// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_ISOLATE_H_ #define V8_ISOLATE_H_ #include "../include/v8-debug.h" #include "allocation.h" #include "apiutils.h" #include "atomicops.h" #include "builtins.h" #include "contexts.h" #include "execution.h" #include "frames.h" #include "date.h" #include "global-handles.h" #include "handles.h" #include "hashmap.h" #include "heap.h" #include "regexp-stack.h" #include "runtime-profiler.h" #include "runtime.h" #include "zone.h" namespace v8 { namespace internal { class Bootstrapper; class CodeGenerator; class CodeRange; class CompilationCache; class ContextSlotCache; class ContextSwitcher; class Counters; class CpuFeatures; class CpuProfiler; class DeoptimizerData; class Deserializer; class EmptyStatement; class ExternalReferenceTable; class Factory; class FunctionInfoListener; class HandleScopeImplementer; class HeapProfiler; class InlineRuntimeFunctionsTable; class NoAllocationStringAllocator; class InnerPointerToCodeCache; class PreallocatedMemoryThread; class RegExpStack; class SaveContext; class UnicodeCache; class StringInputBuffer; class StringTracker; class StubCache; class ThreadManager; class ThreadState; class ThreadVisitor; // Defined in v8threads.h class VMState; // 'void function pointer', used to roundtrip the // ExternalReference::ExternalReferenceRedirector since we can not include // assembler.h, where it is defined, here. typedef void* ExternalReferenceRedirectorPointer(); #ifdef ENABLE_DEBUGGER_SUPPORT class Debug; class Debugger; class DebuggerAgent; #endif #if !defined(__arm__) && defined(V8_TARGET_ARCH_ARM) || \ !defined(__mips__) && defined(V8_TARGET_ARCH_MIPS) class Redirection; class Simulator; #endif // Static indirection table for handles to constants. If a frame // element represents a constant, the data contains an index into // this table of handles to the actual constants. // Static indirection table for handles to constants. If a Result // represents a constant, the data contains an index into this table // of handles to the actual constants. typedef ZoneList<Handle<Object> > ZoneObjectList; #define RETURN_IF_SCHEDULED_EXCEPTION(isolate) \ do { \ Isolate* __isolate__ = (isolate); \ if (__isolate__->has_scheduled_exception()) { \ return __isolate__->PromoteScheduledException(); \ } \ } while (false) #define RETURN_IF_EMPTY_HANDLE_VALUE(isolate, call, value) \ do { \ if ((call).is_null()) { \ ASSERT((isolate)->has_pending_exception()); \ return (value); \ } \ } while (false) #define CHECK_NOT_EMPTY_HANDLE(isolate, call) \ do { \ ASSERT(!(isolate)->has_pending_exception()); \ CHECK(!(call).is_null()); \ CHECK(!(isolate)->has_pending_exception()); \ } while (false) #define RETURN_IF_EMPTY_HANDLE(isolate, call) \ RETURN_IF_EMPTY_HANDLE_VALUE(isolate, call, Failure::Exception()) #define FOR_EACH_ISOLATE_ADDRESS_NAME(C) \ C(Handler, handler) \ C(CEntryFP, c_entry_fp) \ C(Context, context) \ C(PendingException, pending_exception) \ C(ExternalCaughtException, external_caught_exception) \ C(JSEntrySP, js_entry_sp) // Platform-independent, reliable thread identifier. class ThreadId { public: // Creates an invalid ThreadId. ThreadId() : id_(kInvalidId) {} // Returns ThreadId for current thread. static ThreadId Current() { return ThreadId(GetCurrentThreadId()); } // Returns invalid ThreadId (guaranteed not to be equal to any thread). static ThreadId Invalid() { return ThreadId(kInvalidId); } // Compares ThreadIds for equality. INLINE(bool Equals(const ThreadId& other) const) { return id_ == other.id_; } // Checks whether this ThreadId refers to any thread. INLINE(bool IsValid() const) { return id_ != kInvalidId; } // Converts ThreadId to an integer representation // (required for public API: V8::V8::GetCurrentThreadId). int ToInteger() const { return id_; } // Converts ThreadId to an integer representation // (required for public API: V8::V8::TerminateExecution). static ThreadId FromInteger(int id) { return ThreadId(id); } private: static const int kInvalidId = -1; explicit ThreadId(int id) : id_(id) {} static int AllocateThreadId(); static int GetCurrentThreadId(); int id_; static Atomic32 highest_thread_id_; friend class Isolate; }; class ThreadLocalTop BASE_EMBEDDED { public: // Does early low-level initialization that does not depend on the // isolate being present. ThreadLocalTop(); // Initialize the thread data. void Initialize(); // Get the top C++ try catch handler or NULL if none are registered. // // This method is not guarenteed to return an address that can be // used for comparison with addresses into the JS stack. If such an // address is needed, use try_catch_handler_address. v8::TryCatch* TryCatchHandler(); // Get the address of the top C++ try catch handler or NULL if // none are registered. // // This method always returns an address that can be compared to // pointers into the JavaScript stack. When running on actual // hardware, try_catch_handler_address and TryCatchHandler return // the same pointer. When running on a simulator with a separate JS // stack, try_catch_handler_address returns a JS stack address that // corresponds to the place on the JS stack where the C++ handler // would have been if the stack were not