// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_MIPS) // Note on Mips implementation: // // The result_register() for mips is the 'v0' register, which is defined // by the ABI to contain function return values. However, the first // parameter to a function is defined to be 'a0'. So there are many // places where we have to move a previous result in v0 to a0 for the // next call: mov(a0, v0). This is not needed on the other architectures. #include "code-stubs.h" #include "codegen.h" #include "compiler.h" #include "debug.h" #include "full-codegen.h" #include "isolate-inl.h" #include "parser.h" #include "scopes.h" #include "stub-cache.h" #include "mips/code-stubs-mips.h" #include "mips/macro-assembler-mips.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) // A patch site is a location in the code which it is possible to patch. This // class has a number of methods to emit the code which is patchable and the // method EmitPatchInfo to record a marker back to the patchable code. This // marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy // (raw 16 bit immediate value is used) is the delta from the pc to the first // instruction of the patchable code. // The marker instruction is effectively a NOP (dest is zero_reg) and will // never be emitted by normal code. class JumpPatchSite BASE_EMBEDDED { public: explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { #ifdef DEBUG info_emitted_ = false; #endif } ~JumpPatchSite() { ASSERT(patch_site_.is_bound() == info_emitted_); } // When initially emitting this ensure that a jump is always generated to skip // the inlined smi code. void EmitJumpIfNotSmi(Register reg, Label* target) { ASSERT(!patch_site_.is_bound() && !info_emitted_); Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); __ bind(&patch_site_); __ andi(at, reg, 0); // Always taken before patched. __ Branch(target, eq, at, Operand(zero_reg)); } // When initially emitting this ensure that a jump is never generated to skip // the inlined smi code. void EmitJumpIfSmi(Register reg, Label* target) { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); ASSERT(!patch_site_.is_bound() && !info_emitted_); __ bind(&patch_site_); __ andi(at, reg, 0); // Never taken before patched. __ Branch(target, ne, at, Operand(zero_reg)); } void EmitPatchInfo() { if (patch_site_.is_bound()) { int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_); Register reg = Register::from_code(delta_to_patch_site / kImm16Mask); __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask); #ifdef DEBUG info_emitted_ = true; #endif } else { __ nop(); // Signals no inlined code. } } private: MacroAssembler* masm_; Label patch_site_; #ifdef DEBUG bool info_emitted_; #endif }; // TODO(jkummerow): Obsolete as soon as x64 is updated. Remove. int FullCodeGenerator::self_optimization_header_size() { UNREACHABLE(); return 10 * Instruction::kInstrSize; } // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right. The actual // argument count matches the formal parameter count expected by the // function. // // The live registers are: // o a1: the JS function object being called (i.e. ourselves) // o cp: our context // o fp: our caller's frame pointer // o sp: stack pointer // o ra: return address // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-mips.h for its layout. void FullCodeGenerator::Generate() { CompilationInfo* info = info_; handler_table_ = isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED); profiling_counter_ = isolate()->factory()->NewJSGlobalPropertyCell( Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget))); SetFunctionPosition(function()); Comment cmnt(masm_, "[ function compiled by full code generator"); #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { __ stop("stop-at"); } #endif // Strict mode functions and builtins need to replace the receiver // with undefined when called as functions (without an explicit // receiver object). t1 is zero for method calls and non-zero for // function calls. if (!info->is_classic_mode() || info->is_native()) { Label ok; __ Branch(&ok, eq, t1, Operand(zero_reg)); int receiver_offset = info->scope()->num_parameters() * kPointerSize; __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ sw(a2, MemOperand(sp, receiver_offset)); __ bind(&ok); } // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm_, StackFrame::MANUAL); int locals_count = info->scope()->num_stack_slots(); __ Push(ra, fp, cp, a1); if (locals_count > 0) { // Load undefined value here, so the value is ready for the loop // below. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); } // Adjust fp to point to caller's fp. __ Addu(fp, sp, Operand(2 * kPointerSize)); { Comment cmnt(masm_, "[ Allocate locals"); for (int i = 0; i < locals_count; i++) { __ push(at); } } bool function_in_register = true; // Possibly allocate a local context. int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment cmnt(masm_, "[ Allocate local context"); // Argument to NewContext is the function, which is in a1. __ push(a1); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewFunctionContext, 1); } function_in_register = false; // Context is returned in both v0 and cp. It replaces the context // passed to us. It's saved in the stack and kept live in cp. __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Copy any necessary parameters into the context. int num_parameters = info->scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* var = scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ lw(a0, MemOperand(fp, parameter_offset)); // Store it in the context. MemOperand target = ContextOperand(cp, var->index()); __ sw(a0, target); // Update the write barrier. __ RecordWriteContextSlot( cp, target.offset(), a0, a3, kRAHasBeenSaved, kDontSaveFPRegs); } } } Variable* arguments = scope()->arguments(); if (arguments != NULL) { // Function uses arguments object. Comment cmnt(masm_, "[ Allocate arguments object"); if (!function_in_register) { // Load this again, if it's used by the local context below. __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } else { __ mov(a3, a1); } // Receiver is just before the parameters on the caller's stack. int num_parameters = info->scope()->num_parameters(); int offset = num_parameters * kPointerSize; __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset + offset)); __ li(a1, Operand(Smi::FromInt(num_parameters))); __ Push(a3, a2, a1); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiever and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub::Type type; if (!is_classic_mode()) { type = ArgumentsAccessStub::NEW_STRICT; } else if (function()->has_duplicate_parameters()) { type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW; } else { type = ArgumentsAccessStub::NEW_NON_STRICT_FAST; } ArgumentsAccessStub stub(type); __ CallStub(&stub); SetVar(arguments, v0, a1, a2); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } // Visit the declarations and body unless there is an illegal // redeclaration. if (scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ Declarations"); scope()->VisitIllegalRedeclaration(this); } else { PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS); { Comment cmnt(masm_, "[ Declarations"); // For named function expressions, declare the function name as a // constant. if (scope()->is_function_scope() && scope()->function() != NULL) { VariableProxy* proxy = scope()->function(); ASSERT(proxy->var()->mode() == CONST || proxy->var()->mode() == CONST_HARMONY); ASSERT(proxy->var()->location() != Variable::UNALLOCATED); EmitDeclaration(proxy, proxy->var()->mode(), NULL); } VisitDeclarations(scope()->declarations()); } { Comment cmnt(masm_, "[ Stack check"); PrepareForBailoutForId(AstNode::kDeclarationsId, NO_REGISTERS); Label ok; __ LoadRoot(t0, Heap::kStackLimitRootIndex); __ Branch(&ok, hs, sp, Operand(t0)); StackCheckStub stub; __ CallStub(&stub); __ bind(&ok); } { Comment cmnt(masm_, "[ Body"); ASSERT(loop_depth() == 0); VisitStatements(function()->body()); ASSERT(loop_depth() == 0); } } // Always emit a 'return undefined' in case control fell off the end of // the body. { Comment cmnt(masm_, "[ return <undefined>;"); __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); } EmitReturnSequence(); } void FullCodeGenerator::ClearAccumulator() { ASSERT(Smi::FromInt(0) == 0); __ mov(v0, zero_reg); } void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { __ li(a2, Operand(profiling_counter_)); __ lw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset)); __ Subu(a3, a3, Operand(Smi::FromInt(delta))); __ sw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset)); } void FullCodeGenerator::EmitProfilingCounterReset() { int reset_value = FLAG_interrupt_budget; if (info_->ShouldSelfOptimize() && !FLAG_retry_self_opt) { // Self-optimization is a one-off thing: if it fails, don't try again. reset_value = Smi::kMaxValue; } if (isolate()->IsDebuggerActive()) { // Detect debug break requests as soon as possible. reset_value = 10; } __ li(a2, Operand(profiling_counter_)); __ li(a3, Operand(Smi::FromInt(reset_value))); __ sw(a3, FieldMemOperand(a2, JSGlobalPropertyCell::kValueOffset)); } static const int kMaxBackEdgeWeight = 127; static const int kBackEdgeDistanceDivisor = 142; void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt, Label* back_edge_target) { // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need // to make sure it is constant. Branch may emit a skip-or-jump sequence // instead of the normal Branch. It seems that the "skip" part of that // sequence is about as long as this Branch would be so it is safe to ignore // that. Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); Comment cmnt(masm_, "[ Stack check"); Label ok; if (FLAG_count_based_interrupts) { int weight = 1; if (FLAG_weighted_back_edges) { ASSERT(back_edge_target->is_bound()); int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target); weight = Min(kMaxBackEdgeWeight, Max(1, distance / kBackEdgeDistanceDivisor)); } EmitProfilingCounterDecrement(weight); __ slt(at, a3, zero_reg); __ beq(at, zero_reg, &ok); // CallStub will emit a li t9 first, so it is safe to use the delay slot. InterruptStub stub; __ CallStub(&stub); } else { __ LoadRoot(t0, Heap::kStackLimitRootIndex); __ sltu(at, sp, t0); __ beq(at, zero_reg, &ok); // CallStub will emit a li t9 first, so it is safe to use the delay slot. StackCheckStub stub; __ CallStub(&stub); } // Record a mapping of this PC offset to the OSR id. This is used to find // the AST id from the unoptimized code in order to use it as a key into // the deoptimization input data found in the optimized code. RecordStackCheck(stmt->OsrEntryId()); if (FLAG_count_based_interrupts) { EmitProfilingCounterReset(); } __ bind(&ok); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); // Record a mapping of the OSR id to this PC. This is used if the OSR // entry becomes the target of a bailout. We don't expect it to be, but // we want it to work if it is. PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ Branch(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { // Push the return value on the stack as the parameter. // Runtime::TraceExit returns its parameter in v0. __ push(v0); __ CallRuntime(Runtime::kTraceExit, 1); } if (FLAG_interrupt_at_exit || FLAG_self_optimization) { // Pretend that the exit is a backwards jump to the entry. int weight = 1; if (info_->ShouldSelfOptimize()) { weight = FLAG_interrupt_budget / FLAG_self_opt_count; } else if (FLAG_weighted_back_edges) { int distance = masm_->pc_offset(); weight = Min(kMaxBackEdgeWeight, Max(1, distance / kBackEdgeDistanceDivisor)); } EmitProfilingCounterDecrement(weight); Label ok; __ Branch(&ok, ge, a3, Operand(zero_reg)); __ push(v0); if (info_->ShouldSelfOptimize() && FLAG_direct_self_opt) { __ lw(a2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ push(a2); __ CallRuntime(Runtime::kOptimizeFunctionOnNextCall, 1); } else { InterruptStub stub; __ CallStub(&stub); } __ pop(v0); EmitProfilingCounterReset(); __ bind(&ok); } #ifdef DEBUG // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); #endif // Make sure that the constant pool is not emitted inside of the return // sequence. { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); // Here we use masm_-> instead of the __ macro to avoid the code coverage // tool from instrumenting as we rely on the code size here. int32_t sp_delta = (info_->scope()->num_parameters() + 1) * kPointerSize; CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); __ RecordJSReturn(); masm_->mov(sp, fp); masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit())); masm_->Addu(sp, sp, Operand(sp_delta)); masm_->Jump(ra); } #ifdef DEBUG // Check that the size of the code used for returning is large enough // for the debugger's requirements. ASSERT(Assembler::kJSReturnSequenceInstructions <= masm_->InstructionsGeneratedSince(&check_exit_codesize)); #endif } } void FullCodeGenerator::EffectContext::Plug(Variable* var) const { ASSERT(var->IsStackAllocated() || var->IsContextSlot()); } void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const { ASSERT(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); } void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { ASSERT(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); __ push(result_register()); } void