prepare start and end index of the input. // Load the length from the original sliced string if that is the case. __ mov(esi, FieldOperand(esi, String::kLengthOffset)); __ add(esi, edi); // Calculate input end wrt offset. __ SmiUntag(edi); __ add(ebx, edi); // Calculate input start wrt offset. // ebx: start index of the input string // esi: end index of the input string Label setup_two_byte, setup_rest; __ test(ecx, ecx); __ j(zero, &setup_two_byte, Label::kNear); __ SmiUntag(esi); __ lea(ecx, FieldOperand(eax, esi, times_1, SeqAsciiString::kHeaderSize)); __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. __ lea(ecx, FieldOperand(eax, ebx, times_1, SeqAsciiString::kHeaderSize)); __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. __ jmp(&setup_rest, Label::kNear); __ bind(&setup_two_byte); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); // esi is smi (powered by 2). __ lea(ecx, FieldOperand(eax, esi, times_1, SeqTwoByteString::kHeaderSize)); __ mov(Operand(esp, 3 * kPointerSize), ecx); // Argument 4. __ lea(ecx, FieldOperand(eax, ebx, times_2, SeqTwoByteString::kHeaderSize)); __ mov(Operand(esp, 2 * kPointerSize), ecx); // Argument 3. __ bind(&setup_rest); // Locate the code entry and call it. __ add(edx, Immediate(Code::kHeaderSize - kHeapObjectTag)); __ call(edx); // Drop arguments and come back to JS mode. __ LeaveApiExitFrame(); // Check the result. Label success; __ cmp(eax, NativeRegExpMacroAssembler::SUCCESS); __ j(equal, &success); Label failure; __ cmp(eax, NativeRegExpMacroAssembler::FAILURE); __ j(equal, &failure); __ cmp(eax, NativeRegExpMacroAssembler::EXCEPTION); // If not exception it can only be retry. Handle that in the runtime system. __ j(not_equal, &runtime); // Result must now be exception. If there is no pending exception already a // stack overflow (on the backtrack stack) was detected in RegExp code but // haven't created the exception yet. Handle that in the runtime system. // TODO(592): Rerunning the RegExp to get the stack overflow exception. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, masm->isolate()); __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value())); __ mov(eax, Operand::StaticVariable(pending_exception)); __ cmp(edx, eax); __ j(equal, &runtime); // For exception, throw the exception again. // Clear the pending exception variable. __ mov(Operand::StaticVariable(pending_exception), edx); // Special handling of termination exceptions which are uncatchable // by javascript code. __ cmp(eax, factory->termination_exception()); Label throw_termination_exception; __ j(equal, &throw_termination_exception, Label::kNear); // Handle normal exception by following handler chain. __ Throw(eax); __ bind(&throw_termination_exception); __ ThrowUncatchable(eax); __ bind(&failure); // For failure to match, return null. __ mov(eax, factory->null_value()); __ ret(4 * kPointerSize); // Load RegExp data. __ bind(&success); __ mov(eax, Operand(esp, kJSRegExpOffset)); __ mov(ecx, FieldOperand(eax, JSRegExp::kDataOffset)); __ mov(edx, FieldOperand(ecx, JSRegExp::kIrregexpCaptureCountOffset)); // Calculate number of capture registers (number_of_captures + 1) * 2. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ add(edx, Immediate(2)); // edx was a smi. // edx: Number of capture registers // Load last_match_info which is still known to be a fast case JSArray. __ mov(eax, Operand(esp, kLastMatchInfoOffset)); __ mov(ebx, FieldOperand(eax, JSArray::kElementsOffset)); // ebx: last_match_info backing store (FixedArray) // edx: number of capture registers // Store the capture count. __ SmiTag(edx); // Number of capture registers to smi. __ mov(FieldOperand(ebx, RegExpImpl::kLastCaptureCountOffset), edx); __ SmiUntag(edx); // Number of capture registers back from smi. // Store last subject and last input. __ mov(eax, Operand(esp, kSubjectOffset)); __ mov(FieldOperand(ebx, RegExpImpl::kLastSubjectOffset), eax); __ RecordWriteField(ebx, RegExpImpl::kLastSubjectOffset, eax, edi, kDontSaveFPRegs); __ mov(eax, Operand(esp, kSubjectOffset)); __ mov(FieldOperand(ebx, RegExpImpl::kLastInputOffset), eax); __ RecordWriteField(ebx, RegExpImpl::kLastInputOffset, eax, edi, kDontSaveFPRegs); // Get the static offsets vector filled by the native regexp code. ExternalReference address_of_static_offsets_vector = ExternalReference::address_of_static_offsets_vector(masm->isolate()); __ mov(ecx, Immediate(address_of_static_offsets_vector)); // ebx: last_match_info backing store (FixedArray) // ecx: offsets vector // edx: number of capture registers Label next_capture, done; // Capture register counter starts from number of capture registers and // counts down until wraping after zero. __ bind(&next_capture); __ sub(edx, Immediate(1)); __ j(negative, &done, Label::kNear); // Read the value from the static offsets vector buffer. __ mov(edi, Operand(ecx, edx, times_int_size, 0)); __ SmiTag(edi); // Store the smi value in the last match info. __ mov(FieldOperand(ebx, edx, times_pointer_size, RegExpImpl::kFirstCaptureOffset), edi); __ jmp(&next_capture); __ bind(&done); // Return last match info. __ mov(eax, Operand(esp, kLastMatchInfoOffset)); __ ret(4 * kPointerSize); // External string. Short external strings have already been ruled out. // eax: subject string (expected to be external) // ebx: scratch __ bind(&external_string); __ mov(ebx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); if (FLAG_debug_code) { // Assert that we do not have a cons or slice (indirect strings) here. // Sequential strings have already been ruled out. __ test_b(ebx, kIsIndirectStringMask); __ Assert(zero, "external string expected, but not found"); } __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); __ sub(eax, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); STATIC_ASSERT(kTwoByteStringTag == 0); __ test_b(ebx, kStringEncodingMask); __ j(not_zero, &seq_ascii_string); __ jmp(&seq_two_byte_string); // Do the runtime call to execute the regexp. __ bind(&runtime); __ TailCallRuntime(Runtime::kRegExpExec, 4, 1); #endif // V8_INTERPRETED_REGEXP } void RegExpConstructResultStub::Generate(MacroAssembler* masm) { const int kMaxInlineLength = 100; Label slowcase; Label done; __ mov(ebx, Operand(esp, kPointerSize * 3)); __ JumpIfNotSmi(ebx, &slowcase); __ cmp(ebx, Immediate(Smi::FromInt(kMaxInlineLength))); __ j(above, &slowcase); // Smi-tagging is equivalent to multiplying by 2. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); // Allocate RegExpResult followed by FixedArray with size in ebx. // JSArray: [Map][empty properties][Elements][Length-smi][index][input] // Elements: [Map][Length][..elements..] __ AllocateInNewSpace(JSRegExpResult::kSize + FixedArray::kHeaderSize, times_half_pointer_size, ebx, // In: Number of elements (times 2, being a smi) eax, // Out: Start of allocation (tagged). ecx, // Out: End of allocation. edx, // Scratch register &slowcase, TAG_OBJECT); // eax: Start of allocated area, object-tagged. // Set JSArray map to global.regexp_result_map(). // Set empty properties FixedArray. // Set elements to point to FixedArray allocated right after the JSArray. // Interleave operations for better latency. __ mov(edx, ContextOperand(esi, Context::GLOBAL_INDEX)); Factory* factory = masm->isolate()->factory(); __ mov(ecx, Immediate(factory->empty_fixed_array())); __ lea(ebx, Operand(eax, JSRegExpResult::kSize)); __ mov(edx, FieldOperand(edx, GlobalObject::kGlobalContextOffset)); __ mov(FieldOperand(eax, JSObject::kElementsOffset), ebx); __ mov(FieldOperand(eax, JSObject::kPropertiesOffset), ecx); __ mov(edx, ContextOperand(edx, Context::REGEXP_RESULT_MAP_INDEX)); __ mov(FieldOperand(eax, HeapObject::kMapOffset), edx); // Set input, index and length fields from arguments. __ mov(ecx, Operand(esp, kPointerSize * 1)); __ mov(FieldOperand(eax, JSRegExpResult::kInputOffset), ecx); __ mov(ecx, Operand(esp, kPointerSize * 2)); __ mov(FieldOperand(eax, JSRegExpResult::kIndexOffset), ecx); __ mov(ecx, Operand(esp, kPointerSize * 3)); __ mov(FieldOperand(eax, JSArray::kLengthOffset), ecx); // Fill out the elements FixedArray. // eax: JSArray. // ebx: FixedArray. // ecx: Number of elements in array, as smi. // Set map. __ mov(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(factory->fixed_array_map())); // Set length. __ mov(FieldOperand(ebx, FixedArray::kLengthOffset), ecx); // Fill contents of fixed-array with the-hole. __ SmiUntag(ecx); __ mov(edx, Immediate(factory->the_hole_value())); __ lea(ebx, FieldOperand(ebx, FixedArray::kHeaderSize)); // Fill fixed array elements with hole. // eax: JSArray. // ecx: Number of elements to fill. // ebx: Start of elements in FixedArray. // edx: the hole. Label loop; __ test(ecx, ecx); __ bind(&loop); __ j(less_equal, &done, Label::kNear); // Jump if ecx is negative or zero. __ sub(ecx, Immediate(1)); __ mov(Operand(ebx, ecx, times_pointer_size, 0), edx); __ jmp(&loop); __ bind(&done); __ ret(3 * kPointerSize); __ bind(&slowcase); __ TailCallRuntime(Runtime::kRegExpConstructResult, 3, 1); } void NumberToStringStub::GenerateLookupNumberStringCache(MacroAssembler* masm, Register object, Register result, Register scratch1, Register scratch2, bool object_is_smi, Label* not_found) { // Use of registers. Register result is used as a temporary. Register number_string_cache = result; Register mask = scratch1; Register scratch = scratch2; // Load the number string cache. ExternalReference roots_array_start = ExternalReference::roots_array_start(masm->isolate()); __ mov(scratch, Immediate(Heap::kNumberStringCacheRootIndex)); __ mov(number_string_cache, Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); // Make the hash mask from the length of the number string cache. It // contains two elements (number and string) for each cache entry. __ mov(mask, FieldOperand(number_string_cache, FixedArray::kLengthOffset)); __ shr(mask, kSmiTagSize + 1); // Untag length and divide it by two. __ sub(mask, Immediate(1)); // Make mask. // Calculate the entry in the number string cache. The hash value in the // number string cache for smis is just the smi value, and the hash for // doubles is the xor of the upper and lower words. See // Heap::GetNumberStringCache. Label smi_hash_calculated; Label load_result_from_cache; if (object_is_smi) { __ mov(scratch, object); __ SmiUntag(scratch); } else { Label not_smi; STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(object, ¬_smi, Label::kNear); __ mov(scratch, object); __ SmiUntag(scratch); __ jmp(&smi_hash_calculated, Label::kNear); __ bind(¬_smi); __ cmp(FieldOperand(object, HeapObject::kMapOffset), masm->isolate()->factory()->heap_number_map()); __ j(not_equal, not_found); STATIC_ASSERT(8 == kDoubleSize); __ mov(scratch, FieldOperand(object, HeapNumber::kValueOffset)); __ xor_(scratch, FieldOperand(object, HeapNumber::kValueOffset + 4)); // Object is heap number and hash is now in scratch. Calculate cache index. __ and_(scratch, mask); Register index = scratch; Register probe = mask; __ mov(probe, FieldOperand(number_string_cache, index, times_twice_pointer_size, FixedArray::kHeaderSize)); __ JumpIfSmi(probe, not_found); if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope fscope(SSE2); __ movdbl(xmm0, FieldOperand(object, HeapNumber::kValueOffset)); __ movdbl(xmm1, FieldOperand(probe, HeapNumber::kValueOffset)); __ ucomisd(xmm0, xmm1); } else { __ fld_d(FieldOperand(object, HeapNumber::kValueOffset)); __ fld_d(FieldOperand(probe, HeapNumber::kValueOffset)); __ FCmp(); } __ j(parity_even, not_found); // Bail out if NaN is involved. __ j(not_equal, not_found); // The cache did not contain this value. __ jmp(&load_result_from_cache, Label::kNear); } __ bind(&smi_hash_calculated); // Object is smi and hash is now in scratch. Calculate cache index. __ and_(scratch, mask); Register index = scratch; // Check if the entry is the smi we are looking for. __ cmp(object, FieldOperand(number_string_cache, index, times_twice_pointer_size, FixedArray::kHeaderSize)); __ j(not_equal, not_found); // Get the result from the cache. __ bind(&load_result_from_cache); __ mov(result, FieldOperand(number_string_cache, index, times_twice_pointer_size, FixedArray::kHeaderSize + kPointerSize)); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->number_to_string_native(), 1); } void NumberToStringStub::Generate(MacroAssembler* masm) { Label runtime; __ mov(ebx, Operand(esp, kPointerSize)); // Generate code to lookup number in the number string cache. GenerateLookupNumberStringCache(masm, ebx, eax, ecx, edx, false, &runtime); __ ret(1 * kPointerSize); __ bind(&runtime); // Handle number to string in the runtime system if not found in the cache. __ TailCallRuntime(Runtime::kNumberToStringSkipCache, 1, 1); } static int NegativeComparisonResult(Condition cc) { ASSERT(cc != equal); ASSERT((cc == less) || (cc == less_equal) || (cc == greater) || (cc == greater_equal)); return (cc == greater || cc == greater_equal) ? LESS : GREATER; } void CompareStub::Generate(MacroAssembler* masm) { ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); Label check_unequal_objects; // Compare two smis if required. if (include_smi_compare_) { Label non_smi, smi_done; __ mov(ecx, edx); __ or_(ecx, eax); __ JumpIfNotSmi(ecx, &non_smi, Label::kNear); __ sub(edx, eax); // Return on the result of the subtraction. __ j(no_overflow, &smi_done, Label::kNear); __ not_(edx); // Correct sign in case of overflow. edx is never 0 here. __ bind(&smi_done); __ mov(eax, edx); __ ret(0); __ bind(&non_smi); } else if (FLAG_debug_code) { __ mov(ecx, edx); __ or_(ecx, eax); __ test(ecx, Immediate(kSmiTagMask)); __ Assert(not_zero, "Unexpected smi operands."); } // NOTICE! This