separate. inline Address try_catch_handler_address() { return try_catch_handler_address_; } // Set the address of the top C++ try catch handler. inline void set_try_catch_handler_address(Address address) { try_catch_handler_address_ = address; } void Free() { ASSERT(!has_pending_message_); ASSERT(!external_caught_exception_); ASSERT(try_catch_handler_address_ == NULL); } Isolate* isolate_; // The context where the current execution method is created and for variable // lookups. Context* context_; ThreadId thread_id_; MaybeObject* pending_exception_; bool has_pending_message_; Object* pending_message_obj_; Script* pending_message_script_; int pending_message_start_pos_; int pending_message_end_pos_; // Use a separate value for scheduled exceptions to preserve the // invariants that hold about pending_exception. We may want to // unify them later. MaybeObject* scheduled_exception_; bool external_caught_exception_; SaveContext* save_context_; v8::TryCatch* catcher_; // Stack. Address c_entry_fp_; // the frame pointer of the top c entry frame Address handler_; // try-blocks are chained through the stack #ifdef USE_SIMULATOR #if defined(V8_TARGET_ARCH_ARM) || defined(V8_TARGET_ARCH_MIPS) Simulator* simulator_; #endif #endif // USE_SIMULATOR Address js_entry_sp_; // the stack pointer of the bottom JS entry frame Address external_callback_; // the external callback we're currently in StateTag current_vm_state_; // Generated code scratch locations. int32_t formal_count_; // Call back function to report unsafe JS accesses. v8::FailedAccessCheckCallback failed_access_check_callback_; // Head of the list of live LookupResults. LookupResult* top_lookup_result_; // Whether out of memory exceptions should be ignored. bool ignore_out_of_memory_; private: void InitializeInternal(); Address try_catch_handler_address_; }; #ifdef ENABLE_DEBUGGER_SUPPORT #define ISOLATE_DEBUGGER_INIT_LIST(V) \ V(v8::Debug::EventCallback, debug_event_callback, NULL) \ V(DebuggerAgent*, debugger_agent_instance, NULL) #else #define ISOLATE_DEBUGGER_INIT_LIST(V) #endif #ifdef DEBUG #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) \ V(CommentStatistic, paged_space_comments_statistics, \ CommentStatistic::kMaxComments + 1) #else #define ISOLATE_INIT_DEBUG_ARRAY_LIST(V) #endif #define ISOLATE_INIT_ARRAY_LIST(V) \ /* SerializerDeserializer state. */ \ V(Object*, serialize_partial_snapshot_cache, kPartialSnapshotCacheCapacity) \ V(int, jsregexp_static_offsets_vector, kJSRegexpStaticOffsetsVectorSize) \ V(int, bad_char_shift_table, kUC16AlphabetSize) \ V(int, good_suffix_shift_table, (kBMMaxShift + 1)) \ V(int, suffix_table, (kBMMaxShift + 1)) \ V(uint32_t, private_random_seed, 2) \ ISOLATE_INIT_DEBUG_ARRAY_LIST(V) typedef List<HeapObject*, PreallocatedStorage> DebugObjectCache; #define ISOLATE_INIT_LIST(V) \ /* SerializerDeserializer state. */ \ V(int, serialize_partial_snapshot_cache_length, 0) \ /* Assembler state. */ \ /* A previously allocated buffer of kMinimalBufferSize bytes, or NULL. */ \ V(byte*, assembler_spare_buffer, NULL) \ V(FatalErrorCallback, exception_behavior, NULL) \ V(AllowCodeGenerationFromStringsCallback, allow_code_gen_callback, NULL) \ V(v8::Debug::MessageHandler, message_handler, NULL) \ /* To distinguish the function templates, so that we can find them in the */ \ /* function cache of the global context. */ \ V(int, next_serial_number, 0) \ V(ExternalReferenceRedirectorPointer*, external_reference_redirector, NULL) \ V(bool, always_allow_natives_syntax, false) \ /* Part of the state of liveedit. */ \ V(FunctionInfoListener*, active_function_info_listener, NULL) \ /* State for Relocatable. */ \ V(Relocatable*, relocatable_top, NULL) \ /* State for CodeEntry in profile-generator. */ \ V(CodeGenerator*, current_code_generator, NULL) \ V(bool, jump_target_compiling_deferred_code, false) \ V(DebugObjectCache*, string_stream_debug_object_cache, NULL) \ V(Object*, string_stream_current_security_token, NULL) \ /* TODO(isolates): Release this on destruction? */ \ V(int*, irregexp_interpreter_backtrack_stack_cache, NULL) \ /* Serializer state. */ \ V(ExternalReferenceTable*, external_reference_table, NULL) \ /* AstNode state. */ \ V(int, ast_node_id, 0) \ V(unsigned, ast_node_count, 0) \ /* SafeStackFrameIterator activations count. */ \ V(int, safe_stack_iterator_counter, 0) \ V(uint64_t, enabled_cpu_features, 0) \ V(CpuProfiler*, cpu_profiler, NULL) \ V(HeapProfiler*, heap_profiler, NULL) \ ISOLATE_DEBUGGER_INIT_LIST(V) class Isolate { // These forward declarations are required to make the friend declarations in // PerIsolateThreadData work on some older versions of gcc. class ThreadDataTable; class EntryStackItem; public: ~Isolate(); // A thread has a PerIsolateThreadData instance for each isolate that it has // entered. That instance is allocated when the isolate is initially entered // and reused on subsequent entries. class PerIsolateThreadData { public: PerIsolateThreadData(Isolate* isolate, ThreadId thread_id) : isolate_(isolate), thread_id_(thread_id), stack_limit_(0), thread_state_(NULL), #if !defined(__arm__) && defined(V8_TARGET_ARCH_ARM) || \ !defined(__mips__) && defined(V8_TARGET_ARCH_MIPS) simulator_(NULL), #endif