// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_UTILS_H_ #define V8_UTILS_H_ #include <stdlib.h> #include <string.h> #include <climits> #include "globals.h" #include "checks.h" #include "allocation.h" namespace v8 { namespace internal { // ---------------------------------------------------------------------------- // General helper functions #define IS_POWER_OF_TWO(x) (((x) & ((x) - 1)) == 0) // Returns true iff x is a power of 2 (or zero). Cannot be used with the // maximally negative value of the type T (the -1 overflows). template <typename T> inline bool IsPowerOf2(T x) { return IS_POWER_OF_TWO(x); } // X must be a power of 2. Returns the number of trailing zeros. inline int WhichPowerOf2(uint32_t x) { ASSERT(IsPowerOf2(x)); ASSERT(x != 0); int bits = 0; #ifdef DEBUG int original_x = x; #endif if (x >= 0x10000) { bits += 16; x >>= 16; } if (x >= 0x100) { bits += 8; x >>= 8; } if (x >= 0x10) { bits += 4; x >>= 4; } switch (x) { default: UNREACHABLE(); case 8: bits++; // Fall through. case 4: bits++; // Fall through. case 2: bits++; // Fall through. case 1: break; } ASSERT_EQ(1 << bits, original_x); return bits; return 0; } // The C++ standard leaves the semantics of '>>' undefined for // negative signed operands. Most implementations do the right thing, // though. inline int ArithmeticShiftRight(int x, int s) { return x >> s; } // Compute the 0-relative offset of some absolute value x of type T. // This allows conversion of Addresses and integral types into // 0-relative int offsets. template <typename T> inline intptr_t OffsetFrom(T x) { return x - static_cast<T>(0); } // Compute the absolute value of type T for some 0-relative offset x. // This allows conversion of 0-relative int offsets into Addresses and // integral types. template <typename T> inline T AddressFrom(intptr_t x) { return static_cast<T>(static_cast<T>(0) + x); } // Return the largest multiple of m which is <= x. template <typename T> inline T RoundDown(T x, intptr_t m) { ASSERT(IsPowerOf2(m)); return AddressFrom<T>(OffsetFrom(x) & -m); } // Return the smallest multiple of m which is >= x. template <typename T> inline T RoundUp(T x, intptr_t m) { return RoundDown<T>(static_cast<T>(x + m - 1), m); } template <typename T> int Compare(const T& a, const T& b) { if (a == b) return 0; else if (a < b) return -1; else return 1; } template <typename T> int PointerValueCompare(const T* a, const T* b) { return Compare<T>(*a, *b); } // Compare function to compare the object pointer value of two // handlified objects. The handles are passed as pointers to the // handles. template<typename T> class Handle; // Forward declaration. template <typename T> int HandleObjectPointerCompare(const Handle<T>* a, const Handle<T>* b) { return Compare<T*>(*(*a), *(*b)); } // Returns the smallest power of two which is >= x. If you pass in a // number that is already a power of two, it is returned as is. // Implementation is from "Hacker's Delight" by Henry S. Warren, Jr., // figure 3-3, page 48, where the function is called clp2. inline uint32_t RoundUpToPowerOf2(uint32_t x) { ASSERT(x <= 0x80000000u); x = x - 1; x = x | (x >> 1); x = x | (x >> 2); x = x | (x >> 4); x = x | (x >> 8); x = x | (x >> 16); return x + 1; } inline uint32_t RoundDownToPowerOf2(uint32_t x) { uint32_t rounded_up = RoundUpToPowerOf2(x); if (rounded_up > x) return rounded_up >> 1; return rounded_up; } template <typename T, typename U> inline bool IsAligned(T value, U alignment) { return (value & (alignment - 1)) == 0; } // Returns true if (addr + offset) is aligned. inline bool IsAddressAligned(Address addr, intptr_t alignment, int offset = 0) { intptr_t offs = OffsetFrom(addr + offset); return IsAligned(offs, alignment); } // Returns the maximum of the two parameters. template <typename T> T Max(T a, T b) { return a < b ? b : a; } // Returns the minimum of the two parameters. template <typename T> T Min(T a, T b) { return a < b ? a : b; } inline int StrLength(const char* string) { size_t length = strlen(string); ASSERT(length == static_cast<size_t>(static_cast<int>(length))); return static_cast<int>(length); } // ---------------------------------------------------------------------------- // BitField is a help template for encoding and decode bitfield with // unsigned content. template<class T, int shift, int size> class BitField { public: // A uint32_t mask of bit field. To use all bits of a uint32 in a // bitfield without compiler warnings we have to compute 2^32 without // using a shift count of 32. static const uint32_t kMask = ((1U << shift) << size) - (1U << shift); // Value for the field with all bits set. static const T kMax = static_cast<T>((1U << size) - 1); // Tells whether the provided value fits into the bit field. static bool is_valid(T value) { return (static_cast<uint32_t>(value) & ~static_cast<uint32_t>(kMax)) == 0; } // Returns a uint32_t with the bit field value encoded. static uint32_t encode(T value) { ASSERT(is_valid(value)); return static_cast<uint32_t>(value) << shift; } // Returns a uint32_t with the bit field value updated. static uint32_t update(uint32_t previous, T value) { return (previous & ~kMask) | encode(value); } // Extracts the bit field from the value. static T decode(uint32_t value) { return static_cast<T>((value & kMask) >> shift); } }; // ---------------------------------------------------------------------------- // Hash function. static const uint32_t kZeroHashSeed = 0; // Thomas Wang, Integer Hash Functions. // http://www.concentric.net/~Ttwang/tech/inthash.htm