code is only reached after a smi-fast-case check, so // it is certain that at least one operand isn't a smi. // Identical objects can be compared fast, but there are some tricky cases // for NaN and undefined. { Label not_identical; __ cmp(eax, edx); __ j(not_equal, ¬_identical); if (cc_ != equal) { // Check for undefined. undefined OP undefined is false even though // undefined == undefined. Label check_for_nan; __ cmp(edx, masm->isolate()->factory()->undefined_value()); __ j(not_equal, &check_for_nan, Label::kNear); __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); __ ret(0); __ bind(&check_for_nan); } // Test for NaN. Sadly, we can't just compare to factory->nan_value(), // so we do the second best thing - test it ourselves. // Note: if cc_ != equal, never_nan_nan_ is not used. if (never_nan_nan_ && (cc_ == equal)) { __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); } else { Label heap_number; __ cmp(FieldOperand(edx, HeapObject::kMapOffset), Immediate(masm->isolate()->factory()->heap_number_map())); __ j(equal, &heap_number, Label::kNear); if (cc_ != equal) { // Call runtime on identical JSObjects. Otherwise return equal. __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, ¬_identical); } __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); __ bind(&heap_number); // It is a heap number, so return non-equal if it's NaN and equal if // it's not NaN. // The representation of NaN values has all exponent bits (52..62) set, // and not all mantissa bits (0..51) clear. // We only accept QNaNs, which have bit 51 set. // Read top bits of double representation (second word of value). // Value is a QNaN if value & kQuietNaNMask == kQuietNaNMask, i.e., // all bits in the mask are set. We only need to check the word // that contains the exponent and high bit of the mantissa. STATIC_ASSERT(((kQuietNaNHighBitsMask << 1) & 0x80000000u) != 0); __ mov(edx, FieldOperand(edx, HeapNumber::kExponentOffset)); __ Set(eax, Immediate(0)); // Shift value and mask so kQuietNaNHighBitsMask applies to topmost // bits. __ add(edx, edx); __ cmp(edx, kQuietNaNHighBitsMask << 1); if (cc_ == equal) { STATIC_ASSERT(EQUAL != 1); __ setcc(above_equal, eax); __ ret(0); } else { Label nan; __ j(above_equal, &nan, Label::kNear); __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); __ bind(&nan); __ Set(eax, Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); __ ret(0); } } __ bind(¬_identical); } // Strict equality can quickly decide whether objects are equal. // Non-strict object equality is slower, so it is handled later in the stub. if (cc_ == equal && strict_) { Label slow; // Fallthrough label. Label not_smis; // If we're doing a strict equality comparison, we don't have to do // type conversion, so we generate code to do fast comparison for objects // and oddballs. Non-smi numbers and strings still go through the usual // slow-case code. // If either is a Smi (we know that not both are), then they can only // be equal if the other is a HeapNumber. If so, use the slow case. STATIC_ASSERT(kSmiTag == 0); ASSERT_EQ(0, Smi::FromInt(0)); __ mov(ecx, Immediate(kSmiTagMask)); __ and_(ecx, eax); __ test(ecx, edx); __ j(not_zero, ¬_smis, Label::kNear); // One operand is a smi. // Check whether the non-smi is a heap number. STATIC_ASSERT(kSmiTagMask == 1); // ecx still holds eax & kSmiTag, which is either zero or one. __ sub(ecx, Immediate(0x01)); __ mov(ebx, edx); __ xor_(ebx, eax); __ and_(ebx, ecx); // ebx holds either 0 or eax ^ edx. __ xor_(ebx, eax); // if eax was smi, ebx is now edx, else eax. // Check if the non-smi operand is a heap number. __ cmp(FieldOperand(ebx, HeapObject::kMapOffset), Immediate(masm->isolate()->factory()->heap_number_map())); // If heap number, handle it in the slow case. __ j(equal, &slow, Label::kNear); // Return non-equal (ebx is not zero) __ mov(eax, ebx); __ ret(0); __ bind(¬_smis); // If either operand is a JSObject or an oddball value, then they are not // equal since their pointers are different // There is no test for undetectability in strict equality. // Get the type of the first operand. // If the first object is a JS object, we have done pointer comparison. Label first_non_object; STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(below, &first_non_object, Label::kNear); // Return non-zero (eax is not zero) Label return_not_equal; STATIC_ASSERT(kHeapObjectTag != 0); __ bind(&return_not_equal); __ ret(0); __ bind(&first_non_object); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(above_equal, &return_not_equal); // Check for oddballs: true, false, null, undefined. __ CmpInstanceType(ecx, ODDBALL_TYPE); __ j(equal, &return_not_equal); // Fall through to the general case. __ bind(&slow); } // Generate the number comparison code. if (include_number_compare_) { Label non_number_comparison; Label unordered; if (CpuFeatures::IsSupported(SSE2)) { CpuFeatures::Scope use_sse2(SSE2); CpuFeatures::Scope use_cmov(CMOV); FloatingPointHelper::LoadSSE2Operands(masm, &non_number_comparison); __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); // Return a result of -1, 0, or 1, based on EFLAGS. __ mov(eax, 0); // equal __ mov(ecx, Immediate(Smi::FromInt(1))); __ cmov(above, eax, ecx); __ mov(ecx, Immediate(Smi::FromInt(-1))); __ cmov(below, eax, ecx); __ ret(0); } else { FloatingPointHelper::CheckFloatOperands( masm, &non_number_comparison, ebx); FloatingPointHelper::LoadFloatOperand(masm, eax); FloatingPointHelper::LoadFloatOperand(masm, edx); __ FCmp(); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); Label below_label, above_label; // Return a result of -1, 0, or 1, based on EFLAGS. __ j(below, &below_label, Label::kNear); __ j(above, &above_label, Label::kNear); __ Set(eax, Immediate(0)); __ ret(0); __ bind(&below_label); __ mov(eax, Immediate(Smi::FromInt(-1))); __ ret(0); __ bind(&above_label); __ mov(eax, Immediate(Smi::FromInt(1))); __ ret(0); } // If one of the numbers was NaN, then the result is always false. // The cc is never not-equal. __ bind(&unordered); ASSERT(cc_ != not_equal); if (cc_ == less || cc_ == less_equal) { __ mov(eax, Immediate(Smi::FromInt(1))); } else { __ mov(eax, Immediate(Smi::FromInt(-1))); } __ ret(0); // The number comparison code did not provide a valid result. __ bind(&non_number_comparison); } // Fast negative check for symbol-to-symbol equality. Label check_for_strings; if (cc_ == equal) { BranchIfNonSymbol(masm, &check_for_strings, eax, ecx); BranchIfNonSymbol(masm, &check_for_strings, edx, ecx); // We've already checked for object identity, so if both operands // are symbols they aren't equal. Register eax already holds a // non-zero value, which indicates not equal, so just return. __ ret(0); } __ bind(&check_for_strings); __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &check_unequal_objects); // Inline comparison of ASCII strings. if (cc_ == equal) { StringCompareStub::GenerateFlatAsciiStringEquals(masm, edx, eax, ecx, ebx); } else { StringCompareStub::GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); } #ifdef DEBUG __ Abort("Unexpected fall-through from string comparison"); #endif __ bind(&check_unequal_objects); if (cc_ == equal && !strict_) { // Non-strict equality. Objects are unequal if // they are both JSObjects and not undetectable, // and their pointers are different. Label not_both_objects; Label return_unequal; // At most one is a smi, so we can test for smi by adding the two. // A smi plus a heap object has the low bit set, a heap object plus // a heap object has the low bit clear. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagMask == 1); __ lea(ecx, Operand(eax, edx, times_1, 0)); __ test(ecx, Immediate(kSmiTagMask)); __ j(not_zero, ¬_both_objects, Label::kNear); __ CmpObjectType(eax, FIRST_SPEC_OBJECT_TYPE, ecx); __ j(below, ¬_both_objects, Label::kNear); __ CmpObjectType(edx, FIRST_SPEC_OBJECT_TYPE, ebx); __ j(below, ¬_both_objects, Label::kNear); // We do not bail out after this point. Both are JSObjects, and // they are equal if and only if both are undetectable. // The and of the undetectable flags is 1 if and only if they are equal. __ test_b(FieldOperand(ecx, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); __ j(zero, &return_unequal, Label::kNear); __ test_b(FieldOperand(ebx, Map::kBitFieldOffset), 1 << Map::kIsUndetectable); __ j(zero, &return_unequal, Label::kNear); // The objects are both undetectable, so they both compare as the value // undefined, and are equal. __ Set(eax, Immediate(EQUAL)); __ bind(&return_unequal); // Return non-equal by returning the non-zero object pointer in eax, // or return equal if we fell through to here. __ ret(0); // rax, rdx were pushed __ bind(¬_both_objects); } // Push arguments below the return address. __ pop(ecx); __ push(edx); __ push(eax); // Figure out which native to call and setup the arguments. Builtins::JavaScript builtin; if (cc_ == equal) { builtin = strict_ ? Builtins::STRICT_EQUALS : Builtins::EQUALS; } else { builtin = Builtins::COMPARE; __ push(Immediate(Smi::FromInt(NegativeComparisonResult(cc_)))); } // Restore return address on the stack. __ push(ecx); // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ InvokeBuiltin(builtin, JUMP_FUNCTION); } void CompareStub::BranchIfNonSymbol(MacroAssembler* masm, Label* label, Register object, Register scratch) { __ JumpIfSmi(object, label); __ mov(scratch, FieldOperand(object, HeapObject::kMapOffset)); __ movzx_b(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); __ and_(scratch, kIsSymbolMask | kIsNotStringMask); __ cmp(scratch, kSymbolTag | kStringTag); __ j(not_equal, label); } void StackCheckStub::Generate(MacroAssembler* masm) { __ TailCallRuntime(Runtime::kStackGuard, 0, 1); } void InterruptStub::Generate(MacroAssembler* masm) { __ TailCallRuntime(Runtime::kInterrupt, 0, 1); } static void GenerateRecordCallTarget(MacroAssembler* masm) { // Cache the called function in a global property cell. Cache states // are uninitialized, monomorphic (indicated by a JSFunction), and // megamorphic. // ebx : cache cell for call target // edi : the function to call Isolate* isolate = masm->isolate(); Label initialize, done; // Load the cache state into ecx. __ mov(ecx, FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset)); // A monomorphic cache hit or an already megamorphic state: invoke the // function without changing the state. __ cmp(ecx, edi); __ j(equal, &done, Label::kNear); __ cmp(ecx, Immediate(TypeFeedbackCells::MegamorphicSentinel(isolate))); __ j(equal, &done, Label::kNear); // A monomorphic miss (i.e, here the cache is not uninitialized) goes // megamorphic. __ cmp(ecx, Immediate(TypeFeedbackCells::UninitializedSentinel(isolate))); __ j(equal, &initialize, Label::kNear); // MegamorphicSentinel is an immortal immovable object (undefined) so no // write-barrier is needed. __ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset), Immediate(TypeFeedbackCells::MegamorphicSentinel(isolate))); __ jmp(&done, Label::kNear); // An uninitialized cache is patched with the function. __ bind(&initialize); __ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset), edi); // No need for a write barrier here - cells are rescanned. __ bind(&done); } void CallFunctionStub::Generate(MacroAssembler* masm) { // ebx : cache cell for call target // edi : the function to call Isolate* isolate = masm->isolate(); Label slow, non_function; // The receiver might implicitly be the global object. This is // indicated by passing the hole as the receiver to the call // function stub. if (ReceiverMightBeImplicit()) { Label receiver_ok; // Get the receiver from the stack. // +1 ~ return address __ mov(eax, Operand(esp, (argc_ + 1) * kPointerSize)); // Call as function is indicated with the hole. __ cmp(eax, isolate->factory()->the_hole_value()); __ j(not_equal, &receiver_ok, Label::kNear); // Patch the receiver on the stack with the global receiver object. __ mov(ecx, GlobalObjectOperand()); __ mov(ecx, FieldOperand(ecx, GlobalObject::kGlobalReceiverOffset)); __ mov(Operand(esp, (argc_ + 1) * kPointerSize), ecx); __ bind(&receiver_ok); } // Check that the function really is a JavaScript function. __ JumpIfSmi(edi, &non_function); // Goto slow case if we do not have a function. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); } // Fast-case: Just invoke the function. ParameterCount actual(argc_); if (ReceiverMightBeImplicit()) { Label call_as_function; __ cmp(eax, isolate->factory()->the_hole_value()); __ j(equal, &call_as_function); __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ bind(&call_as_function); } __ InvokeFunction(edi, actual, JUMP_FUNCTION, NullCallWrapper(), CALL_AS_FUNCTION); // Slow-case: Non-function called. __ bind(&slow); if (RecordCallTarget()) { // If there is a call target cache, mark it megamorphic in the // non-function case. MegamorphicSentinel is an immortal immovable // object (undefined) so no write barrier is needed. __ mov(FieldOperand(ebx, JSGlobalPropertyCell::kValueOffset), Immediate(TypeFeedbackCells::MegamorphicSentinel(isolate))); } // Check for function proxy. __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); __ j(not_equal, &non_function); __ pop(ecx); __ push(edi); // put proxy as additional argument under return address __ push(ecx); __ Set(eax, Immediate(argc_ + 1)); __ Set(ebx, Immediate(0)); __ SetCallKind(ecx, CALL_AS_FUNCTION); __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY); { Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline(); __ jmp(adaptor, RelocInfo::CODE_TARGET); } // CALL_NON_FUNCTION expects the non-function callee as receiver (instead // of the original receiver from the call site). __ bind(&non_function); __ mov(Operand(esp, (argc_ + 1) * kPointerSize), edi); __ Set(eax, Immediate(argc_)); __ Set(ebx, Immediate(0)); __ SetCallKind(ecx, CALL_AS_METHOD); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION); Handle<Code> adaptor = isolate->builtins()->ArgumentsAdaptorTrampoline(); __ jmp(adaptor, RelocInfo::CODE_TARGET); } void CallConstructStub::Generate(MacroAssembler* masm) { // eax : number of arguments // ebx : cache cell for call target // edi : constructor function Label slow, non_function_call; // Check that function is not a smi. __ JumpIfSmi(edi, &non_function_call); // Check that function is a JSFunction. __ CmpObjectType(edi, JS_FUNCTION_TYPE, ecx); __ j(not_equal, &slow); if (RecordCallTarget()) { GenerateRecordCallTarget(masm); } // Jump to the function-specific construct stub. __ mov(ebx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); __ mov(ebx, FieldOperand(ebx, SharedFunctionInfo::kConstructStubOffset)); __ lea(ebx, FieldOperand(ebx, Code::kHeaderSize)); __ jmp(ebx); // edi: called object // eax: number of arguments // ecx: object map Label do_call; __ bind(&slow); __ CmpInstanceType(ecx, JS_FUNCTION_PROXY_TYPE); __ j(not_equal, &non_function_call); __ GetBuiltinEntry(edx, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); __ jmp(&do_call); __ bind(&non_function_call); __ GetBuiltinEntry(edx, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); __ bind(&do_call); // Set expected number of arguments to zero (not changing eax). __ Set(ebx, Immediate(0)); Handle<Code> arguments_adaptor = masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); __ SetCallKind(ecx, CALL_AS_METHOD); __ jmp(arguments_adaptor, RelocInfo::CODE_TARGET); } bool CEntryStub::NeedsImmovableCode() { return false; } bool CEntryStub::IsPregenerated() { return (!save_doubles_ || ISOLATE->fp_stubs_generated()) && result_size_ == 1; } void CodeStub::GenerateStubsAheadOfTime() { CEntryStub::GenerateAheadOfTime(); StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(); // It is important that the store buffer overflow stubs are generated first. RecordWriteStub::GenerateFixedRegStubsAheadOfTime(); } void CodeStub::GenerateFPStubs() { CEntryStub save_doubles(1, kSaveFPRegs); Handle<Code> code = save_doubles.GetCode(); code->set_is_pregenerated(true); code->GetIsolate()->set_fp_stubs_generated(true); } void CEntryStub::GenerateAheadOfTime() { CEntryStub stub(1, kDontSaveFPRegs); Handle<Code> code = stub.GetCode(); code->set_is_pregenerated(true); } void CEntryStub::GenerateCore(MacroAssembler* masm, Label* throw_normal_exception, Label* throw_termination_exception, Label* throw_out_of_memory_exception, bool do_gc, bool always_allocate_scope) { // eax: result parameter for PerformGC, if any // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: pointer to the first argument (C callee-saved) // Result returned in eax, or eax+edx if result_size_ is 2. // Check stack alignment. if (FLAG_debug_code) { __ CheckStackAlignment(); } if (do_gc) { // Pass failure code returned from last attempt as first argument to // PerformGC. No need to use PrepareCallCFunction/CallCFunction here as the // stack alignment is known to be correct. This function takes one argument // which is passed on the stack, and we know that the stack has been // prepared to pass at least one argument. __ mov(Operand(esp, 0 * kPointerSize), eax); // Result. __ call(FUNCTION_ADDR(Runtime::PerformGC), RelocInfo::RUNTIME_ENTRY); } ExternalReference scope_depth = ExternalReference::heap_always_allocate_scope_depth(masm->isolate()); if (always_allocate_scope) { __ inc(Operand::StaticVariable(scope_depth)); } // Call C function. __ mov(Operand(esp, 0 * kPointerSize), edi); // argc. __ mov(Operand(esp, 1 * kPointerSize), esi); // argv. __ mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address())); __ call(ebx); // Result is in eax or edx:eax - do not destroy these registers! if (always_allocate_scope) { __ dec(Operand::StaticVariable(scope_depth)); } // Make sure we're not trying to return 'the hole' from the runtime // call as this may lead to crashes in the IC code later. if (FLAG_debug_code) { Label okay; __ cmp(eax, masm->isolate()->factory()->the_hole_value()); __ j(not_equal, &okay, Label::kNear); __ int3(); __ bind(&okay); } // Check for failure result. Label failure_returned; STATIC_ASSERT(((kFailureTag + 1) & kFailureTagMask) == 0); __ lea(ecx, Operand(eax, 1)); // Lower 2 bits of ecx are 0 iff eax has failure tag. __ test(ecx, Immediate(kFailureTagMask)); __ j(zero, &failure_returned); ExternalReference pending_exception_address( Isolate::kPendingExceptionAddress, masm->isolate()); // Check that there is no pending exception, otherwise we // should have returned some failure value. if (FLAG_debug_code) { __ push(edx); __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value())); Label okay; __ cmp(edx, Operand::StaticVariable(pending_exception_address)); // Cannot use check here as it attempts to generate call into runtime. __ j(equal, &okay, Label::kNear); __ int3(); __ bind(&okay); __ pop(edx); } // Exit the JavaScript to C++ exit frame. __ LeaveExitFrame(save_doubles_ == kSaveFPRegs); __ ret(0); // Handling of failure. __ bind(&failure_returned); Label retry; // If the returned exception is RETRY_AFTER_GC continue at retry label STATIC_ASSERT(Failure::RETRY_AFTER_GC == 0); __ test(eax, Immediate(((1 << kFailureTypeTagSize) - 1) << kFailureTagSize)); __ j(zero, &retry, Label::kNear); // Special handling of out of memory exceptions. __ cmp(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); __ j(equal, throw_out_of_memory_exception); // Retrieve the pending exception and clear the variable. __ mov(eax, Operand::StaticVariable(pending_exception_address)); __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value())); __ mov(Operand::StaticVariable(pending_exception_address), edx); // Special handling of termination exceptions which are uncatchable // by javascript code. __ cmp(eax, masm->isolate()->factory()->termination_exception()); __ j(equal, throw_termination_exception); // Handle normal exception. __ jmp(throw_normal_exception); // Retry. __ bind(&retry); } void CEntryStub::Generate(MacroAssembler* masm) { // eax: number of arguments including receiver // ebx: pointer to C function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // esi: current context (C callee-saved) // edi: JS function of the caller (C callee-saved) // NOTE: Invocations of builtins may return failure objects instead // of a proper result. The builtin entry handles this by performing // a garbage collection and retrying the builtin (twice). // Enter the exit frame that transitions from JavaScript to C++. __ EnterExitFrame(save_doubles_ == kSaveFPRegs); // eax: result parameter for PerformGC, if any (setup below) // ebx: pointer to builtin function (C callee-saved) // ebp: frame pointer (restored after C call) // esp: stack pointer (restored after C call) // edi: number of arguments including receiver (C callee-saved) // esi: argv pointer (C callee-saved) Label throw_normal_exception; Label throw_termination_exception; Label throw_out_of_memory_exception; // Call into the runtime system. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, false, false); // Do space-specific GC and retry runtime call. GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, false); // Do full GC and retry runtime call one final time. Failure* failure = Failure::InternalError(); __ mov(eax, Immediate(reinterpret_cast<int32_t>(failure))); GenerateCore(masm, &throw_normal_exception, &throw_termination_exception, &throw_out_of_memory_exception, true, true); __ bind(&throw_out_of_memory_exception); // Set external caught exception to false. Isolate* isolate = masm->isolate(); ExternalReference external_caught(Isolate::kExternalCaughtExceptionAddress, isolate); __ mov(Operand::StaticVariable(external_caught), Immediate(false)); // Set pending exception and eax to out of memory exception. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, isolate); __ mov(eax, reinterpret_cast<int32_t>(Failure::OutOfMemoryException())); __ mov(Operand::StaticVariable(pending_exception), eax); // Fall through to the next label. __ bind(&throw_termination_exception); __ ThrowUncatchable(eax); __ bind(&throw_normal_exception); __ Throw(eax); } void JSEntryStub::GenerateBody(MacroAssembler* masm, bool is_construct) { Label invoke, handler_entry, exit; Label not_outermost_js, not_outermost_js_2; // Set up frame. __ push(ebp); __ mov(ebp, esp); // Push marker in two places. int marker = is_construct ? StackFrame::ENTRY_CONSTRUCT : StackFrame::ENTRY; __ push(Immediate(Smi::FromInt(marker))); // context slot __ push(Immediate(Smi::FromInt(marker))); // function slot // Save callee-saved registers (C calling conventions). __ push(edi); __ push(esi); __ push(ebx); // Save copies of the top frame descriptor on the stack. ExternalReference c_entry_fp(Isolate::kCEntryFPAddress, masm->isolate()); __ push(Operand::StaticVariable(c_entry_fp)); // If this is the outermost JS call, set js_entry_sp value. ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, masm->isolate()); __ cmp(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ j(not_equal, ¬_outermost_js, Label::kNear); __ mov(Operand::StaticVariable(js_entry_sp), ebp); __ push(Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); Label cont; __ jmp(&cont, Label::kNear); __ bind(¬_outermost_js); __ push(Immediate(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); __ bind(&cont); // Jump to a faked try block that does the invoke, with a faked catch // block that sets the pending exception. __ jmp(&invoke); __ bind(&handler_entry); handler_offset_ = handler_entry.pos(); // Caught exception: Store result (exception) in the pending exception // field in the JSEnv and return a failure sentinel. ExternalReference pending_exception(Isolate::kPendingExceptionAddress, masm->isolate()); __ mov(Operand::StaticVariable(pending_exception), eax); __ mov(eax, reinterpret_cast<int32_t>(Failure::Exception())); __ jmp(&exit); // Invoke: Link this frame into the handler chain. There's only one // handler block in this code object, so its index is 0. __ bind(&invoke); __ PushTryHandler(StackHandler::JS_ENTRY, 0); // Clear any pending exceptions. __ mov(edx, Immediate(masm->isolate()->factory()->the_hole_value())); __ mov(Operand::StaticVariable(pending_exception), edx); // Fake a receiver (NULL). __ push(Immediate(0)); // receiver // Invoke the function by calling through JS entry trampoline builtin and // pop the faked function when we return. Notice that we cannot store a // reference to the trampoline code directly in this stub, because the // builtin stubs may not have been generated yet. if (is_construct) { ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, masm->isolate()); __ mov(edx, Immediate(construct_entry)); } else { ExternalReference entry(Builtins::kJSEntryTrampoline, masm->isolate()); __ mov(edx, Immediate(entry)); } __ mov(edx, Operand(edx, 0)); // deref address __ lea(edx, FieldOperand(edx, Code::kHeaderSize)); __ call(edx); // Unlink this frame from the handler chain. __ PopTryHandler(); __ bind(&exit); // Check if the current stack frame is marked as the outermost JS frame. __ pop(ebx); __ cmp(ebx, Immediate(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); __ j(not_equal, ¬_outermost_js_2); __ mov(Operand::StaticVariable(js_entry_sp), Immediate(0)); __ bind(¬_outermost_js_2); // Restore the top frame descriptor from the stack. __ pop(Operand::StaticVariable(ExternalReference( Isolate::kCEntryFPAddress, masm->isolate()))); // Restore callee-saved registers (C calling conventions). __ pop(ebx); __ pop(esi); __ pop(edi); __ add(esp, Immediate(2 * kPointerSize)); // remove markers // Restore frame pointer and return. __ pop(ebp); __ ret(0); } // Generate stub code for instanceof. // This code can patch a call site inlined cache of the instance of check, // which looks like this. // // 81 ff XX XX XX XX cmp edi, <the hole, patched to a map> // 75 0a jne <some near label> // b8 XX XX XX XX mov eax, <the hole, patched to either true or false> // // If call site patching is requested the stack will have the delta from the // return address to the cmp instruction just below the return address. This // also means that call site patching can only take place with arguments in // registers. TOS looks like this when call site patching is requested // // esp[0] : return address // esp[4] : delta from return address to cmp instruction // void InstanceofStub::Generate(MacroAssembler* masm) { // Call site inlining and patching implies arguments in registers. ASSERT(HasArgsInRegisters() || !HasCallSiteInlineCheck()); // Fixed register usage throughout the stub. Register object = eax; // Object (lhs). Register map = ebx; // Map of the object. Register function = edx; // Function (rhs). Register prototype = edi; // Prototype of the function. Register scratch = ecx; // Constants describing the call site code to patch. static const int kDeltaToCmpImmediate = 2; static const int kDeltaToMov = 8; static const int kDeltaToMovImmediate = 9; static const int8_t kCmpEdiOperandByte1 = BitCast<int8_t, uint8_t>(0x3b); static const int8_t kCmpEdiOperandByte2 = BitCast<int8_t, uint8_t>(0x3d); static const int8_t kMovEaxImmediateByte = BitCast<int8_t, uint8_t>(0xb8); ExternalReference roots_array_start = ExternalReference::roots_array_start(masm->isolate()); ASSERT_EQ(object.code(), InstanceofStub::left().code()); ASSERT_EQ(function.code(), InstanceofStub::right().code()); // Get the object and function - they are always both needed. Label slow, not_js_object; if (!HasArgsInRegisters()) { __ mov(object, Operand(esp, 2 * kPointerSize)); __ mov(function, Operand(esp, 1 * kPointerSize)); } // Check that the left hand is a JS object. __ JumpIfSmi(object, ¬_js_object); __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); // If there is a call site cache don't look in the global cache, but do the // real lookup and update the call site cache. if (!HasCallSiteInlineCheck()) { // Look up the function and the map in the instanceof cache. Label miss; __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); __ cmp(function, Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); __ j(not_equal, &miss, Label::kNear); __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex)); __ cmp(map, Operand::StaticArray( scratch, times_pointer_size, roots_array_start)); __ j(not_equal, &miss, Label::kNear); __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); __ mov(eax, Operand::StaticArray( scratch, times_pointer_size, roots_array_start)); __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); __ bind(&miss); } // Get the prototype of the function. __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); // Check that the function prototype is a JS object. __ JumpIfSmi(prototype, &slow); __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); // Update the global instanceof or call site inlined cache with the current // map and function. The cached answer will be set when it is known below. if (!HasCallSiteInlineCheck()) { __ mov(scratch, Immediate(Heap::kInstanceofCacheMapRootIndex)); __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start), map); __ mov(scratch, Immediate(Heap::kInstanceofCacheFunctionRootIndex)); __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start), function); } else { // The constants for the code patching are based on no push instructions // at the call site. ASSERT(HasArgsInRegisters()); // Get return address and delta to inlined map check. __ mov(scratch, Operand(esp, 0 * kPointerSize)); __ sub(scratch, Operand(esp, 1 * kPointerSize)); if (FLAG_debug_code) { __ cmpb(Operand(scratch, 0), kCmpEdiOperandByte1); __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 1)"); __ cmpb(Operand(scratch, 1), kCmpEdiOperandByte2); __ Assert(equal, "InstanceofStub unexpected call site cache (cmp 2)"); } __ mov(scratch, Operand(scratch, kDeltaToCmpImmediate)); __ mov(Operand(scratch, 0), map); } // Loop through the prototype chain of the object looking for the function // prototype. __ mov(scratch, FieldOperand(map, Map::kPrototypeOffset)); Label loop, is_instance, is_not_instance; __ bind(&loop); __ cmp(scratch, prototype); __ j(equal, &is_instance, Label::kNear); Factory* factory = masm->isolate()->factory(); __ cmp(scratch, Immediate(factory->null_value())); __ j(equal, &is_not_instance, Label::kNear); __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); __ mov(scratch, FieldOperand(scratch, Map::kPrototypeOffset)); __ jmp(&loop); __ bind(&is_instance); if (!HasCallSiteInlineCheck()) { __ Set(eax, Immediate(0)); __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); __ mov(Operand::StaticArray(scratch, times_pointer_size, roots_array_start), eax); } else { // Get return address and delta to inlined map check. __ mov(eax, factory->true_value()); __ mov(scratch, Operand(esp, 0 * kPointerSize)); __ sub(scratch, Operand(esp, 1 * kPointerSize)); if (FLAG_debug_code) { __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte); __ Assert(equal, "InstanceofStub unexpected call site cache (mov)"); } __ mov(Operand(scratch, kDeltaToMovImmediate), eax); if (!ReturnTrueFalseObject()) { __ Set(eax, Immediate(0)); } } __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); __ bind(&is_not_instance); if (!HasCallSiteInlineCheck()) { __ Set(eax, Immediate(Smi::FromInt(1))); __ mov(scratch, Immediate(Heap::kInstanceofCacheAnswerRootIndex)); __ mov(Operand::StaticArray( scratch, times_pointer_size, roots_array_start), eax); } else { // Get return address and delta to inlined map check. __ mov(eax, factory->false_value()); __ mov(scratch, Operand(esp, 0 * kPointerSize)); __ sub(scratch, Operand(esp, 1 * kPointerSize)); if (FLAG_debug_code) { __ cmpb(Operand(scratch, kDeltaToMov), kMovEaxImmediateByte); __ Assert(equal, "InstanceofStub unexpected call site cache (mov)"); } __ mov(Operand(scratch, kDeltaToMovImmediate), eax); if (!ReturnTrueFalseObject()) { __ Set(eax, Immediate(Smi::FromInt(1))); } } __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); Label object_not_null, object_not_null_or_smi; __ bind(¬_js_object); // Before null, smi and string value checks, check that the rhs is a function // as for a non-function rhs an exception needs to be thrown. __ JumpIfSmi(function, &slow, Label::kNear); __ CmpObjectType(function, JS_FUNCTION_TYPE, scratch); __ j(not_equal, &slow, Label::kNear); // Null is not instance of anything. __ cmp(object, factory->null_value()); __ j(not_equal, &object_not_null, Label::kNear); __ Set(eax, Immediate(Smi::FromInt(1))); __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); __ bind(&object_not_null); // Smi values is not instance of anything. __ JumpIfNotSmi(object, &object_not_null_or_smi, Label::kNear); __ Set(eax, Immediate(Smi::FromInt(1))); __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); __ bind(&object_not_null_or_smi); // String values is not instance of anything. Condition is_string = masm->IsObjectStringType(object, scratch, scratch); __ j(NegateCondition(is_string), &slow, Label::kNear); __ Set(eax, Immediate(Smi::FromInt(1))); __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); // Slow-case: Go through the JavaScript implementation. __ bind(&slow); if (!ReturnTrueFalseObject()) { // Tail call the builtin which returns 0 or 1. if (HasArgsInRegisters()) { // Push arguments below return address. __ pop(scratch); __ push(object); __ push(function); __ push(scratch); } __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); } else { // Call the builtin and convert 0/1 to true/false. { FrameScope scope(masm, StackFrame::INTERNAL); __ push(object); __ push(function); __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); } Label true_value, done; __ test(eax, eax); __ j(zero, &true_value, Label::kNear); __ mov(eax, factory->false_value()); __ jmp(&done, Label::kNear); __ bind(&true_value); __ mov(eax, factory->true_value()); __ bind(&done); __ ret((HasArgsInRegisters() ? 0 : 2) * kPointerSize); } } Register InstanceofStub::left() { return eax; } Register InstanceofStub::right() { return edx; } int CompareStub::MinorKey() { // Encode the three parameters in a unique 16 bit value. To avoid duplicate // stubs the never NaN NaN condition is only taken into account if the // condition is equals. ASSERT(static_cast<unsigned>(cc_) < (1 << 12)); ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); return ConditionField::encode(static_cast<unsigned>(cc_)) | RegisterField::encode(false) // lhs_ and rhs_ are not used | StrictField::encode(strict_) | NeverNanNanField::encode(cc_ == equal ? never_nan_nan_ : false) | IncludeNumberCompareField::encode(include_number_compare_) | IncludeSmiCompareField::encode(include_smi_compare_); } // Unfortunately you have to run without snapshots to see most of these // names in the profile since most compare stubs end up in the snapshot. void CompareStub::PrintName(StringStream* stream) { ASSERT(lhs_.is(no_reg) && rhs_.is(no_reg)); const char* cc_name; switch (cc_) { case less: cc_name = "LT"; break; case greater: cc_name = "GT"; break; case less_equal: cc_name = "LE"; break; case greater_equal: cc_name = "GE"; break; case equal: cc_name = "EQ"; break; case not_equal: cc_name = "NE"; break; default: cc_name = "UnknownCondition"; break; } bool is_equality = cc_ == equal || cc_ == not_equal; stream->Add("CompareStub_%s", cc_name); if (strict_ && is_equality) stream->Add("_STRICT"); if (never_nan_nan_ && is_equality) stream->Add("_NO_NAN"); if (!include_number_compare_) stream->Add("_NO_NUMBER"); if (!include_smi_compare_) stream->Add("_NO_SMI"); } // ------------------------------------------------------------------------- // StringCharCodeAtGenerator void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { // If the receiver is a smi trigger the non-string case. STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(object_, receiver_not_string_); // Fetch the instance type of the receiver into result register. __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); // If the receiver is not a string trigger the non-string case. __ test(result_, Immediate(kIsNotStringMask)); __ j(not_zero, receiver_not_string_); // If the index is non-smi trigger the non-smi case. STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(index_, &index_not_smi_); __ bind(&got_smi_index_); // Check for index out of range. __ cmp(index_, FieldOperand(object_, String::kLengthOffset)); __ j(above_equal, index_out_of_range_); __ SmiUntag(index_); Factory* factory = masm->isolate()->factory(); StringCharLoadGenerator::Generate( masm, factory, object_, index_, result_, &call_runtime_); __ SmiTag(result_); __ bind(&exit_); } void StringCharCodeAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharCodeAt slow case"); // Index is not a smi. __ bind(&index_not_smi_); // If index is a heap number, try converting it to an integer. __ CheckMap(index_, masm->isolate()->factory()->heap_number_map(), index_not_number_, DONT_DO_SMI_CHECK); call_helper.BeforeCall(masm); __ push(object_); __ push(index_); // Consumed by runtime conversion function. if (index_flags_ == STRING_INDEX_IS_NUMBER) { __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); } else { ASSERT(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); // NumberToSmi discards numbers that are not exact integers. __ CallRuntime(Runtime::kNumberToSmi, 1); } if (!index_.is(eax)) { // Save the conversion result before the pop instructions below // have a chance to overwrite it. __ mov(index_, eax); } __ pop(object_); // Reload the instance type. __ mov(result_, FieldOperand(object_, HeapObject::kMapOffset)); __ movzx_b(result_, FieldOperand(result_, Map::kInstanceTypeOffset)); call_helper.AfterCall(masm); // If index is still not a smi, it must be out of range. STATIC_ASSERT(kSmiTag == 0); __ JumpIfNotSmi(index_, index_out_of_range_); // Otherwise, return to the fast path. __ jmp(&got_smi_index_); // Call runtime. We get here when the receiver is a string and the // index is a number, but the code of getting the actual character // is too complex (e.g., when the string needs to be flattened). __ bind(&call_runtime_); call_helper.BeforeCall(masm); __ push(object_); __ SmiTag(index_); __ push(index_); __ CallRuntime(Runtime::kStringCharCodeAt, 2); if (!result_.is(eax)) { __ mov(result_, eax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort("Unexpected fallthrough from CharCodeAt slow case"); } // ------------------------------------------------------------------------- // StringCharFromCodeGenerator void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { // Fast case of Heap::LookupSingleCharacterStringFromCode. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiShiftSize == 0); ASSERT(IsPowerOf2(String::kMaxAsciiCharCode + 1)); __ test(code_, Immediate(kSmiTagMask | ((~String::kMaxAsciiCharCode) << kSmiTagSize))); __ j(not_zero, &slow_case_); Factory* factory = masm->isolate()->factory(); __ Set(result_, Immediate(factory->single_character_string_cache())); STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiShiftSize == 0); // At this point code register contains smi tagged ASCII char code. __ mov(result_, FieldOperand(result_, code_, times_half_pointer_size, FixedArray::kHeaderSize)); __ cmp(result_, factory->undefined_value()); __ j(equal, &slow_case_); __ bind(&exit_); } void StringCharFromCodeGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { __ Abort("Unexpected fallthrough to CharFromCode slow case"); __ bind(&slow_case_); call_helper.BeforeCall(masm); __ push(code_); __ CallRuntime(Runtime::kCharFromCode, 1); if (!result_.is(eax)) { __ mov(result_, eax); } call_helper.AfterCall(masm); __ jmp(&exit_); __ Abort("Unexpected fallthrough from CharFromCode slow case"); } // ------------------------------------------------------------------------- // StringCharAtGenerator void StringCharAtGenerator::GenerateFast(MacroAssembler* masm) { char_code_at_generator_.GenerateFast(masm); char_from_code_generator_.GenerateFast(masm); } void StringCharAtGenerator::GenerateSlow( MacroAssembler* masm, const RuntimeCallHelper& call_helper) { char_code_at_generator_.GenerateSlow(masm, call_helper); char_from_code_generator_.GenerateSlow(masm, call_helper); } void StringAddStub::Generate(MacroAssembler* masm) { Label call_runtime, call_builtin; Builtins::JavaScript builtin_id = Builtins::ADD; // Load the two arguments. __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. // Make sure that both arguments are strings if not known in advance. if (flags_ == NO_STRING_ADD_FLAGS) { __ JumpIfSmi(eax, &call_runtime); __ CmpObjectType(eax, FIRST_NONSTRING_TYPE, ebx); __ j(above_equal, &call_runtime); // First argument is a a string, test second. __ JumpIfSmi(edx, &call_runtime); __ CmpObjectType(edx, FIRST_NONSTRING_TYPE, ebx); __ j(above_equal, &call_runtime); } else { // Here at least one of the arguments is definitely a string. // We convert the one that is not known to be a string. if ((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) == 0) { ASSERT((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) != 0); GenerateConvertArgument(masm, 2 * kPointerSize, eax, ebx, ecx, edi, &call_builtin); builtin_id = Builtins::STRING_ADD_RIGHT; } else if ((flags_ & NO_STRING_CHECK_RIGHT_IN_STUB) == 0) { ASSERT((flags_ & NO_STRING_CHECK_LEFT_IN_STUB) != 0); GenerateConvertArgument(masm, 1 * kPointerSize, edx, ebx, ecx, edi, &call_builtin); builtin_id = Builtins::STRING_ADD_LEFT; } } // Both arguments are strings. // eax: first string // edx: second string // Check if either of the strings are empty. In that case return the other. Label second_not_zero_length, both_not_zero_length; __ mov(ecx, FieldOperand(edx, String::kLengthOffset)); STATIC_ASSERT(kSmiTag == 0); __ test(ecx, ecx); __ j(not_zero, &second_not_zero_length, Label::kNear); // Second string is empty, result is first string which is already in eax. Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); __ bind(&second_not_zero_length); __ mov(ebx, FieldOperand(eax, String::kLengthOffset)); STATIC_ASSERT(kSmiTag == 0); __ test(ebx, ebx); __ j(not_zero, &both_not_zero_length, Label::kNear); // First string is empty, result is second string which is in edx. __ mov(eax, edx); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); // Both strings are non-empty. // eax: first string // ebx: length of first string as a smi // ecx: length of second string as a smi // edx: second string // Look at the length of the result of adding the two strings. Label string_add_flat_result, longer_than_two; __ bind(&both_not_zero_length); __ add(ebx, ecx); STATIC_ASSERT(Smi::kMaxValue == String::kMaxLength); // Handle exceptionally long strings in the runtime system. __ j(overflow, &call_runtime); // Use the symbol table when adding two one character strings, as it // helps later optimizations to return a symbol here. __ cmp(ebx, Immediate(Smi::FromInt(2))); __ j(not_equal, &longer_than_two); // Check that both strings are non-external ASCII strings. __ JumpIfNotBothSequentialAsciiStrings(eax, edx, ebx, ecx, &call_runtime); // Get the two characters forming the new string. __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); // Try to lookup two character string in symbol table. If it is not found // just allocate a new one. Label make_two_character_string, make_two_character_string_no_reload; StringHelper::GenerateTwoCharacterSymbolTableProbe( masm, ebx, ecx, eax, edx, edi, &make_two_character_string_no_reload, &make_two_character_string); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); // Allocate a two character string. __ bind(&make_two_character_string); // Reload the arguments. __ mov(eax, Operand(esp, 2 * kPointerSize)); // First argument. __ mov(edx, Operand(esp, 1 * kPointerSize)); // Second argument. // Get the two characters forming the new string. __ movzx_b(ebx, FieldOperand(eax, SeqAsciiString::kHeaderSize)); __ movzx_b(ecx, FieldOperand(edx, SeqAsciiString::kHeaderSize)); __ bind(&make_two_character_string_no_reload); __ IncrementCounter(counters->string_add_make_two_char(), 1); __ AllocateAsciiString(eax, 2, edi, edx, &call_runtime); // Pack both characters in ebx. __ shl(ecx, kBitsPerByte); __ or_(ebx, ecx); // Set the characters in the new string. __ mov_w(FieldOperand(eax, SeqAsciiString::kHeaderSize), ebx); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); __ bind(&longer_than_two); // Check if resulting string will be flat. __ cmp(ebx, Immediate(Smi::FromInt(ConsString::kMinLength))); __ j(below, &string_add_flat_result); // If result is not supposed to be flat allocate a cons string object. If both // strings are ASCII the result is an ASCII cons string. Label non_ascii, allocated, ascii_data; __ mov(edi, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(edi, Map::kInstanceTypeOffset)); __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); __ and_(ecx, edi); STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ test(ecx, Immediate(kStringEncodingMask)); __ j(zero, &non_ascii); __ bind(&ascii_data); // Allocate an ASCII cons string. __ AllocateAsciiConsString(ecx, edi, no_reg, &call_runtime); __ bind(&allocated); // Fill the fields of the cons string. if (FLAG_debug_code) __ AbortIfNotSmi(ebx); __ mov(FieldOperand(ecx, ConsString::kLengthOffset), ebx); __ mov(FieldOperand(ecx, ConsString::kHashFieldOffset), Immediate(String::kEmptyHashField)); __ mov(FieldOperand(ecx, ConsString::kFirstOffset), eax); __ mov(FieldOperand(ecx, ConsString::kSecondOffset), edx); __ mov(eax, ecx); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); __ bind(&non_ascii); // At least one of the strings is two-byte. Check whether it happens // to contain only ASCII characters. // ecx: first instance type AND second instance type. // edi: second instance type. __ test(ecx, Immediate(kAsciiDataHintMask)); __ j(not_zero, &ascii_data); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); __ xor_(edi, ecx); STATIC_ASSERT(kAsciiStringTag != 0 && kAsciiDataHintTag != 0); __ and_(edi, kAsciiStringTag | kAsciiDataHintTag); __ cmp(edi, kAsciiStringTag | kAsciiDataHintTag); __ j(equal, &ascii_data); // Allocate a two byte cons string. __ AllocateTwoByteConsString(ecx, edi, no_reg, &call_runtime); __ jmp(&allocated); // We cannot encounter sliced strings or cons strings here since: STATIC_ASSERT(SlicedString::kMinLength >= ConsString::kMinLength); // Handle creating a flat result from either external or sequential strings. // Locate the first characters' locations. // eax: first string // ebx: length of resulting flat string as a smi // edx: second string Label first_prepared, second_prepared; Label first_is_sequential, second_is_sequential; __ bind(&string_add_flat_result); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ movzx_b(ecx, FieldOperand(ecx, Map::kInstanceTypeOffset)); // ecx: instance type of first string STATIC_ASSERT(kSeqStringTag == 0); __ test_b(ecx, kStringRepresentationMask); __ j(zero, &first_is_sequential, Label::kNear); // Rule out short external string and load string resource. STATIC_ASSERT(kShortExternalStringTag != 0); __ test_b(ecx, kShortExternalStringMask); __ j(not_zero, &call_runtime); __ mov(eax, FieldOperand(eax, ExternalString::kResourceDataOffset)); STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); __ jmp(&first_prepared, Label::kNear); __ bind(&first_is_sequential); __ add(eax, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); __ bind(&first_prepared); __ mov(edi, FieldOperand(edx, HeapObject::kMapOffset)); __ movzx_b(edi, FieldOperand(edi, Map::kInstanceTypeOffset)); // Check whether both strings have same encoding. // edi: instance type of second string __ xor_(ecx, edi); __ test_b(ecx, kStringEncodingMask); __ j(not_zero, &call_runtime); STATIC_ASSERT(kSeqStringTag == 0); __ test_b(edi, kStringRepresentationMask); __ j(zero, &second_is_sequential, Label::kNear); // Rule out short external string and load string resource. STATIC_ASSERT(kShortExternalStringTag != 0); __ test_b(edi, kShortExternalStringMask); __ j(not_zero, &call_runtime); __ mov(edx, FieldOperand(edx, ExternalString::kResourceDataOffset)); STATIC_ASSERT(SeqAsciiString::kHeaderSize == SeqTwoByteString::kHeaderSize); __ jmp(&second_prepared, Label::kNear); __ bind(&second_is_sequential); __ add(edx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); __ bind(&second_prepared); // Push the addresses of both strings' first characters onto the stack. __ push(edx); __ push(eax); Label non_ascii_string_add_flat_result, call_runtime_drop_two; // edi: instance type of second string // First string and second string have the same encoding. STATIC_ASSERT(kTwoByteStringTag == 0); __ test_b(edi, kStringEncodingMask); __ j(zero, &non_ascii_string_add_flat_result); // Both strings are ASCII strings. // ebx: length of resulting flat string as a smi __ SmiUntag(ebx); __ AllocateAsciiString(eax, ebx, ecx, edx, edi, &call_runtime_drop_two); // eax: result string __ mov(ecx, eax); // Locate first character of result. __ add(ecx, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // Load first argument's length and first character location. Account for // values currently on the stack when fetching arguments from it. __ mov(edx, Operand(esp, 4 * kPointerSize)); __ mov(edi, FieldOperand(edx, String::kLengthOffset)); __ SmiUntag(edi); __ pop(edx); // eax: result string // ecx: first character of result // edx: first char of first argument // edi: length of first argument StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); // Load second argument's length and first character location. Account for // values currently on the stack when fetching arguments from it. __ mov(edx, Operand(esp, 2 * kPointerSize)); __ mov(edi, FieldOperand(edx, String::kLengthOffset)); __ SmiUntag(edi); __ pop(edx); // eax: result string // ecx: next character of result // edx: first char of second argument // edi: length of second argument StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, true); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); // Handle creating a flat two byte result. // eax: first string - known to be two byte // ebx: length of resulting flat string as a smi // edx: second string __ bind(&non_ascii_string_add_flat_result); // Both strings are two byte strings. __ SmiUntag(ebx); __ AllocateTwoByteString(eax, ebx, ecx, edx, edi, &call_runtime_drop_two); // eax: result string __ mov(ecx, eax); // Locate first character of result. __ add(ecx, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // Load second argument's length and first character location. Account for // values currently on the stack when fetching arguments from it. __ mov(edx, Operand(esp, 4 * kPointerSize)); __ mov(edi, FieldOperand(edx, String::kLengthOffset)); __ SmiUntag(edi); __ pop(edx); // eax: result string // ecx: first character of result // edx: first char of first argument // edi: length of first argument StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); // Load second argument's length and first character location. Account for // values currently on the stack when fetching arguments from it. __ mov(edx, Operand(esp, 2 * kPointerSize)); __ mov(edi, FieldOperand(edx, String::kLengthOffset)); __ SmiUntag(edi); __ pop(edx); // eax: result string // ecx: next character of result // edx: first char of second argument // edi: length of second argument StringHelper::GenerateCopyCharacters(masm, ecx, edx, edi, ebx, false); __ IncrementCounter(counters->string_add_native(), 1); __ ret(2 * kPointerSize); // Recover stack pointer before jumping to runtime. __ bind(&call_runtime_drop_two); __ Drop(2); // Just jump to runtime to add the two strings. __ bind(&call_runtime); __ TailCallRuntime(Runtime::kStringAdd, 2, 1); if (call_builtin.is_linked()) { __ bind(&call_builtin); __ InvokeBuiltin(builtin_id, JUMP_FUNCTION); } } void StringAddStub::GenerateConvertArgument(MacroAssembler* masm, int stack_offset, Register arg, Register scratch1, Register scratch2, Register scratch3, Label* slow) { // First check if the argument is already a string. Label not_string, done; __ JumpIfSmi(arg, ¬_string); __ CmpObjectType(arg, FIRST_NONSTRING_TYPE, scratch1); __ j(below, &done); // Check the number to string cache. Label not_cached; __ bind(¬_string); // Puts the cached result into scratch1. NumberToStringStub::GenerateLookupNumberStringCache(masm, arg, scratch1, scratch2, scratch3, false, ¬_cached); __ mov(arg, scratch1); __ mov(Operand(esp, stack_offset), arg); __ jmp(&done); // Check if the argument is a safe string wrapper. __ bind(¬_cached); __ JumpIfSmi(arg, slow); __ CmpObjectType(arg, JS_VALUE_TYPE, scratch1); // map -> scratch1. __ j(not_equal, slow); __ test_b(FieldOperand(scratch1, Map::kBitField2Offset), 1 << Map::kStringWrapperSafeForDefaultValueOf); __ j(zero, slow); __ mov(arg, FieldOperand(arg, JSValue::kValueOffset)); __ mov(Operand(esp, stack_offset), arg); __ bind(&done); } void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, bool ascii) { Label loop; __ bind(&loop); // This loop just copies one character at a time, as it is only used for very // short strings. if (ascii) { __ mov_b(scratch, Operand(src, 0)); __ mov_b(Operand(dest, 0), scratch); __ add(src, Immediate(1)); __ add(dest, Immediate(1)); } else { __ mov_w(scratch, Operand(src, 0)); __ mov_w(Operand(dest, 0), scratch); __ add(src, Immediate(2)); __ add(dest, Immediate(2)); } __ sub(count, Immediate(1)); __ j(not_zero, &loop); } void StringHelper::GenerateCopyCharactersREP(MacroAssembler* masm, Register dest, Register src, Register count, Register scratch, bool ascii) { // Copy characters using rep movs of doublewords. // The destination is aligned on a 4 byte boundary because we are // copying to the beginning of a newly allocated string. ASSERT(dest.is(edi)); // rep movs destination ASSERT(src.is(esi)); // rep movs source ASSERT(count.is(ecx)); // rep movs count ASSERT(!scratch.is(dest)); ASSERT(!scratch.is(src)); ASSERT(!scratch.is(count)); // Nothing to do for zero characters. Label done; __ test(count, count); __ j(zero, &done); // Make count the number of bytes to copy. if (!ascii) { __ shl(count, 1); } // Don't enter the rep movs if there are less than 4 bytes to copy. Label last_bytes; __ test(count, Immediate(~3)); __ j(zero, &last_bytes, Label::kNear); // Copy from edi to esi using rep movs instruction. __ mov(scratch, count); __ sar(count, 2); // Number of doublewords to copy. __ cld(); __ rep_movs(); // Find number of bytes left. __ mov(count, scratch); __ and_(count, 3); // Check if there are more bytes to copy. __ bind(&last_bytes); __ test(count, count); __ j(zero, &done); // Copy remaining characters. Label loop; __ bind(&loop); __ mov_b(scratch, Operand(src, 0)); __ mov_b(Operand(dest, 0), scratch); __ add(src, Immediate(1)); __ add(dest, Immediate(1)); __ sub(count, Immediate(1)); __ j(not_zero, &loop); __ bind(&done); } void StringHelper::GenerateTwoCharacterSymbolTableProbe(MacroAssembler* masm, Register c1, Register c2, Register scratch1, Register scratch2, Register scratch3, Label* not_probed, Label* not_found) { // Register scratch3 is the general scratch register in this function. Register scratch = scratch3; // Make sure that both characters are not digits as such strings has a // different hash algorithm. Don't try to look for these in the symbol table. Label not_array_index; __ mov(scratch, c1); __ sub(scratch, Immediate(static_cast<int>('0'))); __ cmp(scratch, Immediate(static_cast<int>('9' - '0'))); __ j(above, ¬_array_index, Label::kNear); __ mov(scratch, c2); __ sub(scratch, Immediate(static_cast<int>('0'))); __ cmp(scratch, Immediate(static_cast<int>('9' - '0'))); __ j(below_equal, not_probed); __ bind(¬_array_index); // Calculate the two character string hash. Register hash = scratch1; GenerateHashInit(masm, hash, c1, scratch); GenerateHashAddCharacter(masm, hash, c2, scratch); GenerateHashGetHash(masm, hash, scratch); // Collect the two characters in a register. Register chars = c1; __ shl(c2, kBitsPerByte); __ or_(chars, c2); // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string. // Load the symbol table. Register symbol_table = c2; ExternalReference roots_array_start = ExternalReference::roots_array_start(masm->isolate()); __ mov(scratch, Immediate(Heap::kSymbolTableRootIndex)); __ mov(symbol_table, Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); // Calculate capacity mask from the symbol table capacity. Register mask = scratch2; __ mov(mask, FieldOperand(symbol_table, SymbolTable::kCapacityOffset)); __ SmiUntag(mask); __ sub(mask, Immediate(1)); // Registers // chars: two character string, char 1 in byte 0 and char 2 in byte 1. // hash: hash of two character string // symbol_table: symbol table // mask: capacity mask // scratch: - // Perform a number of probes in the symbol table. static const int kProbes = 4; Label found_in_symbol_table; Label next_probe[kProbes], next_probe_pop_mask[kProbes]; Register candidate = scratch; // Scratch register contains candidate. for (int i = 0; i < kProbes; i++) { // Calculate entry in symbol table. __ mov(scratch, hash); if (i > 0) { __ add(scratch, Immediate(SymbolTable::GetProbeOffset(i))); } __ and_(scratch, mask); // Load the entry from the symbol table. STATIC_ASSERT(SymbolTable::kEntrySize == 1); __ mov(candidate, FieldOperand(symbol_table, scratch, times_pointer_size, SymbolTable::kElementsStartOffset)); // If entry is undefined no string with this hash can be found. Factory* factory = masm->isolate()->factory(); __ cmp(candidate, factory->undefined_value()); __ j(equal, not_found); __ cmp(candidate, factory->the_hole_value()); __ j(equal, &next_probe[i]); // If length is not 2 the string is not a candidate. __ cmp(FieldOperand(candidate, String::kLengthOffset), Immediate(Smi::FromInt(2))); __ j(not_equal, &next_probe[i]); // As we are out of registers save the mask on the stack and use that // register as a temporary. __ push(mask); Register temp = mask; // Check that the candidate is a non-external ASCII string. __ mov(temp, FieldOperand(candidate, HeapObject::kMapOffset)); __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialAscii( temp, temp, &next_probe_pop_mask[i]); // Check if the two characters match. __ mov(temp, FieldOperand(candidate, SeqAsciiString::kHeaderSize)); __ and_(temp, 0x0000ffff); __ cmp(chars, temp); __ j(equal, &found_in_symbol_table); __ bind(&next_probe_pop_mask[i]); __ pop(mask); __ bind(&next_probe[i]); } // No matching 2 character string found by probing. __ jmp(not_found); // Scratch register contains result when we fall through to here. Register result = candidate; __ bind(&found_in_symbol_table); __ pop(mask); // Pop saved mask from the stack. if (!result.is(eax)) { __ mov(eax, result); } } void StringHelper::GenerateHashInit(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash = (seed + character) + ((seed + character) << 10); if (Serializer::enabled()) { ExternalReference roots_array_start = ExternalReference::roots_array_start(masm->isolate()); __ mov(scratch, Immediate(Heap::kHashSeedRootIndex)); __ mov(scratch, Operand::StaticArray(scratch, times_pointer_size, roots_array_start)); __ SmiUntag(scratch); __ add(scratch, character); __ mov(hash, scratch); __ shl(scratch, 10); __ add(hash, scratch); } else { int32_t seed = masm->isolate()->heap()->HashSeed(); __ lea(scratch, Operand(character, seed)); __ shl(scratch, 10); __ lea(hash, Operand(scratch, character, times_1, seed)); } // hash ^= hash >> 6; __ mov(scratch, hash); __ shr(scratch, 6); __ xor_(hash, scratch); } void StringHelper::GenerateHashAddCharacter(MacroAssembler* masm, Register hash, Register character, Register scratch) { // hash += character; __ add(hash, character); // hash += hash << 10; __ mov(scratch, hash); __ shl(scratch, 10); __ add(hash, scratch); // hash ^= hash >> 6; __ mov(scratch, hash); __ shr(scratch, 6); __ xor_(hash, scratch); } void StringHelper::GenerateHashGetHash(MacroAssembler* masm, Register hash, Register scratch) { // hash += hash << 3; __ mov(scratch, hash); __ shl(scratch, 3); __ add(hash, scratch); // hash ^= hash >> 11; __ mov(scratch, hash); __ shr(scratch, 11); __ xor_(hash, scratch); // hash += hash << 15; __ mov(scratch, hash); __ shl(scratch, 15); __ add(hash, scratch); __ and_(hash, String::kHashBitMask); // if (hash == 0) hash = 27; Label hash_not_zero; __ j(not_zero, &hash_not_zero, Label::kNear); __ mov(hash, Immediate(StringHasher::kZeroHash)); __ bind(&hash_not_zero); } void SubStringStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // esp[0]: return address // esp[4]: to // esp[8]: from // esp[12]: string // Make sure first argument is a string. __ mov(eax, Operand(esp, 3 * kPointerSize)); STATIC_ASSERT(kSmiTag == 0); __ JumpIfSmi(eax, &runtime); Condition is_string = masm->IsObjectStringType(eax, ebx, ebx); __ j(NegateCondition(is_string), &runtime); // eax: string // ebx: instance type // Calculate length of sub string using the smi values. __ mov(ecx, Operand(esp, 1 * kPointerSize)); // To index. __ JumpIfNotSmi(ecx, &runtime); __ mov(edx, Operand(esp, 2 * kPointerSize)); // From index. __ JumpIfNotSmi(edx, &runtime); __ sub(ecx, edx); __ cmp(ecx, FieldOperand(eax, String::kLengthOffset)); Label not_original_string; __ j(not_equal, ¬_original_string, Label::kNear); Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); __ bind(¬_original_string); // eax: string // ebx: instance type // ecx: sub string length (smi) // edx: from index (smi) // Deal with different string types: update the index if necessary // and put the underlying string into edi. Label underlying_unpacked, sliced_string, seq_or_external_string; // If the string is not indirect, it can only be sequential or external. STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); STATIC_ASSERT(kIsIndirectStringMask != 0); __ test(ebx, Immediate(kIsIndirectStringMask)); __ j(zero, &seq_or_external_string, Label::kNear); Factory* factory = masm->isolate()->factory(); __ test(ebx, Immediate(kSlicedNotConsMask)); __ j(not_zero, &sliced_string, Label::kNear); // Cons string. Check whether it is flat, then fetch first part. // Flat cons strings have an empty second part. __ cmp(FieldOperand(eax, ConsString::kSecondOffset), factory->empty_string()); __ j(not_equal, &runtime); __ mov(edi, FieldOperand(eax, ConsString::kFirstOffset)); // Update instance type. __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked, Label::kNear); __ bind(&sliced_string); // Sliced string. Fetch parent and adjust start index by offset. __ add(edx, FieldOperand(eax, SlicedString::kOffsetOffset)); __ mov(edi, FieldOperand(eax, SlicedString::kParentOffset)); // Update instance type. __ mov(ebx, FieldOperand(edi, HeapObject::kMapOffset)); __ movzx_b(ebx, FieldOperand(ebx, Map::kInstanceTypeOffset)); __ jmp(&underlying_unpacked, Label::kNear); __ bind(&seq_or_external_string); // Sequential or external string. Just move string to the expected register. __ mov(edi, eax); __ bind(&underlying_unpacked); if (FLAG_string_slices) { Label copy_routine; // edi: underlying subject string // ebx: instance type of underlying subject string // edx: adjusted start index (smi) // ecx: length (smi) __ cmp(ecx, Immediate(Smi::FromInt(SlicedString::kMinLength))); // Short slice. Copy instead of slicing. __ j(less, ©_routine); // Allocate new sliced string. At this point we do not reload the instance // type including the string encoding because we simply rely on the info // provided by the original string. It does not matter if the original // string's encoding is wrong because we always have to recheck encoding of // the newly created string's parent anyways due to externalized strings. Label two_byte_slice, set_slice_header; STATIC_ASSERT((kStringEncodingMask & kAsciiStringTag) != 0); STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); __ test(ebx, Immediate(kStringEncodingMask)); __ j(zero, &two_byte_slice, Label::kNear); __ AllocateAsciiSlicedString(eax, ebx, no_reg, &runtime); __ jmp(&set_slice_header, Label::kNear); __ bind(&two_byte_slice); __ AllocateTwoByteSlicedString(eax, ebx, no_reg, &runtime); __ bind(&set_slice_header); __ mov(FieldOperand(eax, SlicedString::kLengthOffset), ecx); __ mov(FieldOperand(eax, SlicedString::kHashFieldOffset), Immediate(String::kEmptyHashField)); __ mov(FieldOperand(eax, SlicedString::kParentOffset), edi); __ mov(FieldOperand(eax, SlicedString::kOffsetOffset), edx); __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); __ bind(©_routine); } // edi: underlying subject string // ebx: instance type of underlying subject string // edx: adjusted start index (smi) // ecx: length (smi) // The subject string can only be external or sequential string of either // encoding at this point. Label two_byte_sequential, runtime_drop_two, sequential_string; STATIC_ASSERT(kExternalStringTag != 0); STATIC_ASSERT(kSeqStringTag == 0); __ test_b(ebx, kExternalStringTag); __ j(zero, &sequential_string); // Handle external string. // Rule out short external strings. STATIC_CHECK(kShortExternalStringTag != 0); __ test_b(ebx, kShortExternalStringMask); __ j(not_zero, &runtime); __ mov(edi, FieldOperand(edi, ExternalString::kResourceDataOffset)); // Move the pointer so that offset-wise, it looks like a sequential string. STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqAsciiString::kHeaderSize); __ sub(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); __ bind(&sequential_string); // Stash away (adjusted) index and (underlying) string. __ push(edx); __ push(edi); __ SmiUntag(ecx); STATIC_ASSERT((kAsciiStringTag & kStringEncodingMask) != 0); __ test_b(ebx, kStringEncodingMask); __ j(zero, &two_byte_sequential); // Sequential ASCII string. Allocate the result. __ AllocateAsciiString(eax, ecx, ebx, edx, edi, &runtime_drop_two); // eax: result string // ecx: result string length __ mov(edx, esi); // esi used by following code. // Locate first character of result. __ mov(edi, eax); __ add(edi, Immediate(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // Load string argument and locate character of sub string start. __ pop(esi); __ pop(ebx); __ SmiUntag(ebx); __ lea(esi, FieldOperand(esi, ebx, times_1, SeqAsciiString::kHeaderSize)); // eax: result string // ecx: result length // edx: original value of esi // edi: first character of result // esi: character of sub string start StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, true); __ mov(esi, edx); // Restore esi. __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); __ bind(&two_byte_sequential); // Sequential two-byte string. Allocate the result. __ AllocateTwoByteString(eax, ecx, ebx, edx, edi, &runtime_drop_two); // eax: result string // ecx: result string length __ mov(edx, esi); // esi used by following code. // Locate first character of result. __ mov(edi, eax); __ add(edi, Immediate(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); // Load string argument and locate character of sub string start. __ pop(esi); __ pop(ebx); // As from is a smi it is 2 times the value which matches the size of a two // byte character. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); __ lea(esi, FieldOperand(esi, ebx, times_1, SeqTwoByteString::kHeaderSize)); // eax: result string // ecx: result length // edx: original value of esi // edi: first character of result // esi: character of sub string start StringHelper::GenerateCopyCharactersREP(masm, edi, esi, ecx, ebx, false); __ mov(esi, edx); // Restore esi. __ IncrementCounter(counters->sub_string_native(), 1); __ ret(3 * kPointerSize); // Drop pushed values on the stack before tail call. __ bind(&runtime_drop_two); __ Drop(2); // Just jump to runtime to create the sub string. __ bind(&runtime); __ TailCallRuntime(Runtime::kSubString, 3, 1); } void StringCompareStub::GenerateFlatAsciiStringEquals(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2) { Register length = scratch1; // Compare lengths. Label strings_not_equal, check_zero_length; __ mov(length, FieldOperand(left, String::kLengthOffset)); __ cmp(length, FieldOperand(right, String::kLengthOffset)); __ j(equal, &check_zero_length, Label::kNear); __ bind(&strings_not_equal); __ Set(eax, Immediate(Smi::FromInt(NOT_EQUAL))); __ ret(0); // Check if the length is zero. Label compare_chars; __ bind(&check_zero_length); STATIC_ASSERT(kSmiTag == 0); __ test(length, length); __ j(not_zero, &compare_chars, Label::kNear); __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); // Compare characters. __ bind(&compare_chars); GenerateAsciiCharsCompareLoop(masm, left, right, length, scratch2, &strings_not_equal, Label::kNear); // Characters are equal. __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); } void StringCompareStub::GenerateCompareFlatAsciiStrings(MacroAssembler* masm, Register left, Register right, Register scratch1, Register scratch2, Register scratch3) { Counters* counters = masm->isolate()->counters(); __ IncrementCounter(counters->string_compare_native(), 1); // Find minimum length. Label left_shorter; __ mov(scratch1, FieldOperand(left, String::kLengthOffset)); __ mov(scratch3, scratch1); __ sub(scratch3, FieldOperand(right, String::kLengthOffset)); Register length_delta = scratch3; __ j(less_equal, &left_shorter, Label::kNear); // Right string is shorter. Change scratch1 to be length of right string. __ sub(scratch1, length_delta); __ bind(&left_shorter); Register min_length = scratch1; // If either length is zero, just compare lengths. Label compare_lengths; __ test(min_length, min_length); __ j(zero, &compare_lengths, Label::kNear); // Compare characters. Label result_not_equal; GenerateAsciiCharsCompareLoop(masm, left, right, min_length, scratch2, &result_not_equal, Label::kNear); // Compare lengths - strings up to min-length are equal. __ bind(&compare_lengths); __ test(length_delta, length_delta); __ j(not_zero, &result_not_equal, Label::kNear); // Result is EQUAL. STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); Label result_greater; __ bind(&result_not_equal); __ j(greater, &result_greater, Label::kNear); // Result is LESS. __ Set(eax, Immediate(Smi::FromInt(LESS))); __ ret(0); // Result is GREATER. __ bind(&result_greater); __ Set(eax, Immediate(Smi::FromInt(GREATER))); __ ret(0); } void StringCompareStub::GenerateAsciiCharsCompareLoop( MacroAssembler* masm, Register left, Register right, Register length, Register scratch, Label* chars_not_equal, Label::Distance chars_not_equal_near) { // Change index to run from -length to -1 by adding length to string // start. This means that loop ends when index reaches zero, which // doesn't need an additional compare. __ SmiUntag(length); __ lea(left, FieldOperand(left, length, times_1, SeqAsciiString::kHeaderSize)); __ lea(right, FieldOperand(right, length, times_1, SeqAsciiString::kHeaderSize)); __ neg(length); Register index = length; // index = -length; // Compare loop. Label loop; __ bind(&loop); __ mov_b(scratch, Operand(left, index, times_1, 0)); __ cmpb(scratch, Operand(right, index, times_1, 0)); __ j(not_equal, chars_not_equal, chars_not_equal_near); __ inc(index); __ j(not_zero, &loop); } void StringCompareStub::Generate(MacroAssembler* masm) { Label runtime; // Stack frame on entry. // esp[0]: return address // esp[4]: right string // esp[8]: left string __ mov(edx, Operand(esp, 2 * kPointerSize)); // left __ mov(eax, Operand(esp, 1 * kPointerSize)); // right Label not_same; __ cmp(edx, eax); __ j(not_equal, ¬_same, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ IncrementCounter(masm->isolate()->counters()->string_compare_native(), 1); __ ret(2 * kPointerSize); __ bind(¬_same); // Check that both objects are sequential ASCII strings. __ JumpIfNotBothSequentialAsciiStrings(edx, eax, ecx, ebx, &runtime); // Compare flat ASCII strings. // Drop arguments from the stack. __ pop(ecx); __ add(esp, Immediate(2 * kPointerSize)); __ push(ecx); GenerateCompareFlatAsciiStrings(masm, edx, eax, ecx, ebx, edi); // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) // tagged as a small integer. __ bind(&runtime); __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } void ICCompareStub::GenerateSmis(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SMIS); Label miss; __ mov(ecx, edx); __ or_(ecx, eax); __ JumpIfNotSmi(ecx, &miss, Label::kNear); if (GetCondition() == equal) { // For equality we do not care about the sign of the result. __ sub(eax, edx); } else { Label done; __ sub(edx, eax); __ j(no_overflow, &done, Label::kNear); // Correct sign of result in case of overflow. __ not_(edx); __ bind(&done); __ mov(eax, edx); } __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateHeapNumbers(MacroAssembler* masm) { ASSERT(state_ == CompareIC::HEAP_NUMBERS); Label generic_stub; Label unordered, maybe_undefined1, maybe_undefined2; Label miss; __ mov(ecx, edx); __ and_(ecx, eax); __ JumpIfSmi(ecx, &generic_stub, Label::kNear); __ CmpObjectType(eax, HEAP_NUMBER_TYPE, ecx); __ j(not_equal, &maybe_undefined1, Label::kNear); __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx); __ j(not_equal, &maybe_undefined2, Label::kNear); // Inlining the double comparison and falling back to the general compare // stub if NaN is involved or SS2 or CMOV is unsupported. if (CpuFeatures::IsSupported(SSE2) && CpuFeatures::IsSupported(CMOV)) { CpuFeatures::Scope scope1(SSE2); CpuFeatures::Scope scope2(CMOV); // Load left and right operand __ movdbl(xmm0, FieldOperand(edx, HeapNumber::kValueOffset)); __ movdbl(xmm1, FieldOperand(eax, HeapNumber::kValueOffset)); // Compare operands __ ucomisd(xmm0, xmm1); // Don't base result on EFLAGS when a NaN is involved. __ j(parity_even, &unordered, Label::kNear); // Return a result of -1, 0, or 1, based on EFLAGS. // Performing mov, because xor would destroy the flag register. __ mov(eax, 0); // equal __ mov(ecx, Immediate(Smi::FromInt(1))); __ cmov(above, eax, ecx); __ mov(ecx, Immediate(Smi::FromInt(-1))); __ cmov(below, eax, ecx); __ ret(0); } __ bind(&unordered); CompareStub stub(GetCondition(), strict(), NO_COMPARE_FLAGS); __ bind(&generic_stub); __ jmp(stub.GetCode(), RelocInfo::CODE_TARGET); __ bind(&maybe_undefined1); if (Token::IsOrderedRelationalCompareOp(op_)) { __ cmp(eax, Immediate(masm->isolate()->factory()->undefined_value())); __ j(not_equal, &miss); __ CmpObjectType(edx, HEAP_NUMBER_TYPE, ecx); __ j(not_equal, &maybe_undefined2, Label::kNear); __ jmp(&unordered); } __ bind(&maybe_undefined2); if (Token::IsOrderedRelationalCompareOp(op_)) { __ cmp(edx, Immediate(masm->isolate()->factory()->undefined_value())); __ j(equal, &unordered); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateSymbols(MacroAssembler* masm) { ASSERT(state_ == CompareIC::SYMBOLS); ASSERT(GetCondition() == equal); // Registers containing left and right operands respectively. Register left = edx; Register right = eax; Register tmp1 = ecx; Register tmp2 = ebx; // Check that both operands are heap objects. Label miss; __ mov(tmp1, left); STATIC_ASSERT(kSmiTag == 0); __ and_(tmp1, right); __ JumpIfSmi(tmp1, &miss, Label::kNear); // Check that both operands are symbols. __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); STATIC_ASSERT(kSymbolTag != 0); __ and_(tmp1, tmp2); __ test(tmp1, Immediate(kIsSymbolMask)); __ j(zero, &miss, Label::kNear); // Symbols are compared by identity. Label done; __ cmp(left, right); // Make sure eax is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(eax)); __ j(not_equal, &done, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ bind(&done); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateStrings(MacroAssembler* masm) { ASSERT(state_ == CompareIC::STRINGS); Label miss; bool equality = Token::IsEqualityOp(op_); // Registers containing left and right operands respectively. Register left = edx; Register right = eax; Register tmp1 = ecx; Register tmp2 = ebx; Register tmp3 = edi; // Check that both operands are heap objects. __ mov(tmp1, left); STATIC_ASSERT(kSmiTag == 0); __ and_(tmp1, right); __ JumpIfSmi(tmp1, &miss); // Check that both operands are strings. This leaves the instance // types loaded in tmp1 and tmp2. __ mov(tmp1, FieldOperand(left, HeapObject::kMapOffset)); __ mov(tmp2, FieldOperand(right, HeapObject::kMapOffset)); __ movzx_b(tmp1, FieldOperand(tmp1, Map::kInstanceTypeOffset)); __ movzx_b(tmp2, FieldOperand(tmp2, Map::kInstanceTypeOffset)); __ mov(tmp3, tmp1); STATIC_ASSERT(kNotStringTag != 0); __ or_(tmp3, tmp2); __ test(tmp3, Immediate(kIsNotStringMask)); __ j(not_zero, &miss); // Fast check for identical strings. Label not_same; __ cmp(left, right); __ j(not_equal, ¬_same, Label::kNear); STATIC_ASSERT(EQUAL == 0); STATIC_ASSERT(kSmiTag == 0); __ Set(eax, Immediate(Smi::FromInt(EQUAL))); __ ret(0); // Handle not identical strings. __ bind(¬_same); // Check that both strings are symbols. If they are, we're done // because we already know they are not identical. But in the case of // non-equality compare, we still need to determine the order. if (equality) { Label do_compare; STATIC_ASSERT(kSymbolTag != 0); __ and_(tmp1, tmp2); __ test(tmp1, Immediate(kIsSymbolMask)); __ j(zero, &do_compare, Label::kNear); // Make sure eax is non-zero. At this point input operands are // guaranteed to be non-zero. ASSERT(right.is(eax)); __ ret(0); __ bind(&do_compare); } // Check that both strings are sequential ASCII. Label runtime; __ JumpIfNotBothSequentialAsciiStrings(left, right, tmp1, tmp2, &runtime); // Compare flat ASCII strings. Returns when done. if (equality) { StringCompareStub::GenerateFlatAsciiStringEquals( masm, left, right, tmp1, tmp2); } else { StringCompareStub::GenerateCompareFlatAsciiStrings( masm, left, right, tmp1, tmp2, tmp3); } // Handle more complex cases in runtime. __ bind(&runtime); __ pop(tmp1); // Return address. __ push(left); __ push(right); __ push(tmp1); if (equality) { __ TailCallRuntime(Runtime::kStringEquals, 2, 1); } else { __ TailCallRuntime(Runtime::kStringCompare, 2, 1); } __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateObjects(MacroAssembler* masm) { ASSERT(state_ == CompareIC::OBJECTS); Label miss; __ mov(ecx, edx); __ and_(ecx, eax); __ JumpIfSmi(ecx, &miss, Label::kNear); __ CmpObjectType(eax, JS_OBJECT_TYPE, ecx); __ j(not_equal, &miss, Label::kNear); __ CmpObjectType(edx, JS_OBJECT_TYPE, ecx); __ j(not_equal, &miss, Label::kNear); ASSERT(GetCondition() == equal); __ sub(eax, edx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateKnownObjects(MacroAssembler* masm) { Label miss; __ mov(ecx, edx); __ and_(ecx, eax); __ JumpIfSmi(ecx, &miss, Label::kNear); __ mov(ecx, FieldOperand(eax, HeapObject::kMapOffset)); __ mov(ebx, FieldOperand(edx, HeapObject::kMapOffset)); __ cmp(ecx, known_map_); __ j(not_equal, &miss, Label::kNear); __ cmp(ebx, known_map_); __ j(not_equal, &miss, Label::kNear); __ sub(eax, edx); __ ret(0); __ bind(&miss); GenerateMiss(masm); } void ICCompareStub::GenerateMiss(MacroAssembler* masm) { { // Call the runtime system in a fresh internal frame. ExternalReference miss = ExternalReference(IC_Utility(IC::kCompareIC_Miss), masm->isolate()); FrameScope scope(masm, StackFrame::INTERNAL); __ push(edx); // Preserve edx and eax. __ push(eax); __ push(edx); // And also use them as the arguments. __ push(eax); __ push(Immediate(Smi::FromInt(op_))); __ CallExternalReference(miss, 3); // Compute the entry point of the rewritten stub. __ lea(edi, FieldOperand(eax, Code::kHeaderSize)); __ pop(eax); __ pop(edx); } // Do a tail call to the rewritten stub. __ jmp(edi); } // Helper function used to check that the dictionary doesn't contain // the property. This function may return false negatives, so miss_label // must always call a backup property check that is complete. // This function is safe to call if the receiver has fast properties. // Name must be a symbol and receiver must be a heap object. void StringDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, Label* miss, Label* done, Register properties, Handle<String> name, Register r0) { ASSERT(name->IsSymbol()); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the hole value). for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. Register index = r0; // Capacity is smi 2^n. __ mov(index, FieldOperand(properties, kCapacityOffset)); __ dec(index); __ and_(index, Immediate(Smi::FromInt(name->Hash() + StringDictionary::GetProbeOffset(i)))); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ lea(index, Operand(index, index, times_2, 0)); // index *= 3. Register entity_name = r0; // Having undefined at this place means the name is not contained. ASSERT_EQ(kSmiTagSize, 1); __ mov(entity_name, Operand(properties, index, times_half_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ cmp(entity_name, masm->isolate()->factory()->undefined_value()); __ j(equal, done); // Stop if found the property. __ cmp(entity_name, Handle<String>(name)); __ j(equal, miss); Label the_hole; // Check for the hole and skip. __ cmp(entity_name, masm->isolate()->factory()->the_hole_value()); __ j(equal, &the_hole, Label::kNear); // Check if the entry name is not a symbol. __ mov(entity_name, FieldOperand(entity_name, HeapObject::kMapOffset)); __ test_b(FieldOperand(entity_name, Map::kInstanceTypeOffset), kIsSymbolMask); __ j(zero, miss); __ bind(&the_hole); } StringDictionaryLookupStub stub(properties, r0, r0, StringDictionaryLookupStub::NEGATIVE_LOOKUP); __ push(Immediate(Handle<Object>(name))); __ push(Immediate(name->Hash())); __ CallStub(&stub); __ test(r0, r0); __ j(not_zero, miss); __ jmp(done); } // Probe the string dictionary in the |elements| register. Jump to the // |done| label if a property with the given name is found leaving the // index into the dictionary in |r0|. Jump to the |miss| label // otherwise. void StringDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, Label* miss, Label* done, Register elements, Register name, Register r0, Register r1) { ASSERT(!elements.is(r0)); ASSERT(!elements.is(r1)); ASSERT(!name.is(r0)); ASSERT(!name.is(r1)); // Assert that name contains a string. if (FLAG_debug_code) __ AbortIfNotString(name); __ mov(r1, FieldOperand(elements, kCapacityOffset)); __ shr(r1, kSmiTagSize); // convert smi to int __ dec(r1); // Generate an unrolled loop that performs a few probes