next_(NULL), prev_(NULL) { } Isolate* isolate() const { return isolate_; } ThreadId thread_id() const { return thread_id_; } void set_stack_limit(uintptr_t value) { stack_limit_ = value; } uintptr_t stack_limit() const { return stack_limit_; } ThreadState* thread_state() const { return thread_state_; } void set_thread_state(ThreadState* value) { thread_state_ = value; } #if !defined(__arm__) && defined(V8_TARGET_ARCH_ARM) || \ !defined(__mips__) && defined(V8_TARGET_ARCH_MIPS) Simulator* simulator() const { return simulator_; } void set_simulator(Simulator* simulator) { simulator_ = simulator; } #endif bool Matches(Isolate* isolate, ThreadId thread_id) const { return isolate_ == isolate && thread_id_.Equals(thread_id); } private: Isolate* isolate_; ThreadId thread_id_; uintptr_t stack_limit_; ThreadState* thread_state_; #if !defined(__arm__) && defined(V8_TARGET_ARCH_ARM) || \ !defined(__mips__) && defined(V8_TARGET_ARCH_MIPS) Simulator* simulator_; #endif PerIsolateThreadData* next_; PerIsolateThreadData* prev_; friend class Isolate; friend class ThreadDataTable; friend class EntryStackItem; DISALLOW_COPY_AND_ASSIGN(PerIsolateThreadData); }; enum AddressId { #define DECLARE_ENUM(CamelName, hacker_name) k##CamelName##Address, FOR_EACH_ISOLATE_ADDRESS_NAME(DECLARE_ENUM) #undef C kIsolateAddressCount }; // Returns the PerIsolateThreadData for the current thread (or NULL if one is // not currently set). static PerIsolateThreadData* CurrentPerIsolateThreadData() { return reinterpret_cast<PerIsolateThreadData*>( Thread::GetThreadLocal(per_isolate_thread_data_key_)); } // Returns the isolate inside which the current thread is running. INLINE(static Isolate* Current()) { Isolate* isolate = reinterpret_cast<Isolate*>( Thread::GetExistingThreadLocal(isolate_key_)); ASSERT(isolate != NULL); return isolate; } INLINE(static Isolate* UncheckedCurrent()) { return reinterpret_cast<Isolate*>(Thread::GetThreadLocal(isolate_key_)); } // Usually called by Init(), but can be called early e.g. to allow // testing components that require logging but not the whole // isolate. // // Safe to call more than once. void InitializeLoggingAndCounters(); bool Init(Deserializer* des); bool IsInitialized() { return state_ == INITIALIZED; } // True if at least one thread Enter'ed this isolate. bool IsInUse() { return entry_stack_ != NULL; } // Destroys the non-default isolates. // Sets default isolate into "has_been_disposed" state rather then destroying, // for legacy API reasons. void TearDown(); bool IsDefaultIsolate() const { return this == default_isolate_; } // Ensures that process-wide resources and the default isolate have been // allocated. It is only necessary to call this method in rare cases, for // example if you are using V8 from within the body of a static initializer. // Safe to call multiple times. static void EnsureDefaultIsolate(); // Find the PerThread for this particular (isolate, thread) combination // If one does not yet exist, return null. PerIsolateThreadData* FindPerThreadDataForThisThread(); #ifdef ENABLE_DEBUGGER_SUPPORT // Get the debugger from the default isolate. Preinitializes the // default isolate if needed. static Debugger* GetDefaultIsolateDebugger(); #endif // Get the stack guard from the default isolate. Preinitializes the // default isolate if needed. static StackGuard* GetDefaultIsolateStackGuard(); // Returns the key used to store the pointer to the current isolate. // Used internally for V8 threads that do not execute JavaScript but still // are part of the domain of an isolate (like the context switcher). static Thread::LocalStorageKey isolate_key() { return isolate_key_; } // Returns the key used to store process-wide thread IDs. static Thread::LocalStorageKey thread_id_key() { return thread_id_key_; } static Thread::LocalStorageKey per_isolate_thread_data_key(); // If a client attempts to create a Locker without specifying an isolate, // we assume that the client is using legacy behavior. Set up the current // thread to be inside the implicit isolate (or fail a check if we have // switched to non-legacy behavior). static void EnterDefaultIsolate(); // Mutex for serializing access to break control structures. Mutex* break_access() { return break_access_; } // Mutex for serializing access to debugger. Mutex* debugger_access() { return debugger_access_; } Address get_address_from_id(AddressId id); // Access to top context (where the current function object was created). Context* context() { return thread_local_top_.context_; } void set_context(Context* context) { ASSERT(context == NULL || context->IsContext()); thread_local_top_.context_ = context; } Context** context_address() { return &thread_local_top_.context_; } SaveContext* save_context() {return thread_local_top_.save_context_; } void set_save_context(SaveContext* save) { thread_local_top_.save_context_ = save; } // Access to current thread id. ThreadId thread_id() { return thread_local_top_.thread_id_; } void set_thread_id(ThreadId id) { thread_local_top_.thread_id_ = id; } // Interface to pending exception. MaybeObject* pending_exception() { ASSERT(has_pending_exception()); return thread_local_top_.pending_exception_; } bool