FullCodeGenerator::TestContext::Plug(Variable* var) const { // For simplicity we always test the accumulator register. codegen()->GetVar(result_register(), var); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); __ push(result_register()); } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (index == Heap::kUndefinedValueRootIndex || index == Heap::kNullValueRootIndex || index == Heap::kFalseValueRootIndex) { if (false_label_ != fall_through_) __ Branch(false_label_); } else if (index == Heap::kTrueValueRootIndex) { if (true_label_ != fall_through_) __ Branch(true_label_); } else { __ LoadRoot(result_register(), index); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle<Object> lit) const { __ li(result_register(), Operand(lit)); } void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { // Immediates cannot be pushed directly. __ li(result_register(), Operand(lit)); __ push(result_register()); } void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals. if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { if (false_label_ != fall_through_) __ Branch(false_label_); } else if (lit->IsTrue() || lit->IsJSObject()) { if (true_label_ != fall_through_) __ Branch(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { if (false_label_ != fall_through_) __ Branch(false_label_); } else { if (true_label_ != fall_through_) __ Branch(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { if (false_label_ != fall_through_) __ Branch(false_label_); } else { if (true_label_ != fall_through_) __ Branch(true_label_); } } else { // For simplicity we always test the accumulator register. __ li(result_register(), Operand(lit)); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); __ Drop(count); } void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( int count, Register reg) const { ASSERT(count > 0); __ Drop(count); __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); if (count > 1) __ Drop(count - 1); __ sw(reg, MemOperand(sp, 0)); } void FullCodeGenerator::TestContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); // For simplicity we always test the accumulator register. __ Drop(count); __ Move(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { ASSERT(materialize_true == materialize_false); __ bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); __ Branch(&done); __ bind(materialize_false); __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); __ bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ LoadRoot(at, Heap::kTrueValueRootIndex); __ push(at); __ Branch(&done); __ bind(materialize_false); __ LoadRoot(at, Heap::kFalseValueRootIndex); __ push(at); __ bind(&done); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { ASSERT(materialize_true == true_label_); ASSERT(materialize_false == false_label_); } void FullCodeGenerator::EffectContext::Plug(bool flag) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(result_register(), value_root_index); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(at, value_root_index); __ push(at); } void FullCodeGenerator::TestContext::Plug(bool flag) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (flag) { if (true_label_ != fall_through_) __ Branch(true_label_); } else { if (false_label_ != fall_through_) __ Branch(false_label_); } } void FullCodeGenerator::DoTest(Expression* condition, Label* if_true, Label* if_false, Label* fall_through) { if (CpuFeatures::IsSupported(FPU)) { ToBooleanStub stub(result_register()); __ CallStub(&stub); __ mov(at, zero_reg); } else { // Call the runtime to find the boolean value of the source and then // translate it into control flow to the pair of labels. __ push(result_register()); __ CallRuntime(Runtime::kToBool, 1); __ LoadRoot(at, Heap::kFalseValueRootIndex); } Split(ne, v0, Operand(at), if_true, if_false, fall_through); } void FullCodeGenerator::Split(Condition cc, Register lhs, const Operand& rhs, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ Branch(if_true, cc, lhs, rhs); } else if (if_true == fall_through) { __ Branch(if_false, NegateCondition(cc), lhs, rhs); } else { __ Branch(if_true, cc, lhs, rhs); __ Branch(if_false); } } MemOperand FullCodeGenerator::StackOperand(Variable* var) { ASSERT(var->IsStackAllocated()); // Offset is negative because higher indexes are at lower addresses. int offset = -var->index() * kPointerSize; // Adjust by a (parameter or local) base offset. if (var->IsParameter()) { offset += (info_->scope()->num_parameters() + 1) * kPointerSize; } else { offset += JavaScriptFrameConstants::kLocal0Offset; } return MemOperand(fp, offset); } MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { ASSERT(var->IsContextSlot() || var->IsStackAllocated()); if (var->IsContextSlot()) { int context_chain_length = scope()->ContextChainLength(var->scope()); __ LoadContext(scratch, context_chain_length); return ContextOperand(scratch, var->index()); } else { return StackOperand(var); } } void FullCodeGenerator::GetVar(Register dest, Variable* var) { // Use destination as scratch. MemOperand location = VarOperand(var, dest); __ lw(dest, location); } void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0, Register scratch1) { ASSERT(var->IsContextSlot() || var->IsStackAllocated()); ASSERT(!scratch0.is(src)); ASSERT(!scratch0.is(scratch1)); ASSERT(!scratch1.is(src)); MemOperand location = VarOperand(var, scratch0); __ sw(src, location); // Emit the write barrier code if the location is in the heap. if (var->IsContextSlot()) { __ RecordWriteContextSlot(scratch0, location.offset(), src, scratch1, kRAHasBeenSaved, kDontSaveFPRegs); } } void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, bool should_normalize, Label* if_true, Label* if_false) { // Only prepare for bailouts before splits if we're in a test // context. Otherwise, we let the Visit function deal with the // preparation to avoid preparing with the same AST id twice. if (!context()->IsTest() || !info_->IsOptimizable()) return; Label skip; if (should_normalize) __ Branch(&skip); PrepareForBailout(expr, TOS_REG); if (should_normalize) { __ LoadRoot(t0, Heap::kTrueValueRootIndex); Split(eq, a0, Operand(t0), if_true, if_false, NULL); __ bind(&skip); } } void FullCodeGenerator::EmitDeclaration(VariableProxy* proxy, VariableMode mode, FunctionLiteral* function) { // If it was not possible to allocate the variable at compile time, we // need to "declare" it at runtime to make sure it actually exists in the // local context. Variable* variable = proxy->var(); bool binding_needs_init = (function == NULL) && (mode == CONST || mode == CONST_HARMONY || mode == LET); switch (variable->location()) { case Variable::UNALLOCATED: ++global_count_; break; case Variable::PARAMETER: case Variable::LOCAL: if (function != NULL) { Comment cmnt(masm_, "[ Declaration"); VisitForAccumulatorValue(function); __ sw(result_register(), StackOperand(variable)); } else if (binding_needs_init) { Comment cmnt(masm_, "[ Declaration"); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ sw(t0, StackOperand(variable)); } break; case Variable::CONTEXT: // The variable in the decl always resides in the current function // context. ASSERT_EQ(0, scope()->ContextChainLength(variable->scope())); if (FLAG_debug_code) { // Check that we're not inside a with or catch context. __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset)); __ LoadRoot(t0, Heap::kWithContextMapRootIndex); __ Check(ne, "Declaration in with context.", a1, Operand(t0)); __ LoadRoot(t0, Heap::kCatchContextMapRootIndex); __ Check(ne, "Declaration in catch context.", a1, Operand(t0)); } if (function != NULL) { Comment cmnt(masm_, "[ Declaration"); VisitForAccumulatorValue(function); __ sw(result_register(), ContextOperand(cp, variable->index())); int offset = Context::SlotOffset(variable->index()); // We know that we have written a function, which is not a smi. __ RecordWriteContextSlot(cp, offset, result_register(), a2, kRAHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(proxy->id(), NO_REGISTERS); } else if (binding_needs_init) { Comment cmnt(masm_, "[ Declaration"); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ sw(at, ContextOperand(cp, variable->index())); // No write barrier since the_hole_value is in old space. PrepareForBailoutForId(proxy->id(), NO_REGISTERS); } break; case Variable::LOOKUP: { Comment cmnt(masm_, "[ Declaration"); __ li(a2, Operand(variable->name())); // Declaration nodes are always introduced in one of four modes. ASSERT(mode == VAR || mode == CONST || mode == CONST_HARMONY || mode == LET); PropertyAttributes attr = (mode == CONST || mode == CONST_HARMONY) ? READ_ONLY : NONE; __ li(a1, Operand(Smi::FromInt(attr))); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (function != NULL) { __ Push(cp, a2, a1); // Push initial value for function declaration. VisitForStackValue(function); } else if (binding_needs_init) { __ LoadRoot(a0, Heap::kTheHoleValueRootIndex); __ Push(cp, a2, a1, a0); } else { ASSERT(Smi::FromInt(0) == 0); __ mov(a0, zero_reg); // Smi::FromInt(0) indicates no initial value. __ Push(cp, a2, a1, a0); } __ CallRuntime(Runtime::kDeclareContextSlot, 4); break; } } } void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { // Call the runtime to declare the globals. // The context is the first argument. __ li(a1, Operand(pairs)); __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags()))); __ Push(cp, a1, a0); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); ZoneList<CaseClause*>* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); clause->body_target()->Unuse(); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); __ mov(a0, result_register()); // CompareStub requires args in a0, a1. // Perform the comparison as if via '==='. __ lw(a1, MemOperand(sp, 0)); // Switch value. bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ or_(a2, a1, a0); patch_site.EmitJumpIfNotSmi(a2, &slow_case); __ Branch(&next_test, ne, a1, Operand(a0)); __ Drop(1); // Switch value is no longer needed. __ Branch(clause->body_target()); __ bind(&slow_case); } // Record position before stub call for type feedback. SetSourcePosition(clause->position()); Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT); CallIC(ic, RelocInfo::CODE_TARGET, clause->CompareId()); patch_site.EmitPatchInfo(); __ Branch(&next_test, ne, v0, Operand(zero_reg)); __ Drop(1); // Switch value is no longer needed. __ Branch(clause->body_target()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); __ Drop(1); // Switch value is no longer needed. if (default_clause == NULL) { __ Branch(nested_statement.break_label()); } else { __ Branch(default_clause->body_target()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()); PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS); VisitStatements(clause->statements()); } __ bind(nested_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt); Label loop, exit; ForIn loop_statement(this, stmt); increment_loop_depth(); // Get the object to enumerate over. Both SpiderMonkey and JSC // ignore null and undefined in contrast to the specification; see // ECMA-262 section 12.6.4. VisitForAccumulatorValue(stmt->enumerable()); __ mov(a0, result_register()); // Result as param to InvokeBuiltin below. __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&exit, eq, a0, Operand(at)); Register null_value = t1; __ LoadRoot(null_value, Heap::kNullValueRootIndex); __ Branch(&exit, eq, a0, Operand(null_value)); PrepareForBailoutForId(stmt->PrepareId(), TOS_REG); __ mov(a0, v0); // Convert the object to a JS object. Label convert, done_convert; __ JumpIfSmi(a0, &convert); __ GetObjectType(a0, a1, a1); __ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); __ bind(&convert); __ push(a0); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ mov(a0, v0); __ bind(&done_convert); __ push(a0); // Check for proxies. Label call_runtime; STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ GetObjectType(a0, a1, a1); __ Branch(&call_runtime, le, a1, Operand(LAST_JS_PROXY_TYPE)); // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. __ CheckEnumCache(null_value, &call_runtime); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. Label use_cache; __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset)); __ Branch(&use_cache); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(a0); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. Label fixed_array; __ mov(a2, v0); __ lw(a1, FieldMemOperand(a2, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kMetaMapRootIndex); __ Branch(&fixed_array, ne, a1, Operand(at)); // We got a map in register v0. Get the enumeration cache from it. __ bind(&use_cache); __ LoadInstanceDescriptors(v0, a1); __ lw(a1, FieldMemOperand(a1, DescriptorArray::kEnumerationIndexOffset)); __ lw(a2, FieldMemOperand(a1, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Set up the four remaining stack slots. __ push(v0); // Map. __ lw(a1, FieldMemOperand(a2, FixedArray::kLengthOffset)); __ li(a0, Operand(Smi::FromInt(0))); // Push enumeration cache, enumeration cache length (as smi) and zero. __ Push(a2, a1, a0); __ jmp(&loop); // We got a fixed array in register v0. Iterate through that. Label non_proxy; __ bind(&fixed_array); Handle<JSGlobalPropertyCell> cell = isolate()->factory()->NewJSGlobalPropertyCell( Handle<Object>( Smi::FromInt(TypeFeedbackCells::kForInFastCaseMarker))); RecordTypeFeedbackCell(stmt->PrepareId(), cell); __ LoadHeapObject(a1, cell); __ li(a2, Operand(Smi::FromInt(TypeFeedbackCells::kForInSlowCaseMarker))); __ sw(a2, FieldMemOperand(a1, JSGlobalPropertyCell::kValueOffset)); __ li(a1, Operand(Smi::FromInt(1))); // Smi indicates slow check __ lw(a2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ GetObjectType(a2, a3, a3); __ Branch(&non_proxy, gt, a3, Operand(LAST_JS_PROXY_TYPE)); __ li(a1, Operand(Smi::FromInt(0))); // Zero indicates proxy __ bind(&non_proxy); __ Push(a1, v0); // Smi and array __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset)); __ li(a0, Operand(Smi::FromInt(0))); __ Push(a1, a0); // Fixed array length (as smi) and initial index. // Generate code for doing the condition check. PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); __ bind(&loop); // Load the current count to a0, load the length to a1. __ lw(a0, MemOperand(sp, 0 * kPointerSize)); __ lw(a1, MemOperand(sp, 1 * kPointerSize)); __ Branch(loop_statement.break_label(), hs, a0, Operand(a1)); // Get the current entry of the array into register a3. __ lw(a2, MemOperand(sp, 2 * kPointerSize)); __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); __ addu(t0, a2, t0); // Array base + scaled (smi) index. __ lw(a3, MemOperand(t0)); // Current entry. // Get the expected map from the stack or a smi in the // permanent slow case into register a2. __ lw(a2, MemOperand(sp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we may have to filter the key. Label update_each; __ lw(a1, MemOperand(sp, 4 * kPointerSize)); __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset)); __ Branch(&update_each, eq, t0, Operand(a2)); // For proxies, no filtering is done. // TODO(rossberg): What if only a prototype is a proxy? Not specified yet. ASSERT_EQ(Smi::FromInt(0), 0); __ Branch(&update_each, eq, a2, Operand(zero_reg)); // Convert the entry to a string or (smi) 0 if it isn't a property // any more. If the property has been removed while iterating, we // just skip it. __ push(a1); // Enumerable. __ push(a3); // Current entry. __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); __ mov(a3, result_register()); __ Branch(loop_statement.continue_label(), eq, a3, Operand(zero_reg)); // Update the 'each' property or variable from the possibly filtered // entry in register a3. __ bind(&update_each); __ mov(result_register(), a3); // Perform the assignment as if via '='. { EffectContext context(this); EmitAssignment(stmt->each()); } // Generate code for the body of the loop. Visit(stmt->body()); // Generate code for the going to the next element by incrementing // the index (smi) stored on top of the stack. __ bind(loop_statement.continue_label()); __ pop(a0); __ Addu(a0, a0, Operand(Smi::FromInt(1))); __ push(a0); EmitStackCheck(stmt, &loop); __ Branch(&loop); // Remove the pointers stored on the stack. __ bind(loop_statement.break_label()); __ Drop(5); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info, bool pretenure) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. If // we're running with the --always-opt or the --prepare-always-opt // flag, we need to use the runtime function so that the new function // we are creating here gets a chance to have its code optimized and // doesn't just get a copy of the existing unoptimized code. if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure && scope()->is_function_scope() && info->num_literals() == 0) { FastNewClosureStub stub(info->language_mode()); __ li(a0, Operand(info)); __ push(a0); __ CallStub(&stub); } else { __ li(a0, Operand(info)); __ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); __ Push(cp, a0, a1); __ CallRuntime(Runtime::kNewClosure, 3); } context()->Plug(v0); } void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr); } void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var, TypeofState typeof_state, Label* slow) { Register current = cp; Register next = a1; Register temp = a2; Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_non_strict_eval()) { // Check that extension is NULL. __ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX)); __ Branch(slow, ne, temp, Operand(zero_reg)); } // Load next context in chain. __ lw(next, ContextOperand(current, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. current = next; } // If no outer scope calls eval, we do not need to check more // context extensions. if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s->is_eval_scope()) { Label loop, fast; if (!current.is(next)) { __ Move(next, current); } __ bind(&loop); // Terminate at global context. __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset)); __ LoadRoot(t0, Heap::kGlobalContextMapRootIndex); __ Branch(&fast, eq, temp, Operand(t0)); // Check that extension is NULL. __ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX)); __ Branch(slow, ne, temp, Operand(zero_reg)); // Load next context in chain. __ lw(next, ContextOperand(next, Context::PREVIOUS_INDEX)); __ Branch(&loop); __ bind(&fast); } __ lw(a0, GlobalObjectOperand()); __ li(a2, Operand(var->name())); RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallIC(ic, mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, Label* slow) { ASSERT(var->IsContextSlot()); Register context = cp; Register next = a3; Register temp = t0; for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_non_strict_eval()) { // Check that extension is NULL. __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX)); __ Branch(slow, ne, temp, Operand(zero_reg)); } __ lw(next, ContextOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering cp. context = next; } } // Check that last extension is NULL. __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX)); __ Branch(slow, ne, temp, Operand(zero_reg)); // This function is used only for loads, not stores, so it's safe to // return an cp-based operand (the write barrier cannot be allowed to // destroy the cp register). return ContextOperand(context, var->index()); } void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var, TypeofState typeof_state, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. if (var->mode() == DYNAMIC_GLOBAL) { EmitLoadGlobalCheckExtensions(var, typeof_state, slow); __ Branch(done); } else if (var->mode() == DYNAMIC_LOCAL) { Variable* local = var->local_if_not_shadowed(); __ lw(v0, ContextSlotOperandCheckExtensions(local, slow)); if (local->mode() == CONST || local->mode() == CONST_HARMONY || local->mode() == LET) { __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ subu(at, v0, at); // Sub as compare: at == 0 on eq. if (local->mode() == CONST) { __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); __ Movz(v0, a0, at); // Conditional move: return Undefined if TheHole. } else { // LET || CONST_HARMONY __ Branch(done, ne, at, Operand(zero_reg)); __ li(a0, Operand(var->name())); __ push(a0); __ CallRuntime(Runtime::kThrowReferenceError, 1); } } __ Branch(done); } } void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // Record position before possible IC call. SetSourcePosition(proxy->position()); Variable* var = proxy->var(); // Three cases: global variables, lookup variables, and all other types of // variables. switch (var->location()) { case Variable::UNALLOCATED: { Comment cmnt(masm_, "Global variable"); // Use inline caching. Variable name is passed in a2 and the global // object (receiver) in a0. __ lw(a0, GlobalObjectOperand()); __ li(a2, Operand(var->name())); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT); context()->Plug(v0); break; } case Variable::PARAMETER: case Variable::LOCAL: case Variable::CONTEXT: { Comment cmnt(masm_, var->IsContextSlot() ? "Context variable" : "Stack variable"); if (var->binding_needs_init()) { // var->scope() may be NULL when the proxy is located in eval code and // refers to a potential outside binding. Currently those bindings are // always looked up dynamically, i.e. in that case // var->location() == LOOKUP. // always holds. ASSERT(var->scope() != NULL); // Check if the binding really needs an initialization check. The check // can be skipped in the following situation: we have a LET or CONST // binding in harmony mode, both the Variable and the VariableProxy have // the same declaration scope (i.e. they are both in global code, in the // same function or in the same eval code) and the VariableProxy is in // the source physically located after the initializer of the variable. // // We cannot skip any initialization checks for CONST in non-harmony // mode because const variables may be declared but never initialized: // if (false) { const x; }; var y = x; // // The condition on the declaration scopes is a conservative check for // nested functions that access a binding and are called before the // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // bool skip_init_check; if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { skip_init_check = false; } else { // Check that we always have valid source position. ASSERT(var->initializer_position() != RelocInfo::kNoPosition); ASSERT(proxy->position() != RelocInfo::kNoPosition); skip_init_check = var->mode() != CONST && var->initializer_position() < proxy->position(); } if (!skip_init_check) { // Let and const need a read barrier. GetVar(v0, var); __ LoadRoot(at, Heap::kTheHoleValueRootIndex); __ subu(at, v0, at); // Sub as compare: at == 0 on eq. if (var->mode() == LET || var->mode() == CONST_HARMONY) { // Throw a reference error when using an uninitialized let/const // binding in harmony mode. Label done; __ Branch(&done, ne, at, Operand(zero_reg)); __ li(a0, Operand(var->name())); __ push(a0); __ CallRuntime(Runtime::kThrowReferenceError, 1); __ bind(&done); } else { // Uninitalized const bindings outside of harmony mode are unholed. ASSERT(var->mode() == CONST); __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); __ Movz(v0, a0, at); // Conditional move: Undefined if TheHole. } context()->Plug(v0); break; } } context()->Plug(var); break; } case Variable::LOOKUP: { Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); Comment cmnt(masm_, "Lookup variable"); __ li(a1, Operand(var->name())); __ Push(cp, a1); // Context and name. __ CallRuntime(Runtime::kLoadContextSlot, 2); __ bind(&done); context()->Plug(v0); } } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Label materialized; // Registers will be used as follows: // t1 = materialized value (RegExp literal) // t0 = JS function, literals array // a3 = literal index // a2 = RegExp pattern // a1 = RegExp flags // a0 = RegExp literal clone __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ lw(t1, FieldMemOperand(t0, literal_offset)); __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(&materialized, ne, t1, Operand(at)); // Create regexp literal using runtime function. // Result will be in v0. __ li(a3, Operand(Smi::FromInt(expr->literal_index()))); __ li(a2, Operand(expr->pattern())); __ li(a1, Operand(expr->flags())); __ Push(t0, a3, a2, a1); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ mov(t1, v0); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ AllocateInNewSpace(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ push(t1); __ li(a0, Operand(Smi::FromInt(size))); __ push(a0); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ pop(t1); __ bind(&allocated); // After this, registers are used as follows: // v0: Newly allocated regexp. // t1: Materialized regexp. // a2: temp. __ CopyFields(v0, t1, a2.bit(), size / kPointerSize); context()->Plug(v0); } void FullCodeGenerator::EmitAccessor(Expression* expression) { if (expression == NULL) { __ LoadRoot(a1, Heap::kNullValueRootIndex); __ push(a1); } else { VisitForStackValue(expression); } } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); Handle<FixedArray> constant_properties = expr->constant_properties(); __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); __ li(a1, Operand(constant_properties)); int flags = expr->fast_elements() ? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags; flags |= expr->has_function() ? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags; __ li(a0, Operand(Smi::FromInt(flags))); __ Push(a3, a2, a1, a0); int properties_count = constant_properties->length() / 2; if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateObjectLiteral, 4); } else if (flags != ObjectLiteral::kFastElements || properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); } else { FastCloneShallowObjectStub stub(properties_count); __ CallStub(&stub); } // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in v0. bool result_saved = false; // Mark all computed expressions that are bound to a key that // is shadowed by a later occurrence of the same key. For the // marked expressions, no store code is emitted. expr->CalculateEmitStore(); AccessorTable accessor_table(isolate()->zone()); for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); if (!result_saved) { __ push(v0); // Save result on stack. result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: ASSERT(!CompileTimeValue::IsCompileTimeValue(property->value())); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { if (property->emit_store()) { VisitForAccumulatorValue(value); __ mov(a0, result_register()); __ li(a2, Operand(key->handle())); __ lw(a1, MemOperand(sp)); Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); CallIC(ic, RelocInfo::CODE_TARGET, key->id()); PrepareForBailoutForId(key->id(), NO_REGISTERS); } else { VisitForEffect(value); } break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: // Duplicate receiver on stack. __ lw(a0, MemOperand(sp)); __ push(a0); VisitForStackValue(key); VisitForStackValue(value); if (property->emit_store()) { __ li(a0, Operand(Smi::FromInt(NONE))); // PropertyAttributes. __ push(a0); __ CallRuntime(Runtime::kSetProperty, 4); } else { __ Drop(3); } break; case ObjectLiteral::Property::GETTER: accessor_table.lookup(key)->second->getter = value; break; case ObjectLiteral::Property::SETTER: accessor_table.lookup(key)->second->setter = value; break; } } // Emit code to define accessors, using only a single call to the runtime for // each pair of corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { __ lw(a0, MemOperand(sp)); // Duplicate receiver. __ push(a0); VisitForStackValue(it->first); EmitAccessor(it->second->getter); EmitAccessor(it->second->setter); __ li(a0, Operand(Smi::FromInt(NONE))); __ push(a0); __ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5); } if (expr->has_function()) { ASSERT(result_saved); __ lw(a0, MemOperand(sp)); __ push(a0); __ CallRuntime(Runtime::kToFastProperties, 1); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(v0); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); ZoneList<Expression*>* subexprs = expr->values(); int length = subexprs->length(); Handle<FixedArray> constant_elements = expr->constant_elements(); ASSERT_EQ(2, constant_elements->length()); ElementsKind constant_elements_kind = static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value()); bool has_fast_elements = constant_elements_kind == FAST_ELEMENTS; Handle<FixedArrayBase> constant_elements_values( FixedArrayBase::cast(constant_elements->get(1))); __ mov(a0, result_register()); __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); __ li(a1, Operand(constant_elements)); __ Push(a3, a2, a1); if (has_fast_elements && constant_elements_values->map() == isolate()->heap()->fixed_cow_array_map()) { FastCloneShallowArrayStub stub( FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); __ CallStub(&stub); __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(), 1, a1, a2); } else if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateArrayLiteral, 3); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } else { ASSERT(constant_elements_kind == FAST_ELEMENTS || constant_elements_kind == FAST_SMI_ONLY_ELEMENTS || FLAG_smi_only_arrays); FastCloneShallowArrayStub::Mode mode = has_fast_elements ? FastCloneShallowArrayStub::CLONE_ELEMENTS : FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); __ CallStub(&stub); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int i = 0; i < length; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (subexpr->AsLiteral() != NULL || CompileTimeValue::IsCompileTimeValue(subexpr)) { continue; } if (!result_saved) { __ push(v0); result_saved = true; } VisitForAccumulatorValue(subexpr); if (constant_elements_kind == FAST_ELEMENTS) { int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ lw(t2, MemOperand(sp)); // Copy of array literal. __ lw(a1, FieldMemOperand(t2, JSObject::kElementsOffset)); __ sw(result_register(), FieldMemOperand(a1, offset)); // Update the write barrier for the array store. __ RecordWriteField(a1, offset, result_register(), a2, kRAHasBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET, INLINE_SMI_CHECK); } else { __ lw(a1, MemOperand(sp)); // Copy of array literal. __ lw(a2, FieldMemOperand(a1, JSObject::kMapOffset)); __ li(a3, Operand(Smi::FromInt(i))); __ li(t0, Operand(Smi::FromInt(expr->literal_index()))); __ mov(a0, result_register()); StoreArrayLiteralElementStub stub; __ CallStub(&stub); } PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(v0); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { Comment cmnt(masm_, "[ Assignment"); // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' // on the left-hand side. if (!expr->target()->IsValidLeftHandSide()) { VisitForEffect(expr->target()); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* property = expr->target()->AsProperty(); if (property != NULL) { assign_type = (property->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the accumulator. VisitForAccumulatorValue(property->obj()); __ push(result_register()); } else { VisitForStackValue(property->obj()); } break; case KEYED_PROPERTY: // We need the key and receiver on both the stack and in v0 and a1. if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForAccumulatorValue(property->key()); __ lw(a1, MemOperand(sp, 0)); __ push(v0); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } // For compound assignments we need another deoptimization point after the // variable/property load. if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()); PrepareForBailout(expr->target(), TOS_REG); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG); break; } } Token::Value op = expr->binary_op(); __ push(v0); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); OverwriteMode mode = expr->value()->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE; SetSourcePosition(expr->position() + 1); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr->binary_operation(), op, mode, expr->target(), expr->value()); } else { EmitBinaryOp(expr->binary_operation(), op, mode); } // Deoptimization point in case the binary operation may have side effects. PrepareForBailout(expr->binary_operation(), TOS_REG); } else { VisitForAccumulatorValue(expr->value()); } // Record source position before possible IC call. SetSourcePosition(expr->position()); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), expr->op()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(v0); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); __ mov(a0, result_register()); __ li(a2, Operand(key->handle())); // Call load IC. It has arguments receiver and property name a0 and a2. Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); CallIC(ic, RelocInfo::CODE_TARGET, prop->id()); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); __ mov(a0, result_register()); // Call keyed load IC. It has arguments key and receiver in a0 and a1. Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); CallIC(ic, RelocInfo::CODE_TARGET, prop->id()); } void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, Token::Value op, OverwriteMode mode, Expression* left_expr, Expression* right_expr) { Label done, smi_case, stub_call; Register scratch1 = a2; Register scratch2 = a3; // Get the arguments. Register left = a1; Register right = a0; __ pop(left); __ mov(a0, result_register()); // Perform combined smi check on both operands. __ Or(scratch1, left, Operand(right)); STATIC_ASSERT(kSmiTag == 0); JumpPatchSite patch_site(masm_); patch_site.EmitJumpIfSmi(scratch1, &smi_case); __ bind(&stub_call); BinaryOpStub stub(op, mode); CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); patch_site.EmitPatchInfo(); __ jmp(&done); __ bind(&smi_case); // Smi case. This code works the same way as the smi-smi case in the type // recording binary operation stub, see // BinaryOpStub::GenerateSmiSmiOperation for comments. switch (op) { case Token::SAR: __ Branch(&stub_call); __ GetLeastBitsFromSmi(scratch1, right, 5); __ srav(right, left, scratch1); __ And(v0, right, Operand(~kSmiTagMask)); break; case Token::SHL: { __ Branch(&stub_call); __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ sllv(scratch1, scratch1, scratch2); __ Addu(scratch2, scratch1, Operand(0x40000000)); __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); __ SmiTag(v0, scratch1); break; } case Token::SHR: { __ Branch(&stub_call); __ SmiUntag(scratch1, left); __ GetLeastBitsFromSmi(scratch2, right, 5); __ srlv(scratch1, scratch1, scratch2); __ And(scratch2, scratch1, 0xc0000000); __ Branch(&stub_call, ne, scratch2, Operand(zero_reg)); __ SmiTag(v0, scratch1); break; } case Token::ADD: __ AdduAndCheckForOverflow(v0, left, right, scratch1); __ BranchOnOverflow(&stub_call, scratch1); break; case Token::SUB: __ SubuAndCheckForOverflow(v0, left, right, scratch1); __ BranchOnOverflow(&stub_call, scratch1); break; case Token::MUL: { __ SmiUntag(scratch1, right); __ Mult(left, scratch1); __ mflo(scratch1); __ mfhi(scratch2); __ sra(scratch1, scratch1, 31); __ Branch(&stub_call, ne, scratch1, Operand(scratch2)); __ mflo(v0); __ Branch(&done, ne, v0, Operand(zero_reg)); __ Addu(scratch2, right, left); __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); ASSERT(Smi::FromInt(0) == 0); __ mov(v0, zero_reg); break; } case Token::BIT_OR: __ Or(v0, left, Operand(right)); break; case Token::BIT_AND: __ And(v0, left, Operand(right)); break; case Token::BIT_XOR: __ Xor(v0, left, Operand(right)); break; default: UNREACHABLE(); } __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op, OverwriteMode mode) { __ mov(a0, result_register()); __ pop(a1); BinaryOpStub stub(op, mode); JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); patch_site.EmitPatchInfo(); context()->Plug(v0); } void FullCodeGenerator::EmitAssignment(Expression* expr) { // Invalid left-hand sides are rewritten to have a 'throw // ReferenceError' on the left-hand side. if (!expr->IsValidLeftHandSide()) { VisitForEffect(expr); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->AsProperty(); if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } switch (assign_type) { case VARIABLE: { Variable* var = expr->AsVariableProxy()->var(); EffectContext context(this); EmitVariableAssignment(var, Token::ASSIGN); break; } case NAMED_PROPERTY: { __ push(result_register()); // Preserve value. VisitForAccumulatorValue(prop->obj()); __ mov(a1, result_register()); __ pop(a0); // Restore value. __ li(a2, Operand(prop->key()->AsLiteral()->handle())); Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); CallIC(ic); break; } case KEYED_PROPERTY: { __ push(result_register()); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ mov(a1, result_register()); __ pop(a2); __ pop(a0); // Restore value. Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->KeyedStoreIC_Initialize() : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); CallIC(ic); break; } } context()->Plug(v0); } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) { if (var->IsUnallocated()) { // Global var, const, or let. __ mov(a0, result_register()); __ li(a2, Operand(var->name())); __ lw(a1, GlobalObjectOperand()); Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); CallIC(ic, RelocInfo::CODE_TARGET_CONTEXT); } else if (op == Token::INIT_CONST) { // Const initializers need a write barrier. ASSERT(!var->IsParameter()); // No const parameters. if (var->IsStackLocal()) { Label skip; __ lw(a1, StackOperand(var)); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ Branch(&skip, ne, a1, Operand(t0)); __ sw(result_register(), StackOperand(var)); __ bind(&skip); } else { ASSERT(var->IsContextSlot() || var->IsLookupSlot()); // Like var declarations, const declarations are hoisted to function // scope. However, unlike var initializers, const initializers are // able to drill a hole to that function context, even from inside a // 'with' context. We thus bypass the normal static scope lookup for // var->IsContextSlot(). __ push(v0); __ li(a0, Operand(var->name())); __ Push(cp, a0); // Context and name. __ CallRuntime(Runtime::kInitializeConstContextSlot, 3); } } else if (var->mode() == LET && op != Token::INIT_LET) { // Non-initializing assignment to let variable needs a write barrier. if (var->IsLookupSlot()) { __ push(v0); // Value. __ li(a1, Operand(var->name())); __ li(a0, Operand(Smi::FromInt(language_mode()))); __ Push(cp, a1, a0); // Context, name, strict mode. __ CallRuntime(Runtime::kStoreContextSlot, 4); } else { ASSERT(var->IsStackAllocated() || var->IsContextSlot()); Label assign; MemOperand location = VarOperand(var, a1); __ lw(a3, location); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ Branch(&assign, ne, a3, Operand(t0)); __ li(a3, Operand(var->name())); __ push(a3); __ CallRuntime(Runtime::kThrowReferenceError, 1); // Perform the assignment. __ bind(&assign); __ sw(result_register(), location); if (var->IsContextSlot()) { // RecordWrite may destroy all its register arguments. __ mov(a3, result_register()); int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot( a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs); } } } else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) { // Assignment to var or initializing assignment to let/const // in harmony mode. if (var->IsStackAllocated() || var->IsContextSlot()) { MemOperand location = VarOperand(var, a1); if (FLAG_debug_code && op == Token::INIT_LET) { // Check for an uninitialized let binding. __ lw(a2, location); __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); __ Check(eq, "Let binding re-initialization.", a2, Operand(t0)); } // Perform the assignment. __ sw(v0, location); if (var->IsContextSlot()) { __ mov(a3, v0); int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot( a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs); } } else { ASSERT(var->IsLookupSlot()); __ push(v0); // Value. __ li(a1, Operand(var->name())); __ li(a0, Operand(Smi::FromInt(language_mode()))); __ Push(cp, a1, a0); // Context, name, strict mode. __ CallRuntime(Runtime::kStoreContextSlot, 4); } } // Non-initializing assignments to consts are ignored. } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->AsLiteral() != NULL); // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); __ lw(t0, MemOperand(sp, kPointerSize)); // Receiver is now under value. __ push(t0); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); __ mov(a0, result_register()); // Load the value. __ li(a2, Operand(prop->key()->AsLiteral()->handle())); // Load receiver to a1. Leave a copy in the stack if needed for turning the // receiver into fast case. if (expr->ends_initialization_block()) { __ lw(a1, MemOperand(sp)); } else { __ pop(a1); } Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); CallIC(ic, RelocInfo::CODE_TARGET, expr->id()); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(v0); // Result of assignment, saved even if not needed. // Receiver is under the result value. __ lw(t0, MemOperand(sp, kPointerSize)); __ push(t0); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(v0); __ Drop(1); } PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(v0); } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); // Receiver is now under the key and value. __ lw(t0, MemOperand(sp, 2 * kPointerSize)); __ push(t0); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); // Call keyed store IC. // The arguments are: // - a0 is the value, // - a1 is the key, // - a2 is the receiver. __ mov(a0, result_register()); __ pop(a1); // Key. // Load receiver to a2. Leave a copy in the stack if needed for turning the // receiver into fast case. if (expr->ends_initialization_block()) { __ lw(a2, MemOperand(sp)); } else { __ pop(a2); } Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->KeyedStoreIC_Initialize() : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); CallIC(ic, RelocInfo::CODE_TARGET, expr->id()); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(v0); // Result of assignment, saved even if not needed. // Receiver is under the result value. __ lw(t0, MemOperand(sp, kPointerSize)); __ push(t0); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(v0); __ Drop(1); } PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(v0); } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); if (key->IsPropertyName()) { VisitForAccumulatorValue(expr->obj()); EmitNamedPropertyLoad(expr); context()->Plug(v0); } else { VisitForStackValue(expr->obj()); VisitForAccumulatorValue(expr->key()); __ pop(a1); EmitKeyedPropertyLoad(expr); context()->Plug(v0); } } void FullCodeGenerator::CallIC(Handle<Code> code, RelocInfo::Mode rmode, unsigned ast_id) { ic_total_count_++; __ Call(code, rmode, ast_id); } void FullCodeGenerator::EmitCallWithIC(Call* expr, Handle<Object> name, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } __ li(a2, Operand(name)); } // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode); CallIC(ic, mode, expr->id()); RecordJSReturnSite(expr); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->Plug(v0); } void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr, Expression* key) { // Load the key. VisitForAccumulatorValue(key); // Swap the name of the function and the receiver on the stack to follow // the calling convention for call ICs. __ pop(a1); __ push(v0); __ push(a1); // Code common for calls using the IC. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } } // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count); __ lw(a2, MemOperand(sp, (arg_count + 1) * kPointerSize)); // Key. CallIC(ic, RelocInfo::CODE_TARGET, expr->id()); RecordJSReturnSite(expr); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, v0); // Drop the key still on the stack. } void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) { // Code common for calls using the call stub. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } } // Record source position for debugger. SetSourcePosition(expr->position()); CallFunctionStub stub(arg_count, flags); __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ CallStub(&stub); RecordJSReturnSite(expr); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, v0); } void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) { // Push copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); } else { __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); } __ push(a1); // Push the receiver of the enclosing function. int receiver_offset = 2 + info_->scope()->num_parameters(); __ lw(a1, MemOperand(fp, receiver_offset * kPointerSize)); __ push(a1); // Push the language mode. __ li(a1, Operand(Smi::FromInt(language_mode()))); __ push(a1); // Push the start position of the scope the calls resides in. __ li(a1, Operand(Smi::FromInt(scope()->start_position()))); __ push(a1); // Do the runtime call. __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5); } void FullCodeGenerator::VisitCall(Call* expr) { #ifdef DEBUG // We want to verify that RecordJSReturnSite gets called on all paths // through this function. Avoid early returns. expr->return_is_recorded_ = false; #endif Comment cmnt(masm_, "[ Call"); Expression* callee = expr->expression(); VariableProxy* proxy = callee->AsVariableProxy(); Property* property = callee->AsProperty(); if (proxy != NULL && proxy->var()->is_possibly_eval()) { // In a call to eval, we first call %ResolvePossiblyDirectEval to // resolve the function we need to call and the receiver of the // call. Then we call the resolved function using the given // arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope pos_scope(masm()->positions_recorder()); VisitForStackValue(callee); __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); __ push(a2); // Reserved receiver slot. // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push a copy of the function (found below the arguments) and // resolve eval. __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ push(a1); EmitResolvePossiblyDirectEval(arg_count); // The runtime call returns a pair of values in v0 (function) and // v1 (receiver). Touch up the stack with the right values. __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ sw(v1, MemOperand(sp, arg_count * kPointerSize)); } // Record source position for debugger. SetSourcePosition(expr->position()); CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT); __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); __ CallStub(&stub); RecordJSReturnSite(expr); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, v0); } else if (proxy != NULL && proxy->var()->IsUnallocated()) { // Push global object as receiver for the call IC. __ lw(a0, GlobalObjectOperand()); __ push(a0); EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT); } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { // Call to a lookup slot (dynamically introduced variable). Label slow, done; { PreservePositionScope scope(masm()->positions_recorder()); // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done); } __ bind(&slow); // Call the runtime to find the function to call (returned in v0) // and the object holding it (returned in v1). __ push(context_register()); __ li(a2, Operand(proxy->name())); __ push(a2); __ CallRuntime(Runtime::kLoadContextSlot, 2); __ Push(v0, v1); // Function, receiver. // If fast case code has been generated, emit code to push the // function and receiver and have the slow path jump around this // code. if (done.is_linked()) { Label call; __ Branch(&call); __ bind(&done); // Push function. __ push(v0); // The receiver is implicitly the global receiver. Indicate this // by passing the hole to the call function stub. __ LoadRoot(a1, Heap::kTheHoleValueRootIndex); __ push(a1); __ bind(&call); } // The receiver is either the global receiver or an object found // by LoadContextSlot. That object could be the hole if the // receiver is implicitly the global object. EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT); } else if (property != NULL) { { PreservePositionScope scope(masm()->positions_recorder()); VisitForStackValue(property->obj()); } if (property->key()->IsPropertyName()) { EmitCallWithIC(expr, property->key()->AsLiteral()->handle(), RelocInfo::CODE_TARGET); } else { EmitKeyedCallWithIC(expr, property->key()); } } else { // Call to an arbitrary expression not handled specially above. { PreservePositionScope scope(masm()->positions_recorder()); VisitForStackValue(callee); } // Load global receiver object. __ lw(a1, GlobalObjectOperand()); __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalReceiverOffset)); __ push(a1); // Emit function call. EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS); } #ifdef DEBUG // RecordJSReturnSite should have been called. ASSERT(expr->return_is_recorded_); #endif } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function and argument count into a1 and a0. __ li(a0, Operand(arg_count)); __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); // Record call targets in unoptimized code, but not in the snapshot. CallFunctionFlags flags; if (!Serializer::enabled()) { flags = RECORD_CALL_TARGET; Handle<Object> uninitialized = TypeFeedbackCells::UninitializedSentinel(isolate()); Handle<JSGlobalPropertyCell> cell = isolate()->factory()->NewJSGlobalPropertyCell(uninitialized); RecordTypeFeedbackCell(expr->id(), cell); __ li(a2, Operand(cell)); } else { flags = NO_CALL_FUNCTION_FLAGS; } CallConstructStub stub(flags); __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); PrepareForBailoutForId(expr->ReturnId(), TOS_REG); context()->Plug(v0); } void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ And(t0, v0, Operand(kSmiTagMask)); Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ And(at, v0, Operand(kSmiTagMask | 0x80000000)); Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(if_true, eq, v0, Operand(at)); __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset)); __ And(at, a1, Operand(1 << Map::kIsUndetectable)); __ Branch(if_false, ne, at, Operand(zero_reg)); __ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset)); __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(le, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset)); __ And(at, a1, Operand(1 << Map::kIsUndetectable)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(ne, at, Operand(zero_reg), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); if (FLAG_debug_code) __ AbortIfSmi(v0); __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset)); __ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf); __ Branch(if_true, ne, t0, Operand(zero_reg)); // Check for fast case object. Generate false result for slow case object. __ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset)); __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset)); __ LoadRoot(t0, Heap::kHashTableMapRootIndex); __ Branch(if_false, eq, a2, Operand(t0)); // Look for valueOf symbol in the descriptor array, and indicate false if // found. The type is not checked, so if it is a transition it is a false // negative. __ LoadInstanceDescriptors(a1, t0); __ lw(a3, FieldMemOperand(t0, FixedArray::kLengthOffset)); // t0: descriptor array // a3: length of descriptor array // Calculate the end of the descriptor array. STATIC_ASSERT(kSmiTag == 0); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kPointerSize == 4); __ Addu(a2, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ sll(t1, a3, kPointerSizeLog2 - kSmiTagSize); __ Addu(a2, a2, t1); // Calculate location of the first key name. __ Addu(t0, t0, Operand(FixedArray::kHeaderSize - kHeapObjectTag + DescriptorArray::kFirstIndex * kPointerSize)); // Loop through all the keys in the descriptor array. If one of these is the // symbol valueOf the result is false. Label entry, loop; // The use of t2 to store the valueOf symbol asumes that it is not otherwise // used in the loop below. __ LoadRoot(t2, Heap::kvalue_of_symbolRootIndex); __ jmp(&entry); __ bind(&loop); __ lw(a3, MemOperand(t0, 0)); __ Branch(if_false, eq, a3, Operand(t2)); __ Addu(t0, t0, Operand(kPointerSize)); __ bind(&entry); __ Branch(&loop, ne, t0, Operand(a2)); // If a valueOf property is not found on the object check that it's // prototype is the un-modified String prototype. If not result is false. __ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset)); __ JumpIfSmi(a2, if_false); __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset)); __ lw(a3, ContextOperand(cp, Context::GLOBAL_INDEX)); __ lw(a3, FieldMemOperand(a3, GlobalObject::kGlobalContextOffset)); __ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); __ Branch(if_false, ne, a2, Operand(a3)); // Set the bit in the map to indicate that it has been checked safe for // default valueOf and set true result. __ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset)); __ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); __ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset)); __ jmp(if_true); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a2); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE)); __ Branch(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_ARRAY_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(v0, if_false); __ GetObjectType(v0, a1, a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) { ASSERT(expr->arguments()->length() == 0); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // Get the frame pointer for the calling