before // giving up. Measurements done on Gmail indicate that 2 probes // cover ~93% of loads from dictionaries. for (int i = 0; i < kInlinedProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ mov(r0, FieldOperand(name, String::kHashFieldOffset)); __ shr(r0, String::kHashShift); if (i > 0) { __ add(r0, Immediate(StringDictionary::GetProbeOffset(i))); } __ and_(r0, r1); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ lea(r0, Operand(r0, r0, times_2, 0)); // r0 = r0 * 3 // Check if the key is identical to the name. __ cmp(name, Operand(elements, r0, times_4, kElementsStartOffset - kHeapObjectTag)); __ j(equal, done); } StringDictionaryLookupStub stub(elements, r1, r0, POSITIVE_LOOKUP); __ push(name); __ mov(r0, FieldOperand(name, String::kHashFieldOffset)); __ shr(r0, String::kHashShift); __ push(r0); __ CallStub(&stub); __ test(r1, r1); __ j(zero, miss); __ jmp(done); } void StringDictionaryLookupStub::Generate(MacroAssembler* masm) { // This stub overrides SometimesSetsUpAFrame() to return false. That means // we cannot call anything that could cause a GC from this stub. // Stack frame on entry: // esp[0 * kPointerSize]: return address. // esp[1 * kPointerSize]: key's hash. // esp[2 * kPointerSize]: key. // Registers: // dictionary_: StringDictionary to probe. // result_: used as scratch. // index_: will hold an index of entry if lookup is successful. // might alias with result_. // Returns: // result_ is zero if lookup failed, non zero otherwise. Label in_dictionary, maybe_in_dictionary, not_in_dictionary; Register scratch = result_; __ mov(scratch, FieldOperand(dictionary_, kCapacityOffset)); __ dec(scratch); __ SmiUntag(scratch); __ push(scratch); // If names of slots in range from 1 to kProbes - 1 for the hash value are // not equal to the name and kProbes-th slot is not used (its name is the // undefined value), it guarantees the hash table doesn't contain the // property. It's true even if some slots represent deleted properties // (their names are the null value). for (int i = kInlinedProbes; i < kTotalProbes; i++) { // Compute the masked index: (hash + i + i * i) & mask. __ mov(scratch, Operand(esp, 2 * kPointerSize)); if (i > 0) { __ add(scratch, Immediate(StringDictionary::GetProbeOffset(i))); } __ and_(scratch, Operand(esp, 0)); // Scale the index by multiplying by the entry size. ASSERT(StringDictionary::kEntrySize == 3); __ lea(index_, Operand(scratch, scratch, times_2, 0)); // index *= 3. // Having undefined at this place means the name is not contained. ASSERT_EQ(kSmiTagSize, 1); __ mov(scratch, Operand(dictionary_, index_, times_pointer_size, kElementsStartOffset - kHeapObjectTag)); __ cmp(scratch, masm->isolate()->factory()->undefined_value()); __ j(equal, ¬_in_dictionary); // Stop if found the property. __ cmp(scratch, Operand(esp, 3 * kPointerSize)); __ j(equal, &in_dictionary); if (i != kTotalProbes - 1 && mode_ == NEGATIVE_LOOKUP) { // If we hit a non symbol key during negative lookup // we have to bailout as this key might be equal to the // key we are looking for. // Check if the entry name is not a symbol. __ mov(scratch, FieldOperand(scratch, HeapObject::kMapOffset)); __ test_b(FieldOperand(scratch, Map::kInstanceTypeOffset), kIsSymbolMask); __ j(zero, &maybe_in_dictionary); } } __ bind(&maybe_in_dictionary); // If we are doing negative lookup then probing failure should be // treated as a lookup success. For positive lookup probing failure // should be treated as lookup failure. if (mode_ == POSITIVE_LOOKUP) { __ mov(result_, Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } __ bind(&in_dictionary); __ mov(result_, Immediate(1)); __ Drop(1); __ ret(2 * kPointerSize); __ bind(¬_in_dictionary); __ mov(result_, Immediate(0)); __ Drop(1); __ ret(2 * kPointerSize); } struct AheadOfTimeWriteBarrierStubList { Register object, value, address; RememberedSetAction action; }; #define REG(Name) { kRegister_ ## Name ## _Code } static const AheadOfTimeWriteBarrierStubList kAheadOfTime[] = { // Used in RegExpExecStub. { REG(ebx), REG(eax), REG(edi), EMIT_REMEMBERED_SET }, // Used in CompileArrayPushCall. { REG(ebx), REG(ecx), REG(edx), EMIT_REMEMBERED_SET }, { REG(ebx), REG(edi), REG(edx), OMIT_REMEMBERED_SET }, // Used in CompileStoreGlobal and CallFunctionStub. { REG(ebx), REG(ecx), REG(edx), OMIT_REMEMBERED_SET }, // Used in StoreStubCompiler::CompileStoreField and // KeyedStoreStubCompiler::CompileStoreField via GenerateStoreField. { REG(edx), REG(ecx), REG(ebx), EMIT_REMEMBERED_SET }, // GenerateStoreField calls the stub with two different permutations of // registers. This is the second. { REG(ebx), REG(ecx), REG(edx), EMIT_REMEMBERED_SET }, // StoreIC::GenerateNormal via GenerateDictionaryStore { REG(ebx), REG(edi), REG(edx), EMIT_REMEMBERED_SET }, // KeyedStoreIC::GenerateGeneric. { REG(ebx), REG(edx), REG(ecx), EMIT_REMEMBERED_SET}, // KeyedStoreStubCompiler::GenerateStoreFastElement. { REG(edi), REG(ebx), REG(ecx), EMIT_REMEMBERED_SET}, { REG(edx), REG(edi), REG(ebx), EMIT_REMEMBERED_SET}, // ElementsTransitionGenerator::GenerateSmiOnlyToObject // and ElementsTransitionGenerator::GenerateSmiOnlyToDouble // and ElementsTransitionGenerator::GenerateDoubleToObject { REG(edx), REG(ebx), REG(edi), EMIT_REMEMBERED_SET}, { REG(edx), REG(ebx), REG(edi), OMIT_REMEMBERED_SET}, // ElementsTransitionGenerator::GenerateDoubleToObject { REG(eax), REG(edx), REG(esi), EMIT_REMEMBERED_SET}, { REG(edx), REG(eax), REG(edi), EMIT_REMEMBERED_SET}, // StoreArrayLiteralElementStub::Generate { REG(ebx), REG(eax), REG(ecx), EMIT_REMEMBERED_SET}, // Null termination. { REG(no_reg), REG(no_reg), REG(no_reg), EMIT_REMEMBERED_SET} }; #undef REG bool RecordWriteStub::IsPregenerated() { for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; !entry->object.is(no_reg); entry++) { if (object_.is(entry->object) && value_.is(entry->value) && address_.is(entry->address) && remembered_set_action_ == entry->action && save_fp_regs_mode_ == kDontSaveFPRegs) { return true; } } return false; } void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime() { StoreBufferOverflowStub stub1(kDontSaveFPRegs); stub1.GetCode()->set_is_pregenerated(true); CpuFeatures::TryForceFeatureScope scope(SSE2); if (CpuFeatures::IsSupported(SSE2)) { StoreBufferOverflowStub stub2(kSaveFPRegs); stub2.GetCode()->set_is_pregenerated(true); } } void RecordWriteStub::GenerateFixedRegStubsAheadOfTime() { for (const AheadOfTimeWriteBarrierStubList* entry = kAheadOfTime; !entry->object.is(no_reg); entry++) { RecordWriteStub stub(entry->object, entry->value, entry->address, entry->action, kDontSaveFPRegs); stub.GetCode()->set_is_pregenerated(true); } } // Takes the input in 3 registers: address_ value_ and object_. A pointer to // the value has just been written into the object, now this stub makes sure // we keep the GC informed. The word in the object where the value has been // written is in the address register. void RecordWriteStub::Generate(MacroAssembler* masm) { Label skip_to_incremental_noncompacting; Label skip_to_incremental_compacting; // The first two instructions are generated with labels so as to get the // offset fixed up correctly by the bind(Label*) call. We patch it back and // forth between a compare instructions (a nop in this position) and the // real branch when we start and stop incremental heap marking. __ jmp(&skip_to_incremental_noncompacting, Label::kNear); __ jmp(&skip_to_incremental_compacting, Label::kFar); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&skip_to_incremental_noncompacting); GenerateIncremental(masm, INCREMENTAL); __ bind(&skip_to_incremental_compacting); GenerateIncremental(masm, INCREMENTAL_COMPACTION); // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. // Will be checked in IncrementalMarking::ActivateGeneratedStub. masm->set_byte_at(0, kTwoByteNopInstruction); masm->set_byte_at(2, kFiveByteNopInstruction); } void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { regs_.Save(masm); if (remembered_set_action_ == EMIT_REMEMBERED_SET) { Label dont_need_remembered_set; __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. regs_.scratch0(), &dont_need_remembered_set); __ CheckPageFlag(regs_.object(), regs_.scratch0(), 1 << MemoryChunk::SCAN_ON_SCAVENGE, not_zero, &dont_need_remembered_set); // First notify the incremental marker if necessary, then update the // remembered set. CheckNeedsToInformIncrementalMarker( masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm, mode); regs_.Restore(masm); __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); __ bind(&dont_need_remembered_set); } CheckNeedsToInformIncrementalMarker( masm, kReturnOnNoNeedToInformIncrementalMarker, mode); InformIncrementalMarker(masm, mode); regs_.Restore(masm); __ ret(0); } void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm, Mode mode) { regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode_); int argument_count = 3; __ PrepareCallCFunction(argument_count, regs_.scratch0()); __ mov(Operand(esp, 0 * kPointerSize), regs_.object()); if (mode == INCREMENTAL_COMPACTION) { __ mov(Operand(esp, 1 * kPointerSize), regs_.address()); // Slot. } else { ASSERT(mode == INCREMENTAL); __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); __ mov(Operand(esp, 1 * kPointerSize), regs_.scratch0()); // Value. } __ mov(Operand(esp, 2 * kPointerSize), Immediate(ExternalReference::isolate_address())); AllowExternalCallThatCantCauseGC scope(masm); if (mode == INCREMENTAL_COMPACTION) { __ CallCFunction( ExternalReference::incremental_evacuation_record_write_function( masm->isolate()), argument_count); } else { ASSERT(mode == INCREMENTAL); __ CallCFunction( ExternalReference::incremental_marking_record_write_function( masm->isolate()), argument_count); } regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode_); } void RecordWriteStub::CheckNeedsToInformIncrementalMarker( MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, Mode mode) { Label object_is_black, need_incremental, need_incremental_pop_object; // Let's look at the color of the object: If it is not black we don't have // to inform the incremental marker. __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &object_is_black, Label::kNear); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&object_is_black); // Get the value from the slot. __ mov(regs_.scratch0(), Operand(regs_.address(), 0)); if (mode == INCREMENTAL_COMPACTION) { Label ensure_not_white; __ CheckPageFlag(regs_.scratch0(), // Contains value. regs_.scratch1(), // Scratch. MemoryChunk::kEvacuationCandidateMask, zero, &ensure_not_white, Label::kNear); __ CheckPageFlag(regs_.object(), regs_.scratch1(), // Scratch. MemoryChunk::kSkipEvacuationSlotsRecordingMask, not_zero, &ensure_not_white, Label::kNear); __ jmp(&need_incremental); __ bind(&ensure_not_white); } // We need an extra register for this, so we push the object register // temporarily. __ push(regs_.object()); __ EnsureNotWhite(regs_.scratch0(), // The value. regs_.scratch1(), // Scratch. regs_.object(), // Scratch. &need_incremental_pop_object, Label::kNear); __ pop(regs_.object()); regs_.Restore(masm); if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { __ RememberedSetHelper(object_, address_, value_, save_fp_regs_mode_, MacroAssembler::kReturnAtEnd); } else { __ ret(0); } __ bind(&need_incremental_pop_object); __ pop(regs_.object()); __ bind(&need_incremental); // Fall through when we need to inform the incremental marker. } void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- eax : element value to store // -- ebx : array literal // -- edi : map of array literal // -- ecx : element index as smi // -- edx : array literal index in function // -- esp[0] : return address // ----------------------------------- Label element_done; Label double_elements; Label smi_element; Label slow_elements; Label slow_elements_from_double; Label fast_elements; __ CheckFastElements(edi, &double_elements); // FAST_SMI_ONLY_ELEMENTS or FAST_ELEMENTS __ JumpIfSmi(eax, &smi_element); __ CheckFastSmiOnlyElements(edi, &fast_elements, Label::kNear); // Store into the array literal requires a elements transition. Call into // the runtime. __ bind(&slow_elements); __ pop(edi); // Pop return address and remember to put back later for tail // call. __ push(ebx); __ push(ecx); __ push(eax); __ mov(ebx, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(ebx, JSFunction::kLiteralsOffset)); __ push(edx); __ push(edi); // Return return address so that tail call returns to right // place. __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); __ bind(&slow_elements_from_double); __ pop(edx); __ jmp(&slow_elements); // Array literal has ElementsKind of FAST_ELEMENTS and value is an object. __ bind(&fast_elements); __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset)); __ lea(ecx, FieldOperand(ebx, ecx, times_half_pointer_size, FixedArrayBase::kHeaderSize)); __ mov(Operand(ecx, 0), eax); // Update the write barrier for the array store. __ RecordWrite(ebx, ecx, eax, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); __ ret(0); // Array literal has ElementsKind of FAST_SMI_ONLY_ELEMENTS or // FAST_ELEMENTS, and value is Smi. __ bind(&smi_element); __ mov(ebx, FieldOperand(ebx, JSObject::kElementsOffset)); __ mov(FieldOperand(ebx, ecx, times_half_pointer_size, FixedArrayBase::kHeaderSize), eax); __ ret(0); // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. __ bind(&double_elements); __ push(edx); __ mov(edx, FieldOperand(ebx, JSObject::kElementsOffset)); __ StoreNumberToDoubleElements(eax, edx, ecx, edi, xmm0, &slow_elements_from_double, false); __ pop(edx); __ ret(0); } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_IA32