external_caught_exception() { return thread_local_top_.external_caught_exception_; } void set_external_caught_exception(bool value) { thread_local_top_.external_caught_exception_ = value; } void set_pending_exception(MaybeObject* exception) { thread_local_top_.pending_exception_ = exception; } void clear_pending_exception() { thread_local_top_.pending_exception_ = heap_.the_hole_value(); } MaybeObject** pending_exception_address() { return &thread_local_top_.pending_exception_; } bool has_pending_exception() { return !thread_local_top_.pending_exception_->IsTheHole(); } void clear_pending_message() { thread_local_top_.has_pending_message_ = false; thread_local_top_.pending_message_obj_ = heap_.the_hole_value(); thread_local_top_.pending_message_script_ = NULL; } v8::TryCatch* try_catch_handler() { return thread_local_top_.TryCatchHandler(); } Address try_catch_handler_address() { return thread_local_top_.try_catch_handler_address(); } bool* external_caught_exception_address() { return &thread_local_top_.external_caught_exception_; } v8::TryCatch* catcher() { return thread_local_top_.catcher_; } void set_catcher(v8::TryCatch* catcher) { thread_local_top_.catcher_ = catcher; } MaybeObject** scheduled_exception_address() { return &thread_local_top_.scheduled_exception_; } MaybeObject* scheduled_exception() { ASSERT(has_scheduled_exception()); return thread_local_top_.scheduled_exception_; } bool has_scheduled_exception() { return thread_local_top_.scheduled_exception_ != heap_.the_hole_value(); } void clear_scheduled_exception() { thread_local_top_.scheduled_exception_ = heap_.the_hole_value(); } bool IsExternallyCaught(); bool is_catchable_by_javascript(MaybeObject* exception) { return (exception != Failure::OutOfMemoryException()) && (exception != heap()->termination_exception()); } // JS execution stack (see frames.h). static Address c_entry_fp(ThreadLocalTop* thread) { return thread->c_entry_fp_; } static Address handler(ThreadLocalTop* thread) { return thread->handler_; } inline Address* c_entry_fp_address() { return &thread_local_top_.c_entry_fp_; } inline Address* handler_address() { return &thread_local_top_.handler_; } // Bottom JS entry (see StackTracer::Trace in log.cc). static Address js_entry_sp(ThreadLocalTop* thread) { return thread->js_entry_sp_; } inline Address* js_entry_sp_address() { return &thread_local_top_.js_entry_sp_; } // Generated code scratch locations. void* formal_count_address() { return &thread_local_top_.formal_count_; } // Returns the global object of the current context. It could be // a builtin object, or a JS global object. Handle<GlobalObject> global() { return Handle<GlobalObject>(context()->global()); } // Returns the global proxy object of the current context. Object* global_proxy() { return context()->global_proxy(); } Handle<JSBuiltinsObject> js_builtins_object() { return Handle<JSBuiltinsObject>(thread_local_top_.context_->builtins()); } static int ArchiveSpacePerThread() { return sizeof(ThreadLocalTop); } void FreeThreadResources() { thread_local_top_.Free(); } // This method is called by the api after operations that may throw // exceptions. If an exception was thrown and not handled by an external // handler the exception is scheduled to be rethrown when we return to running // JavaScript code. If an exception is scheduled true is returned. bool OptionalRescheduleException(bool is_bottom_call); class ExceptionScope { public: explicit ExceptionScope(Isolate* isolate) : // Scope currently can only be used for regular exceptions, not // failures like OOM or termination exception. isolate_(isolate), pending_exception_(isolate_->pending_exception()->ToObjectUnchecked()), catcher_(isolate_->catcher()) { } ~ExceptionScope() { isolate_->set_catcher(catcher_); isolate_->set_pending_exception(*pending_exception_); } private: Isolate* isolate_; Handle<Object> pending_exception_; v8::TryCatch* catcher_; }; void SetCaptureStackTraceForUncaughtExceptions( bool capture, int frame_limit, StackTrace::StackTraceOptions options); // Tells whether the current context has experienced an out of memory // exception. bool is_out_of_memory(); bool ignore_out_of_memory() { return thread_local_top_.ignore_out_of_memory_; } void set_ignore_out_of_memory(bool value) { thread_local_top_.ignore_out_of_memory_ = value; } void PrintCurrentStackTrace(FILE* out); void PrintStackTrace(FILE* out, char* thread_data); void PrintStack(StringStream* accumulator); void PrintStack(); Handle<String> StackTraceString(); Handle<JSArray> CaptureCurrentStackTrace( int frame_limit, StackTrace::StackTraceOptions options); void CaptureAndSetCurrentStackTraceFor(Handle<JSObject> error_object); // Returns if the top context may access the given global object. If // the result is false, the pending exception is guaranteed to be // set. bool MayNamedAccess(JSObject* receiver, Object* key, v8::AccessType type); bool MayIndexedAccess(JSObject* receiver, uint32_t index, v8::AccessType type); void SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback); void ReportFailedAccessCheck(JSObject* receiver, v8::AccessType type); // Exception throwing support. The caller should use the result // of Throw() as its return