frame. __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset)); __ Branch(&check_frame_marker, ne, a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); // Load the two objects into registers and perform the comparison. VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ pop(a1); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, v0, Operand(a1), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitArguments(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); // ArgumentsAccessStub expects the key in a1 and the formal // parameter count in a0. VisitForAccumulatorValue(args->at(0)); __ mov(a1, v0); __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) { ASSERT(expr->arguments()->length() == 0); Label exit; // Get the number of formal parameters. __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); // Check if the calling frame is an arguments adaptor frame. __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); __ Branch(&exit, ne, a3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); context()->Plug(v0); } void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is a smi, we return null. __ JumpIfSmi(v0, &null); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. // Assume that there are only two callable types, and one of them is at // either end of the type range for JS object types. Saves extra comparisons. STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ GetObjectType(v0, v0, a1); // Map is now in v0. __ Branch(&null, lt, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == FIRST_SPEC_OBJECT_TYPE + 1); __ Branch(&function, eq, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1); __ Branch(&function, eq, a1, Operand(LAST_SPEC_OBJECT_TYPE)); // Assume that there is no larger type. STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1); // Check if the constructor in the map is a JS function. __ lw(v0, FieldMemOperand(v0, Map::kConstructorOffset)); __ GetObjectType(v0, a1, a1); __ Branch(&non_function_constructor, ne, a1, Operand(JS_FUNCTION_TYPE)); // v0 now contains the constructor function. Grab the // instance class name from there. __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset)); __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset)); __ Branch(&done); // Functions have class 'Function'. __ bind(&function); __ LoadRoot(v0, Heap::kfunction_class_symbolRootIndex); __ jmp(&done); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ LoadRoot(v0, Heap::kObject_symbolRootIndex); __ jmp(&done); // Non-JS objects have class null. __ bind(&null); __ LoadRoot(v0, Heap::kNullValueRootIndex); // All done. __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitLog(CallRuntime* expr) { // Conditionally generate a log call. // Args: // 0 (literal string): The type of logging (corresponds to the flags). // This is used to determine whether or not to generate the log call. // 1 (string): Format string. Access the string at argument index 2 // with '%2s' (see Logger::LogRuntime for all the formats). // 2 (array): Arguments to the format string. ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(args->length(), 3); if (CodeGenerator::ShouldGenerateLog(args->at(0))) { VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallRuntime(Runtime::kLog, 2); } // Finally, we're expected to leave a value on the top of the stack. __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); context()->Plug(v0); } void FullCodeGenerator::EmitRandomHeapNumber(CallRuntime* expr) { ASSERT(expr->arguments()->length() == 0); Label slow_allocate_heapnumber; Label heapnumber_allocated; // Save the new heap number in callee-saved register s0, since // we call out to external C code below. __ LoadRoot(t6, Heap::kHeapNumberMapRootIndex); __ AllocateHeapNumber(s0, a1, a2, t6, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); // Allocate a heap number. __ CallRuntime(Runtime::kNumberAlloc, 0); __ mov(s0, v0); // Save result in s0, so it is saved thru CFunc call. __ bind(&heapnumber_allocated); // Convert 32 random bits in v0 to 0.(32 random bits) in a double // by computing: // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). if (CpuFeatures::IsSupported(FPU)) { __ PrepareCallCFunction(1, a0); __ lw(a0, ContextOperand(cp, Context::GLOBAL_INDEX)); __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset)); __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); CpuFeatures::Scope scope(FPU); // 0x41300000 is the top half of 1.0 x 2^20 as a double. __ li(a1, Operand(0x41300000)); // Move 0x41300000xxxxxxxx (x = random bits in v0) to FPU. __ Move(f12, v0, a1); // Move 0x4130000000000000 to FPU. __ Move(f14, zero_reg, a1); // Subtract and store the result in the heap number. __ sub_d(f0, f12, f14); __ sdc1(f0, MemOperand(s0, HeapNumber::kValueOffset - kHeapObjectTag)); __ mov(v0, s0); } else { __ PrepareCallCFunction(2, a0); __ mov(a0, s0); __ lw(a1, ContextOperand(cp, Context::GLOBAL_INDEX)); __ lw(a1, FieldMemOperand(a1, GlobalObject::kGlobalContextOffset)); __ CallCFunction( ExternalReference::fill_heap_number_with_random_function(isolate()), 2); } context()->Plug(v0); } void FullCodeGenerator::EmitSubString(CallRuntime* expr) { // Load the arguments on the stack and call the stub. SubStringStub stub; ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) { // Load the arguments on the stack and call the stub. RegExpExecStub stub; ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 4); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); VisitForStackValue(args->at(3)); __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitValueOf(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); // Load the object. Label done; // If the object is a smi return the object. __ JumpIfSmi(v0, &done); // If the object is not a value type, return the object. __ GetObjectType(v0, a1, a1); __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE)); __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset)); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitDateField(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); ASSERT_NE(NULL, args->at(1)->AsLiteral()); Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->handle())); VisitForAccumulatorValue(args->at(0)); // Load the object. Label runtime, done; Register object = v0; Register result = v0; Register scratch0 = t5; Register scratch1 = a1; #ifdef DEBUG __ AbortIfSmi(object); __ GetObjectType(object, scratch1, scratch1); __ Assert(eq, "Trying to get date field from non-date.", scratch1, Operand(JS_DATE_TYPE)); #endif if (index->value() == 0) { __ lw(result, FieldMemOperand(object, JSDate::kValueOffset)); } else { if (index->value() < JSDate::kFirstUncachedField) { ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); __ li(scratch1, Operand(stamp)); __ lw(scratch1, MemOperand(scratch1)); __ lw(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset)); __ Branch(&runtime, ne, scratch1, Operand(scratch0)); __ lw(result, FieldMemOperand(object, JSDate::kValueOffset + kPointerSize * index->value())); __ jmp(&done); } __ bind(&runtime); __ PrepareCallCFunction(2, scratch1); __ li(a1, Operand(index)); __ Move(a0, object); __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); __ bind(&done); } context()->Plug(v0); } void FullCodeGenerator::EmitMathPow(CallRuntime* expr) { // Load the arguments on the stack and call the runtime function. ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); if (CpuFeatures::IsSupported(FPU)) { MathPowStub stub(MathPowStub::ON_STACK); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kMath_pow, 2); } context()->Plug(v0); } void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); // Load the object. VisitForAccumulatorValue(args->at(1)); // Load the value. __ pop(a1); // v0 = value. a1 = object. Label done; // If the object is a smi, return the value. __ JumpIfSmi(a1, &done); // If the object is not a value type, return the value. __ GetObjectType(a1, a2, a2); __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE)); // Store the value. __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset)); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. __ mov(a2, v0); __ RecordWriteField( a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(args->length(), 1); // Load the argument on the stack and call the stub. VisitForStackValue(args->at(0)); NumberToStringStub stub; __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label done; StringCharFromCodeGenerator generator(v0, a1); generator.GenerateFast(masm_); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(a1); } void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ mov(a0, result_register()); Register object = a1; Register index = a0; Register result = v0; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ jmp(&done); __ bind(&need_conversion); // Load the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ mov(a0, result_register()); Register object = a1; Register index = a0; Register scratch = a3; Register result = v0; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharAtGenerator generator(object, index, scratch, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // the empty string. __ LoadRoot(result, Heap::kEmptyStringRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move smi zero into the result register, which will trigger // conversion. __ li(result, Operand(Smi::FromInt(0))); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringAddStub stub(NO_STRING_ADD_FLAGS); __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringCompareStub stub; __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitMathSin(CallRuntime* expr) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::SIN, TranscendentalCacheStub::TAGGED); ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitMathCos(CallRuntime* expr) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::COS, TranscendentalCacheStub::TAGGED); ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitMathTan(CallRuntime* expr) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::TAN, TranscendentalCacheStub::TAGGED); ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitMathLog(CallRuntime* expr) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::LOG, TranscendentalCacheStub::TAGGED); ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ mov(a0, result_register()); // Stub requires parameter in a0 and on tos. __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) { // Load the argument on the stack and call the runtime function. ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallRuntime(Runtime::kMath_sqrt, 1); context()->Plug(v0); } void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() >= 2); int arg_count = args->length() - 2; // 2 ~ receiver and function. for (int i = 0; i < arg_count + 1; i++) { VisitForStackValue(args->at(i)); } VisitForAccumulatorValue(args->last()); // Function. // Check for proxy. Label proxy, done; __ GetObjectType(v0, a1, a1); __ Branch(&proxy, eq, a1, Operand(JS_FUNCTION_PROXY_TYPE)); // InvokeFunction requires the function in a1. Move it in there. __ mov(a1, result_register()); ParameterCount count(arg_count); __ InvokeFunction(a1, count, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); __ jmp(&done); __ bind(&proxy); __ push(v0); __ CallRuntime(Runtime::kCall, args->length()); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) { RegExpConstructResultStub stub; ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallStub(&stub); context()->Plug(v0); } void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(2, args->length()); ASSERT_NE(NULL, args->at(0)->AsLiteral()); int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); Handle<FixedArray> jsfunction_result_caches( isolate()->global_context()->jsfunction_result_caches()); if (jsfunction_result_caches->length() <= cache_id) { __ Abort("Attempt to use undefined cache."); __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); context()->Plug(v0); return; } VisitForAccumulatorValue(args->at(1)); Register key = v0; Register cache = a1; __ lw(cache, ContextOperand(cp, Context::GLOBAL_INDEX)); __ lw(cache, FieldMemOperand(cache, GlobalObject::kGlobalContextOffset)); __ lw(cache, ContextOperand( cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); __ lw(cache, FieldMemOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); Label done, not_found; STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ lw(a2, FieldMemOperand(cache, JSFunctionResultCache::kFingerOffset)); // a2 now holds finger offset as a smi. __ Addu(a3, cache, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // a3 now points to the start of fixed array elements. __ sll(at, a2, kPointerSizeLog2 - kSmiTagSize); __ addu(a3, a3, at); // a3 now points to key of indexed element of cache. __ lw(a2, MemOperand(a3)); __ Branch(¬_found, ne, key, Operand(a2)); __ lw(v0, MemOperand(a3, kPointerSize)); __ Branch(&done); __ bind(¬_found); // Call runtime to perform the lookup. __ Push(cache, key); __ CallRuntime(Runtime::kGetFromCache, 2); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitIsRegExpEquivalent(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(2, args->length()); Register right = v0; Register left = a1; Register tmp = a2; Register tmp2 = a3; VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); // Result (right) in v0. __ pop(left); Label