value. Failure* Throw(Object* exception, MessageLocation* location = NULL); // Re-throw an exception. This involves no error reporting since // error reporting was handled when the exception was thrown // originally. Failure* ReThrow(MaybeObject* exception, MessageLocation* location = NULL); void ScheduleThrow(Object* exception); void ReportPendingMessages(); Failure* ThrowIllegalOperation(); // Promote a scheduled exception to pending. Asserts has_scheduled_exception. Failure* PromoteScheduledException(); void DoThrow(Object* exception, MessageLocation* location); // Checks if exception should be reported and finds out if it's // caught externally. bool ShouldReportException(bool* can_be_caught_externally, bool catchable_by_javascript); // Attempts to compute the current source location, storing the // result in the target out parameter. void ComputeLocation(MessageLocation* target); // Override command line flag. void TraceException(bool flag); // Out of resource exception helpers. Failure* StackOverflow(); Failure* TerminateExecution(); // Administration void Iterate(ObjectVisitor* v); void Iterate(ObjectVisitor* v, ThreadLocalTop* t); char* Iterate(ObjectVisitor* v, char* t); void IterateThread(ThreadVisitor* v); void IterateThread(ThreadVisitor* v, char* t); // Returns the current global context. Handle<Context> global_context(); // Returns the global context of the calling JavaScript code. That // is, the global context of the top-most JavaScript frame. Handle<Context> GetCallingGlobalContext(); void RegisterTryCatchHandler(v8::TryCatch* that); void UnregisterTryCatchHandler(v8::TryCatch* that); char* ArchiveThread(char* to); char* RestoreThread(char* from); static const char* const kStackOverflowMessage; static const int kUC16AlphabetSize = 256; // See StringSearchBase. static const int kBMMaxShift = 250; // See StringSearchBase. // Accessors. #define GLOBAL_ACCESSOR(type, name, initialvalue) \ inline type name() const { \ ASSERT(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ return name##_; \ } \ inline void set_##name(type value) { \ ASSERT(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ name##_ = value; \ } ISOLATE_INIT_LIST(GLOBAL_ACCESSOR) #undef GLOBAL_ACCESSOR #define GLOBAL_ARRAY_ACCESSOR(type, name, length) \ inline type* name() { \ ASSERT(OFFSET_OF(Isolate, name##_) == name##_debug_offset_); \ return &(name##_)[0]; \ } ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_ACCESSOR) #undef GLOBAL_ARRAY_ACCESSOR #define GLOBAL_CONTEXT_FIELD_ACCESSOR(index, type, name) \ Handle<type> name() { \ return Handle<type>(context()->global_context()->name()); \ } GLOBAL_CONTEXT_FIELDS(GLOBAL_CONTEXT_FIELD_ACCESSOR) #undef GLOBAL_CONTEXT_FIELD_ACCESSOR Bootstrapper* bootstrapper() { return bootstrapper_; } Counters* counters() { // Call InitializeLoggingAndCounters() if logging is needed before // the isolate is fully initialized. ASSERT(counters_ != NULL); return counters_; } CodeRange* code_range() { return code_range_; } RuntimeProfiler* runtime_profiler() { return runtime_profiler_; } CompilationCache* compilation_cache() { return compilation_cache_; } Logger* logger() { // Call InitializeLoggingAndCounters() if logging is needed before // the isolate is fully initialized. ASSERT(logger_ != NULL); return logger_; } StackGuard* stack_guard() { return &stack_guard_; } Heap* heap() { return &heap_; } StatsTable* stats_table(); StubCache* stub_cache() { return stub_cache_; } DeoptimizerData* deoptimizer_data() { return deoptimizer_data_; } ThreadLocalTop* thread_local_top() { return &thread_local_top_; } TranscendentalCache* transcendental_cache() const { return transcendental_cache_; } MemoryAllocator* memory_allocator() { return memory_allocator_; } KeyedLookupCache* keyed_lookup_cache() { return keyed_lookup_cache_; } ContextSlotCache* context_slot_cache() { return context_slot_cache_; } DescriptorLookupCache* descriptor_lookup_cache() { return descriptor_lookup_cache_; } v8::ImplementationUtilities::HandleScopeData* handle_scope_data() { return &handle_scope_data_; } HandleScopeImplementer* handle_scope_implementer() { ASSERT(handle_scope_implementer_); return handle_scope_implementer_; } Zone* zone() { return &zone_; } UnicodeCache* unicode_cache() { return unicode_cache_; } InnerPointerToCodeCache* inner_pointer_to_code_cache() { return inner_pointer_to_code_cache_; } StringInputBuffer* write_input_buffer() { return write_input_buffer_; } GlobalHandles* global_handles() { return global_handles_; } ThreadManager* thread_manager() { return thread_manager_; } ContextSwitcher* context_switcher() { return context_switcher_; } void set_context_switcher(ContextSwitcher* switcher) { context_switcher_ = switcher; } StringTracker* string_tracker() { return string_tracker_; } unibrow::Mapping<unibrow::Ecma262UnCanonicalize>* jsregexp_uncanonicalize() { return &jsregexp_uncanonicalize_; } unibrow::Mapping<unibrow::CanonicalizationRange>* jsregexp_canonrange() { return &jsregexp_canonrange_; } StringInputBuffer* objects_string_compare_buffer_a() { return &objects_string_compare_buffer_a_; } StringInputBuffer* objects_string_compare_buffer_b() { return &objects_string_compare_buffer_b_; } StaticResource<StringInputBuffer>* objects_string_input_buffer() { return &objects_string_input_buffer_; } RuntimeState* runtime_state() { return &runtime_state_; } void set_fp_stubs_generated(bool value) { fp_stubs_generated_ = value; } bool fp_stubs_generated() { return fp_stubs_generated_; } StaticResource<SafeStringInputBuffer>* compiler_safe_string_input_buffer() { return &compiler_safe_string_input_buffer_; } Builtins* builtins() { return &builtins_; } void NotifyExtensionInstalled() { has_installed_extensions_ = true; } bool has_installed_extensions() { return has_installed_extensions_; } unibrow::Mapping<unibrow::Ecma262Canonicalize>* regexp_macro_assembler_canonicalize() { return ®exp_macro_assembler_canonicalize_; } RegExpStack* regexp_stack() { return regexp_stack_; } unibrow::Mapping<unibrow::Ecma262Canonicalize>* interp_canonicalize_mapping() { return &interp_canonicalize_mapping_; } void* PreallocatedStorageNew(size_t size); void PreallocatedStorageDelete(void* p); void PreallocatedStorageInit(size_t size); #ifdef ENABLE_DEBUGGER_SUPPORT Debugger* debugger() { if (!NoBarrier_Load(&debugger_initialized_)) InitializeDebugger(); return debugger_; } Debug* debug() { if (!NoBarrier_Load(&debugger_initialized_)) InitializeDebugger(); return debug_; } #endif inline bool IsDebuggerActive(); inline bool DebuggerHasBreakPoints(); #ifdef DEBUG HistogramInfo* heap_histograms() { return heap_histograms_; } JSObject::SpillInformation* js_spill_information() { return &js_spill_information_; } int* code_kind_statistics() { return code_kind_statistics_; } #endif #if defined(V8_TARGET_ARCH_ARM) && !defined(__arm__) || \ defined(V8_TARGET_ARCH_MIPS) && !defined(__mips__) bool simulator_initialized() { return simulator_initialized_; } void set_simulator_initialized(bool initialized) { simulator_initialized_ = initialized; } HashMap* simulator_i_cache() { return simulator_i_cache_; } void set_simulator_i_cache(HashMap* hash_map) { simulator_i_cache_ = hash_map; } Redirection* simulator_redirection() { return simulator_redirection_; } void set_simulator_redirection(Redirection* redirection) { simulator_redirection_ = redirection; } #endif Factory* factory() { return reinterpret_cast<Factory*>(this); } // SerializerDeserializer state. static const int kPartialSnapshotCacheCapacity = 1400; static const int kJSRegexpStaticOffsetsVectorSize = 50; Address external_callback() { return thread_local_top_.external_callback_; } void set_external_callback(Address callback) { thread_local_top_.external_callback_ = callback; } StateTag current_vm_state() { return thread_local_top_.current_vm_state_; } void SetCurrentVMState(StateTag state) { if (RuntimeProfiler::IsEnabled()) { // Make sure thread local top is initialized. ASSERT(thread_local_top_.isolate_ == this); StateTag current_state = thread_local_top_.current_vm_state_; if (current_state != JS && state == JS) { // Non-JS -> JS transition. RuntimeProfiler::IsolateEnteredJS(this); } else if (current_state == JS && state != JS) { // JS -> non-JS transition. ASSERT(RuntimeProfiler::IsSomeIsolateInJS()); RuntimeProfiler::IsolateExitedJS(this); } else { // Other types of state transitions are not interesting to the // runtime profiler, because they don't affect whether we're // in JS or not. ASSERT((current_state == JS) == (state == JS)); } } thread_local_top_.current_vm_state_ = state; } void SetData(void* data) { embedder_data_ = data; } void* GetData() { return embedder_data_; } LookupResult* top_lookup_result() { return thread_local_top_.top_lookup_result_; } void SetTopLookupResult(LookupResult* top) { thread_local_top_.top_lookup_result_ = top; } bool context_exit_happened() { return context_exit_happened_; } void set_context_exit_happened(bool context_exit_happened) { context_exit_happened_ = context_exit_happened; } double time_millis_since_init() { return OS::TimeCurrentMillis() - time_millis_at_init_; } DateCache* date_cache() { return date_cache_; } void set_date_cache(DateCache* date_cache) { if (date_cache != date_cache_) { delete date_cache_; } date_cache_ = date_cache; } private: Isolate(); friend struct GlobalState; friend struct InitializeGlobalState; // The per-process lock should be acquired before the ThreadDataTable is // modified. class ThreadDataTable { public: ThreadDataTable(); ~ThreadDataTable(); PerIsolateThreadData* Lookup(Isolate* isolate, ThreadId thread_id); void Insert(PerIsolateThreadData* data); void Remove(Isolate* isolate, ThreadId thread_id); void Remove(PerIsolateThreadData* data); void RemoveAllThreads(Isolate* isolate); private: PerIsolateThreadData* list_; }; // These items form a stack synchronously with threads Enter'ing and Exit'ing // the Isolate. The top of the stack points to a thread which is currently // running the Isolate. When the stack is empty, the Isolate is considered // not entered by any thread and can be Disposed. // If the same thread enters the Isolate more then once, the entry_count_ // is incremented rather then a new item pushed to the stack. class EntryStackItem { public: EntryStackItem(PerIsolateThreadData* previous_thread_data, Isolate* previous_isolate, EntryStackItem* previous_item) : entry_count(1), previous_thread_data(previous_thread_data), previous_isolate(previous_isolate), previous_item(previous_item) { } int entry_count; PerIsolateThreadData* previous_thread_data; Isolate* previous_isolate; EntryStackItem* previous_item; private: DISALLOW_COPY_AND_ASSIGN(EntryStackItem); }; // This mutex protects highest_thread_id_, thread_data_table_ and // default_isolate_. static Mutex* process_wide_mutex_; static Thread::LocalStorageKey per_isolate_thread_data_key_; static Thread::LocalStorageKey isolate_key_; static Thread::LocalStorageKey thread_id_key_; static Isolate* default_isolate_; static ThreadDataTable* thread_data_table_; void Deinit(); static void SetIsolateThreadLocals(Isolate* isolate, PerIsolateThreadData* data); enum State { UNINITIALIZED, // Some components may not have been allocated. INITIALIZED // All components are fully initialized. }; State state_; EntryStackItem* entry_stack_; // Allocate and insert PerIsolateThreadData into the ThreadDataTable // (regardless of whether such data already exists). PerIsolateThreadData* AllocatePerIsolateThreadData(ThreadId thread_id); // Find the PerThread for this particular (isolate, thread) combination. // If one does not yet exist, allocate a new one. PerIsolateThreadData* FindOrAllocatePerThreadDataForThisThread(); // PreInits and returns a default isolate. Needed when a new thread tries // to create a Locker for the first time (the lock itself is in the isolate). static Isolate* GetDefaultIsolateForLocking(); // Initializes the current thread to run this Isolate. // Not thread-safe. Multiple threads should not Enter/Exit the same isolate // at the same time, this should be prevented using external locking. void Enter(); // Exits the current thread. The previosuly entered Isolate is restored // for the thread. // Not thread-safe. Multiple threads should not Enter/Exit the same isolate // at the same time, this should be prevented using external locking. void Exit(); void PreallocatedMemoryThreadStart(); void PreallocatedMemoryThreadStop(); void InitializeThreadLocal(); void PrintStackTrace(FILE* out, ThreadLocalTop* thread); void MarkCompactPrologue(bool is_compacting, ThreadLocalTop* archived_thread_data); void MarkCompactEpilogue(bool is_compacting, ThreadLocalTop* archived_thread_data); void FillCache(); void PropagatePendingExceptionToExternalTryCatch(); void InitializeDebugger(); // Traverse prototype chain to find out whether the object is derived from // the Error object. bool IsErrorObject(Handle<Object> obj); int stack_trace_nesting_level_; StringStream* incomplete_message_; // The preallocated memory thread singleton. PreallocatedMemoryThread* preallocated_memory_thread_; Address isolate_addresses_[kIsolateAddressCount + 1]; // NOLINT NoAllocationStringAllocator* preallocated_message_space_; Bootstrapper* bootstrapper_; RuntimeProfiler* runtime_profiler_; CompilationCache* compilation_cache_; Counters* counters_; CodeRange* code_range_; Mutex* break_access_; Atomic32 debugger_initialized_; Mutex* debugger_access_; Heap heap_; Logger* logger_; StackGuard stack_guard_; StatsTable* stats_table_; StubCache* stub_cache_; DeoptimizerData* deoptimizer_data_; ThreadLocalTop thread_local_top_; bool capture_stack_trace_for_uncaught_exceptions_; int stack_trace_for_uncaught_exceptions_frame_limit_; StackTrace::StackTraceOptions stack_trace_for_uncaught_exceptions_options_; TranscendentalCache* transcendental_cache_; MemoryAllocator* memory_allocator_; KeyedLookupCache* keyed_lookup_cache_; ContextSlotCache* context_slot_cache_; DescriptorLookupCache* descriptor_lookup_cache_; v8::ImplementationUtilities::HandleScopeData handle_scope_data_; HandleScopeImplementer* handle_scope_implementer_; UnicodeCache* unicode_cache_; Zone zone_; PreallocatedStorage in_use_list_; PreallocatedStorage free_list_; bool preallocated_storage_preallocated_; InnerPointerToCodeCache* inner_pointer_to_code_cache_; StringInputBuffer* write_input_buffer_; GlobalHandles* global_handles_; ContextSwitcher* context_switcher_; ThreadManager* thread_manager_; RuntimeState runtime_state_; bool fp_stubs_generated_; StaticResource<SafeStringInputBuffer> compiler_safe_string_input_buffer_; Builtins builtins_; bool has_installed_extensions_; StringTracker* string_tracker_; unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize_; unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange_; StringInputBuffer objects_string_compare_buffer_a_; StringInputBuffer objects_string_compare_buffer_b_; StaticResource<StringInputBuffer> objects_string_input_buffer_; unibrow::Mapping<unibrow::Ecma262Canonicalize> regexp_macro_assembler_canonicalize_; RegExpStack* regexp_stack_; DateCache* date_cache_; unibrow::Mapping<unibrow::Ecma262Canonicalize> interp_canonicalize_mapping_; void* embedder_data_; // The garbage collector should be a little more aggressive when it knows // that a context was recently exited. bool context_exit_happened_; // Time stamp at initialization. double time_millis_at_init_; #if defined(V8_TARGET_ARCH_ARM) && !defined(__arm__) || \ defined(V8_TARGET_ARCH_MIPS) && !defined(__mips__) bool simulator_initialized_; HashMap* simulator_i_cache_; Redirection* simulator_redirection_; #endif #ifdef