done, fail, ok; __ Branch(&ok, eq, left, Operand(right)); // Fail if either is a non-HeapObject. __ And(tmp, left, Operand(right)); __ JumpIfSmi(tmp, &fail); __ lw(tmp, FieldMemOperand(left, HeapObject::kMapOffset)); __ lbu(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset)); __ Branch(&fail, ne, tmp2, Operand(JS_REGEXP_TYPE)); __ lw(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); __ Branch(&fail, ne, tmp, Operand(tmp2)); __ lw(tmp, FieldMemOperand(left, JSRegExp::kDataOffset)); __ lw(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset)); __ Branch(&ok, eq, tmp, Operand(tmp2)); __ bind(&fail); __ LoadRoot(v0, Heap::kFalseValueRootIndex); __ jmp(&done); __ bind(&ok); __ LoadRoot(v0, Heap::kTrueValueRootIndex); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset)); __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); if (FLAG_debug_code) { __ AbortIfNotString(v0); } __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset)); __ IndexFromHash(v0, v0); context()->Plug(v0); } void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) { Label bailout, done, one_char_separator, long_separator, non_trivial_array, not_size_one_array, loop, empty_separator_loop, one_char_separator_loop, one_char_separator_loop_entry, long_separator_loop; ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); VisitForStackValue(args->at(1)); VisitForAccumulatorValue(args->at(0)); // All aliases of the same register have disjoint lifetimes. Register array = v0; Register elements = no_reg; // Will be v0. Register result = no_reg; // Will be v0. Register separator = a1; Register array_length = a2; Register result_pos = no_reg; // Will be a2. Register string_length = a3; Register string = t0; Register element = t1; Register elements_end = t2; Register scratch1 = t3; Register scratch2 = t5; Register scratch3 = t4; // Separator operand is on the stack. __ pop(separator); // Check that the array is a JSArray. __ JumpIfSmi(array, &bailout); __ GetObjectType(array, scratch1, scratch2); __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE)); // Check that the array has fast elements. __ CheckFastElements(scratch1, scratch2, &bailout); // If the array has length zero, return the empty string. __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset)); __ SmiUntag(array_length); __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg)); __ LoadRoot(v0, Heap::kEmptyStringRootIndex); __ Branch(&done); __ bind(&non_trivial_array); // Get the FixedArray containing array's elements. elements = array; __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset)); array = no_reg; // End of array's live range. // Check that all array elements are sequential ASCII strings, and // accumulate the sum of their lengths, as a smi-encoded value. __ mov(string_length, zero_reg); __ Addu(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); __ sll(elements_end, array_length, kPointerSizeLog2); __ Addu(elements_end, element, elements_end); // Loop condition: while (element < elements_end). // Live values in registers: // elements: Fixed array of strings. // array_length: Length of the fixed array of strings (not smi) // separator: Separator string // string_length: Accumulated sum of string lengths (smi). // element: Current array element. // elements_end: Array end. if (FLAG_debug_code) { __ Assert(gt, "No empty arrays here in EmitFastAsciiArrayJoin", array_length, Operand(zero_reg)); } __ bind(&loop); __ lw(string, MemOperand(element)); __ Addu(element, element, kPointerSize); __ JumpIfSmi(string, &bailout); __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset)); __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout); __ lw(scratch1, FieldMemOperand(string, SeqAsciiString::kLengthOffset)); __ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3); __ BranchOnOverflow(&bailout, scratch3); __ Branch(&loop, lt, element, Operand(elements_end)); // If array_length is 1, return elements[0], a string. __ Branch(¬_size_one_array, ne, array_length, Operand(1)); __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize)); __ Branch(&done); __ bind(¬_size_one_array); // Live values in registers: // separator: Separator string // array_length: Length of the array. // string_length: Sum of string lengths (smi). // elements: FixedArray of strings. // Check that the separator is a flat ASCII string. __ JumpIfSmi(separator, &bailout); __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset)); __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); __ JumpIfInstanceTypeIsNotSequentialAscii(scratch1, scratch2, &bailout); // Add (separator length times array_length) - separator length to the // string_length to get the length of the result string. array_length is not // smi but the other values are, so the result is a smi. __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset)); __ Subu(string_length, string_length, Operand(scratch1)); __ Mult(array_length, scratch1); // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are // zero. __ mfhi(scratch2); __ Branch(&bailout, ne, scratch2, Operand(zero_reg)); __ mflo(scratch2); __ And(scratch3, scratch2, Operand(0x80000000)); __ Branch(&bailout, ne, scratch3, Operand(zero_reg)); __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3); __ BranchOnOverflow(&bailout, scratch3); __ SmiUntag(string_length); // Get first element in the array to free up the elements register to be used // for the result. __ Addu(element, elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); result = elements; // End of live range for elements. elements = no_reg; // Live values in registers: // element: First array element // separator: Separator string // string_length: Length of result string (not smi) // array_length: Length of the array. __ AllocateAsciiString(result, string_length, scratch1, scratch2, elements_end, &bailout); // Prepare for looping. Set up elements_end to end of the array. Set // result_pos to the position of the result where to write the first // character. __ sll(elements_end, array_length, kPointerSizeLog2); __ Addu(elements_end, element, elements_end); result_pos = array_length; // End of live range for array_length. array_length = no_reg; __ Addu(result_pos, result, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); // Check the length of the separator. __ lw(scratch1, FieldMemOperand(separator, SeqAsciiString::kLengthOffset)); __ li(at, Operand(Smi::FromInt(1))); __ Branch(&one_char_separator, eq, scratch1, Operand(at)); __ Branch(&long_separator, gt, scratch1, Operand(at)); // Empty separator case. __ bind(&empty_separator_loop); // Live values in registers: // result_pos: the position to which we are currently copying characters. // element: Current array element. // elements_end: Array end. // Copy next array element to the result. __ lw(string, MemOperand(element)); __ Addu(element, element, kPointerSize); __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); __ SmiUntag(string_length); __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag); __ CopyBytes(string, result_pos, string_length, scratch1); // End while (element < elements_end). __ Branch(&empty_separator_loop, lt, element, Operand(elements_end)); ASSERT(result.is(v0)); __ Branch(&done); // One-character separator case. __ bind(&one_char_separator); // Replace separator with its ASCII character value. __ lbu(separator, FieldMemOperand(separator, SeqAsciiString::kHeaderSize)); // Jump into the loop after the code that copies the separator, so the first // element is not preceded by a separator. __ jmp(&one_char_separator_loop_entry); __ bind(&one_char_separator_loop); // Live values in registers: // result_pos: the position to which we are currently copying characters. // element: Current array element. // elements_end: Array end. // separator: Single separator ASCII char (in lower byte). // Copy the separator character to the result. __ sb(separator, MemOperand(result_pos)); __ Addu(result_pos, result_pos, 1); // Copy next array element to the result. __ bind(&one_char_separator_loop_entry); __ lw(string, MemOperand(element)); __ Addu(element, element, kPointerSize); __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); __ SmiUntag(string_length); __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag); __ CopyBytes(string, result_pos, string_length, scratch1); // End while (element < elements_end). __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end)); ASSERT(result.is(v0)); __ Branch(&done); // Long separator case (separator is more than one character). Entry is at the // label long_separator below. __ bind(&long_separator_loop); // Live values in registers: // result_pos: the position to which we are currently copying characters. // element: Current array element. // elements_end: Array end. // separator: Separator string. // Copy the separator to the result. __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset)); __ SmiUntag(string_length); __ Addu(string, separator, Operand(SeqAsciiString::kHeaderSize - kHeapObjectTag)); __ CopyBytes(string, result_pos, string_length, scratch1); __ bind(&long_separator); __ lw(string, MemOperand(element)); __ Addu(element, element, kPointerSize); __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); __ SmiUntag(string_length); __ Addu(string, string, SeqAsciiString::kHeaderSize - kHeapObjectTag); __ CopyBytes(string, result_pos, string_length, scratch1); // End while (element < elements_end). __ Branch(&long_separator_loop, lt, element, Operand(elements_end)); ASSERT(result.is(v0)); __ Branch(&done); __ bind(&bailout); __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); __ bind(&done); context()->Plug(v0); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { Handle<String> name = expr->name(); if (name->length() > 0 && name->Get(0) == '_') { Comment cmnt(masm_, "[ InlineRuntimeCall"); EmitInlineRuntimeCall(expr); return; } Comment cmnt(masm_, "[ CallRuntime"); ZoneList<Expression*>* args = expr->arguments(); if (expr->is_jsruntime()) { // Prepare for calling JS runtime function. __ lw(a0, GlobalObjectOperand()); __ lw(a0, FieldMemOperand(a0, GlobalObject::kBuiltinsOffset)); __ push(a0); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } if (expr->is_jsruntime()) { // Call the JS runtime function. __ li(a2, Operand(expr->name())); RelocInfo::Mode mode = RelocInfo::CODE_TARGET; Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode); CallIC(ic, mode, expr->id()); // Restore context register. __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } else { // Call the C runtime function. __ CallRuntime(expr->function(), arg_count); } context()->Plug(v0); } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* property = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (property != NULL) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); StrictModeFlag strict_mode_flag = (language_mode() == CLASSIC_MODE) ? kNonStrictMode : kStrictMode; __ li(a1, Operand(Smi::FromInt(strict_mode_flag))); __ push(a1); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(v0); } else if (proxy != NULL) { Variable* var = proxy->var(); // Delete of an unqualified identifier is disallowed in strict mode // but "delete this" is allowed. ASSERT(language_mode() == CLASSIC_MODE || var->is_this()); if (var->IsUnallocated()) { __ lw(a2, GlobalObjectOperand()); __ li(a1, Operand(var->name())); __ li(a0, Operand(Smi::FromInt(kNonStrictMode))); __ Push(a2, a1, a0); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(v0); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global, non-dynamic variables is false. // The subexpression does not have side effects. context()->Plug(var->is_this()); } else { // Non-global variable. Call the runtime to try to delete from the // context where the variable was introduced. __ push(context_register()); __ li(a2, Operand(var->name())); __ push(a2); __ CallRuntime(Runtime::kDeleteContextSlot, 2); context()->Plug(v0); } } else { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Heap::kUndefinedValueRootIndex); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); if (context()->IsEffect()) { // Unary NOT has no side effects so it's only necessary to visit the // subexpression. Match the optimizing compiler by not branching. VisitForEffect(expr->expression()); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); // The labels are swapped for the recursive call. VisitForControl(expr->expression(), test->false_label(), test->true_label(), test->fall_through()); context()->Plug(test->true_label(), test->false_label()); } else { // We handle value contexts explicitly rather than simply visiting // for control and plugging the control flow into the context, // because we need to prepare a pair of extra administrative AST ids // for the optimizing compiler. ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue()); Label materialize_true, materialize_false, done; VisitForControl(expr->expression(), &materialize_false, &materialize_true, &materialize_true); __ bind(&materialize_true); PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS); __ LoadRoot(v0, Heap::kTrueValueRootIndex); if (context()->IsStackValue()) __ push(v0); __ jmp(&done); __ bind(&materialize_false); PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS); __ LoadRoot(v0, Heap::kFalseValueRootIndex); if (context()->IsStackValue()) __ push(v0); __ bind(&done); } break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { StackValueContext context(this); VisitForTypeofValue(expr->expression()); } __ CallRuntime(Runtime::kTypeof, 1); context()->Plug(v0); break; } case Token::ADD: { Comment cmt(masm_, "[ UnaryOperation (ADD)"); VisitForAccumulatorValue(expr->expression()); Label no_conversion; __ JumpIfSmi(result_register(), &no_conversion); __ mov(a0, result_register()); ToNumberStub convert_stub; __ CallStub(&convert_stub); __ bind(&no_conversion); context()->Plug(result_register()); break; } case Token::SUB: EmitUnaryOperation(expr, "[ UnaryOperation (SUB)"); break; case Token::BIT_NOT: EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)"); break; default: UNREACHABLE(); } } void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr, const char* comment) { // TODO(svenpanne): Allowing format strings in Comment would be nice here... Comment cmt(masm_, comment); bool can_overwrite = expr->expression()->ResultOverwriteAllowed(); UnaryOverwriteMode overwrite = can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; UnaryOpStub stub(expr->op(), overwrite); // GenericUnaryOpStub expects the argument to be in a0. VisitForAccumulatorValue(expr->expression()); SetSourcePosition(expr->position()); __ mov(a0, result_register()); CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); context()->Plug(v0); } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { Comment cmnt(masm_, "[ CountOperation"); SetSourcePosition(expr->position()); // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' // as the left-hand side. if (!expr->expression()->IsValidLeftHandSide()) { VisitForEffect(expr->expression()); return; } // Expression can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->expression()->AsProperty(); // In case of a property we use the uninitialized expression context // of the key to detect a named property. if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate expression and get value. if (assign_type == VARIABLE) { ASSERT(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { __ li(at, Operand(Smi::FromInt(0))); __ push(at); } if (assign_type == NAMED_PROPERTY) { // Put the object both on the stack and in the accumulator. VisitForAccumulatorValue(prop->obj()); __ push(v0); EmitNamedPropertyLoad(prop); } else { VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ lw(a1, MemOperand(sp, 0)); __ push(v0); EmitKeyedPropertyLoad(prop); } } // We need a second deoptimization point after loading the value // in case evaluating the property load my have a side effect. if (assign_type == VARIABLE) { PrepareForBailout(expr->expression(), TOS_REG); } else { PrepareForBailoutForId(expr->CountId(), TOS_REG); } // Call ToNumber only if operand is not a smi. Label no_conversion; __ JumpIfSmi(v0, &no_conversion); __ mov(a0, v0); ToNumberStub convert_stub; __ CallStub(&convert_stub); __ bind(&no_conversion); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(v0); break; case NAMED_PROPERTY: __ sw(v0, MemOperand(sp, kPointerSize)); break; case KEYED_PROPERTY: __ sw(v0, MemOperand(sp, 2 * kPointerSize)); break; } } } __ mov(a0, result_register()); // Inline smi case if we are in a loop. Label stub_call, done; JumpPatchSite patch_site(masm_); int count_value = expr->op() == Token::INC ? 1 : -1; __ li(a1, Operand(Smi::FromInt(count_value))); if (ShouldInlineSmiCase(expr->op())) { __ AdduAndCheckForOverflow(v0, a0, a1, t0); __ BranchOnOverflow(&stub_call, t0); // Do stub on overflow. // We could eliminate this smi check if we split the code at // the first smi check before calling ToNumber. patch_site.EmitJumpIfSmi(v0, &done); __ bind(&stub_call); } // Record position before stub call. SetSourcePosition(expr->position()); BinaryOpStub stub(Token::ADD, NO_OVERWRITE); CallIC(stub.GetCode(), RelocInfo::CODE_TARGET, expr->CountId()); patch_site.EmitPatchInfo(); __ bind(&done); // Store the value returned in v0. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { { EffectContext context(this); EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context.Plug(v0); } // For all contexts except EffectConstant we have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(v0); } break; case NAMED_PROPERTY: { __ mov(a0, result_register()); // Value. __ li(a2, Operand(prop->key()->AsLiteral()->handle())); // Name. __ pop(a1); // Receiver. Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); CallIC(ic, RelocInfo::CODE_TARGET, expr->id()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } case KEYED_PROPERTY: { __ mov(a0, result_register()); // Value. __ pop(a1); // Key. __ pop(a2); // Receiver. Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->KeyedStoreIC_Initialize() : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); CallIC(ic, RelocInfo::CODE_TARGET, expr->id()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(v0); } break; } } } void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { ASSERT(!context()->IsEffect()); ASSERT(!context()->IsTest()); VariableProxy* proxy = expr->AsVariableProxy(); if (proxy != NULL && proxy->var()->IsUnallocated()) { Comment cmnt(masm_, "Global variable"); __ lw(a0, GlobalObjectOperand()); __ li(a2, Operand(proxy->name())); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); // Use a regular load, not a contextual load, to avoid a reference // error. CallIC(ic); PrepareForBailout(expr, TOS_REG); context()->Plug(v0); } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done); __ bind(&slow); __ li(a0, Operand(proxy->name())); __ Push(cp, a0); __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); PrepareForBailout(expr, TOS_REG); __ bind(&done); context()->Plug(v0); } else { // This expression cannot throw a reference error at the top level. VisitInDuplicateContext(expr); } } void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, Expression* sub_expr, Handle<String> check) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); { AccumulatorValueContext context(this); VisitForTypeofValue(sub_expr); } PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); if (check->Equals(isolate()->heap()->number_symbol())) { __ JumpIfSmi(v0, if_true); __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); Split(eq, v0, Operand(at), if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->string_symbol())) { __ JumpIfSmi(v0, if_false); // Check for undetectable objects => false. __ GetObjectType(v0, v0, a1); __ Branch(if_false, ge, a1, Operand(FIRST_NONSTRING_TYPE)); __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->boolean_symbol())) { __ LoadRoot(at, Heap::kTrueValueRootIndex); __ Branch(if_true, eq, v0, Operand(at)); __ LoadRoot(at, Heap::kFalseValueRootIndex); Split(eq, v0, Operand(at), if_true, if_false, fall_through); } else if (FLAG_harmony_typeof && check->Equals(isolate()->heap()->null_symbol())) { __ LoadRoot(at, Heap::kNullValueRootIndex); Split(eq, v0, Operand(at), if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->undefined_symbol())) { __ LoadRoot(at, Heap::kUndefinedValueRootIndex); __ Branch(if_true, eq, v0, Operand(at)); __ JumpIfSmi(v0, if_false); // Check for undetectable objects => true. __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->function_symbol())) { __ JumpIfSmi(v0, if_false); STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ GetObjectType(v0, v0, a1); __ Branch(if_true, eq, a1, Operand(JS_FUNCTION_TYPE)); Split(eq, a1, Operand(JS_FUNCTION_PROXY_TYPE), if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->object_symbol())) { __ JumpIfSmi(v0, if_false); if (!FLAG_harmony_typeof) { __ LoadRoot(at, Heap::kNullValueRootIndex); __ Branch(if_true, eq, v0, Operand(at)); } // Check for JS objects => true. __ GetObjectType(v0, v0, a1); __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset)); __ Branch(if_false, gt, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); // Check for undetectable objects => false. __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through); } else { if (if_false != fall_through) __ jmp(if_false); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); SetSourcePosition(expr->position()); // First we try a fast inlined version of the compare when one of // the operands is a literal. if (TryLiteralCompare(expr)) return; // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Token::Value op = expr->op(); VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ LoadRoot(t0, Heap::kTrueValueRootIndex); Split(eq, v0, Operand(t0), if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForStackValue(expr->right()); InstanceofStub stub(InstanceofStub::kNoFlags); __ CallStub(&stub); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); // The stub returns 0 for true. Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); Condition cc = eq; switch (op) { case Token::EQ_STRICT: case Token::EQ: cc = eq; break; case Token::LT: cc = lt; break; case Token::GT: cc = gt; break; case Token::LTE: cc = le; break; case Token::GTE: cc = ge; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } __ mov(a0, result_register()); __ pop(a1); bool inline_smi_code = ShouldInlineSmiCase(op); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ Or(a2, a0, Operand(a1)); patch_site.EmitJumpIfNotSmi(a2, &slow_case); Split(cc, a1, Operand(a0), if_true, if_false, NULL); __ bind(&slow_case); } // Record position and call the compare IC. SetSourcePosition(expr->position()); Handle<Code> ic = CompareIC::GetUninitialized(op); CallIC(ic, RelocInfo::CODE_TARGET, expr->id()); patch_site.EmitPatchInfo(); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, Expression* sub_expr, NilValue nil) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(sub_expr); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Heap::RootListIndex nil_value = nil == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ mov(a0, result_register()); __ LoadRoot(a1, nil_value); if (expr->op() == Token::EQ_STRICT) { Split(eq, a0, Operand(a1), if_true, if_false, fall_through); } else { Heap::RootListIndex other_nil_value = nil == kNullValue ? Heap::kUndefinedValueRootIndex : Heap::kNullValueRootIndex; __ Branch(if_true, eq, a0, Operand(a1)); __ LoadRoot(a1, other_nil_value); __ Branch(if_true, eq, a0, Operand(a1)); __ JumpIfSmi(a0, if_false); // It can be an undetectable object. __ lw(a1, FieldMemOperand(a0, HeapObject::kMapOffset)); __ lbu(a1, FieldMemOperand(a1, Map::kBitFieldOffset)); __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); context()->Plug(v0); } Register FullCodeGenerator::result_register() { return v0; } Register FullCodeGenerator::context_register() { return cp; } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { ASSERT_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); __ sw(value, MemOperand(fp, frame_offset)); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ lw(dst, ContextOperand(cp, context_index)); } void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { Scope* declaration_scope = scope()->DeclarationScope(); if (declaration_scope->is_global_scope()) { // Contexts nested in the global context have a canonical empty function // as their closure, not the anonymous closure containing the global // code. Pass a smi sentinel and let the runtime look up the empty // function. __ li(at, Operand(Smi::FromInt(0))); } else if (declaration_scope->is_eval_scope()) { // Contexts created by a call to eval have the same closure as the // context calling eval, not the anonymous closure containing the eval // code. Fetch it from the context. __ lw(at, ContextOperand(cp, Context::CLOSURE_INDEX)); } else { ASSERT(declaration_scope->is_function_scope()); __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); } __ push(at); } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { ASSERT(!result_register().is(a1)); // Store result register while executing finally block. __ push(result_register()); // Cook return address in link register to stack (smi encoded Code* delta). __ Subu(a1, ra, Operand(masm_->CodeObject())); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); STATIC_ASSERT(0 == kSmiTag); __ Addu(a1, a1, Operand(a1)); // Convert to smi. __ push(a1); } void FullCodeGenerator::ExitFinallyBlock() { ASSERT(!result_register().is(a1)); // Restore result register from stack. __ pop(a1); // Uncook return address and return. __ pop(result_register()); ASSERT_EQ(1, kSmiTagSize + kSmiShiftSize); __ sra(a1, a1, 1); // Un-smi-tag value. __ Addu(at, a1, Operand(masm_->CodeObject())); __ Jump(at); } #undef __ #define __ ACCESS_MASM(masm()) FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit( int* stack_depth, int* context_length) { // The macros used here must preserve the result register. // Because the handler block contains the context of the finally // code, we can restore it directly from there for the finally code // rather than iteratively unwinding contexts via their previous // links. __ Drop(*stack_depth); // Down to the handler block. if (*context_length > 0) { // Restore the context to its dedicated register and the stack. __ lw(cp, MemOperand(sp, StackHandlerConstants::kContextOffset)); __ sw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); } __ PopTryHandler(); __ Call(finally_entry_); *stack_depth = 0; *context_length = 0; return previous_; } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_MIPS