DEBUG // A static array of histogram info for each type. HistogramInfo heap_histograms_[LAST_TYPE + 1]; JSObject::SpillInformation js_spill_information_; int code_kind_statistics_[Code::NUMBER_OF_KINDS]; #endif #ifdef ENABLE_DEBUGGER_SUPPORT Debugger* debugger_; Debug* debug_; #endif #define GLOBAL_BACKING_STORE(type, name, initialvalue) \ type name##_; ISOLATE_INIT_LIST(GLOBAL_BACKING_STORE) #undef GLOBAL_BACKING_STORE #define GLOBAL_ARRAY_BACKING_STORE(type, name, length) \ type name##_[length]; ISOLATE_INIT_ARRAY_LIST(GLOBAL_ARRAY_BACKING_STORE) #undef GLOBAL_ARRAY_BACKING_STORE #ifdef DEBUG // This class is huge and has a number of fields controlled by // preprocessor defines. Make sure the offsets of these fields agree // between compilation units. #define ISOLATE_FIELD_OFFSET(type, name, ignored) \ static const intptr_t name##_debug_offset_; ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET) ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET) #undef ISOLATE_FIELD_OFFSET #endif friend class ExecutionAccess; friend class IsolateInitializer; friend class ThreadManager; friend class Simulator; friend class StackGuard; friend class ThreadId; friend class TestMemoryAllocatorScope; friend class v8::Isolate; friend class v8::Locker; friend class v8::Unlocker; DISALLOW_COPY_AND_ASSIGN(Isolate); }; // If the GCC version is 4.1.x or 4.2.x an additional field is added to the // class as a work around for a bug in the generated code found with these // versions of GCC. See V8 issue 122 for details. class SaveContext BASE_EMBEDDED { public: inline explicit SaveContext(Isolate* isolate); ~SaveContext() { if (context_.is_null()) { Isolate* isolate = Isolate::Current(); isolate->set_context(NULL); isolate->set_save_context(prev_); } else { Isolate* isolate = context_->GetIsolate(); isolate->set_context(*context_); isolate->set_save_context(prev_); } } Handle<Context> context() { return context_; } SaveContext* prev() { return prev_; } // Returns true if this save context is below a given JavaScript frame. bool IsBelowFrame(JavaScriptFrame* frame) { return (c_entry_fp_ == 0) || (c_entry_fp_ > frame->sp()); } private: Handle<Context> context_; #if __GNUC_VERSION__ >= 40100 && __GNUC_VERSION__ < 40300 Handle<Context> dummy_; #endif SaveContext* prev_; Address c_entry_fp_; }; class AssertNoContextChange BASE_EMBEDDED { #ifdef DEBUG public: AssertNoContextChange() : scope_(Isolate::Current()), context_(Isolate::Current()->context(), Isolate::Current()) { } ~AssertNoContextChange() { ASSERT(Isolate::Current()->context() == *context_); } private: HandleScope scope_; Handle<Context> context_; #else public: AssertNoContextChange() { } #endif }; class ExecutionAccess BASE_EMBEDDED { public: explicit ExecutionAccess(Isolate* isolate) : isolate_(isolate) { Lock(isolate); } ~ExecutionAccess() { Unlock(isolate_); } static void Lock(Isolate* isolate) { isolate->break_access_->Lock(); } static void Unlock(Isolate* isolate) { isolate->break_access_->Unlock(); } static bool TryLock(Isolate* isolate) { return isolate->break_access_->TryLock(); } private: Isolate* isolate_; }; // Support for checking for stack-overflows in C++ code. class StackLimitCheck BASE_EMBEDDED { public: explicit StackLimitCheck(Isolate* isolate) : isolate_(isolate) { } bool HasOverflowed() const { StackGuard* stack_guard = isolate_->stack_guard(); // Stack has overflowed in C++ code only if stack pointer exceeds the C++ // stack guard and the limits are not set to interrupt values. // TODO(214): Stack overflows are ignored if a interrupt is pending. This // code should probably always use the initial C++ limit. return (reinterpret_cast<uintptr_t>(this) < stack_guard->climit()) && stack_guard->IsStackOverflow(); } private: Isolate* isolate_; }; // Support for temporarily postponing interrupts. When the outermost // postpone scope is left the interrupts will be re-enabled and any // interrupts that occurred while in the scope will be taken into // account. class PostponeInterruptsScope BASE_EMBEDDED { public: explicit PostponeInterruptsScope(Isolate* isolate) : stack_guard_(isolate->stack_guard()) { stack_guard_->thread_local_.postpone_interrupts_nesting_++; stack_guard_->DisableInterrupts(); } ~PostponeInterruptsScope() { if (--stack_guard_->thread_local_.postpone_interrupts_nesting_ == 0) { stack_guard_->EnableInterrupts(); } } private: StackGuard* stack_guard_; }; // Temporary macros for accessing current isolate and its subobjects. // They provide better readability, especially when used a lot in the code. #define HEAP (v8::internal::Isolate::Current()->heap()) #define FACTORY (v8::internal::Isolate::Current()->factory()) #define ISOLATE (v8::internal::Isolate::Current()) #define ZONE (v8::internal::Isolate::Current()->zone()) #define LOGGER (v8::internal::Isolate::Current()->logger()) // Tells whether the global context is marked with out of memory. inline bool Context::has_out_of_memory() { return global_context()->out_of_memory()->IsTrue(); } // Mark the global context with out of memory. inline void Context::mark_out_of_memory() { global_context()->set_out_of_memory(HEAP->true_value()); } } } // namespace v8::internal #endif // V8_ISOLATE_H_