inline uint32_t ComputeIntegerHash(uint32_t key, uint32_t seed) { uint32_t hash = key; hash = hash ^ seed; hash = ~hash + (hash << 15); // hash = (hash << 15) - hash - 1; hash = hash ^ (hash >> 12); hash = hash + (hash << 2); hash = hash ^ (hash >> 4); hash = hash * 2057; // hash = (hash + (hash << 3)) + (hash << 11); hash = hash ^ (hash >> 16); return hash; } inline uint32_t ComputeLongHash(uint64_t key) { uint64_t hash = key; hash = ~hash + (hash << 18); // hash = (hash << 18) - hash - 1; hash = hash ^ (hash >> 31); hash = hash * 21; // hash = (hash + (hash << 2)) + (hash << 4); hash = hash ^ (hash >> 11); hash = hash + (hash << 6); hash = hash ^ (hash >> 22); return (uint32_t) hash; } inline uint32_t ComputePointerHash(void* ptr) { return ComputeIntegerHash( static_cast<uint32_t>(reinterpret_cast<intptr_t>(ptr)), v8::internal::kZeroHashSeed); } // ---------------------------------------------------------------------------- // Miscellaneous // A static resource holds a static instance that can be reserved in // a local scope using an instance of Access. Attempts to re-reserve // the instance will cause an error. template <typename T> class StaticResource { public: StaticResource() : is_reserved_(false) {} private: template <typename S> friend class Access; T instance_; bool is_reserved_; }; // Locally scoped access to a static resource. template <typename T> class Access { public: explicit Access(StaticResource<T>* resource) : resource_(resource) , instance_(&resource->instance_) { ASSERT(!resource->is_reserved_); resource->is_reserved_ = true; } ~Access() { resource_->is_reserved_ = false; resource_ = NULL; instance_ = NULL; } T* value() { return instance_; } T* operator -> () { return instance_; } private: StaticResource<T>* resource_; T* instance_; }; template <typename T> class Vector { public: Vector() : start_(NULL), length_(0) {} Vector(T* data, int length) : start_(data), length_(length) { ASSERT(length == 0 || (length > 0 && data != NULL)); } static Vector<T> New(int length) { return Vector<T>(NewArray<T>(length), length); } // Returns a vector using the same backing storage as this one, // spanning from and including 'from', to but not including 'to'. Vector<T> SubVector(int from, int to) { ASSERT(to <= length_); ASSERT(from < to); ASSERT(0 <= from); return Vector<T>(start() + from, to - from); } // Returns the length of the vector. int length() const { return length_; } // Returns whether or not the vector is empty. bool is_empty() const { return length_ == 0; } // Returns the pointer to the start of the data in the vector. T* start() const { return start_; } // Access individual vector elements - checks bounds in debug mode. T& operator[](int index) const { ASSERT(0 <= index && index < length_); return start_[index]; } const T& at(int index) const { return operator[](index); } T& first() { return start_[0]; } T& last() { return start_[length_ - 1]; } // Returns a clone of this vector with a new backing store. Vector<T> Clone() const { T* result = NewArray<T>(length_); for (int i = 0; i < length_; i++) result[i] = start_[i]; return Vector<T>(result, length_); } void Sort(int (*cmp)(const T*, const T*)) { typedef int (*RawComparer)(const void*, const void*); qsort(start(), length(), sizeof(T), reinterpret_cast<RawComparer>(cmp)); } void Sort() { Sort(PointerValueCompare<T>); } void Truncate(int length) { ASSERT(length <= length_); length_ = length; } // Releases the array underlying this vector. Once disposed the // vector is empty. void Dispose() { DeleteArray(start_); start_ = NULL; length_ = 0; } inline Vector<T> operator+(int offset) { ASSERT(offset < length_); return Vector<T>(start_ + offset, length_ - offset); } // Factory method for creating empty vectors. static Vector<T> empty() { return Vector<T>(NULL, 0); } template<typename S> static Vector<T> cast(Vector<S> input) { return Vector<T>(reinterpret_cast<T*>(input.start()), input.length() * sizeof(S) / sizeof(T)); } protected: void set_start(T* start) { start_ = start; } private: T* start_; int length_; }; // A pointer that can only be set once and doesn't allow NULL values. template<typename T> class SetOncePointer { public: SetOncePointer() : pointer_(NULL) { } bool is_set() const { return pointer_ != NULL; } T* get() const { ASSERT(pointer_ != NULL); return pointer_; } void set(T* value) { ASSERT(pointer_ == NULL && value != NULL); pointer_ = value; } private: T* pointer_; }; template <typename T, int kSize> class EmbeddedVector : public Vector<T> { public: EmbeddedVector() : Vector<T>(buffer_, kSize) { } explicit EmbeddedVector(T initial_value) : Vector<T>(buffer_, kSize) { for (int i = 0; i < kSize; ++i) { buffer_[i] = initial_value; } } // When copying, make underlying Vector to reference our buffer. EmbeddedVector(const EmbeddedVector& rhs) : Vector<T>(rhs) { memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize); set_start(buffer_); } EmbeddedVector& operator=(const EmbeddedVector& rhs) { if (this == &rhs) return *this; Vector<T>::operator=(rhs); memcpy(buffer_, rhs.buffer_, sizeof(T) * kSize); this->set_start(buffer_); return *this; } private: T buffer_[kSize]; }; template <typename T> class ScopedVector : public Vector<T> { public: explicit ScopedVector(int length) : Vector<T>(NewArray<T>(length), length) { } ~ScopedVector() { DeleteArray(this->start()); } private: DISALLOW_IMPLICIT_CONSTRUCTORS(ScopedVector); }; inline Vector<const char> CStrVector(const char* data) { return Vector<const char>(data, StrLength(data)); } inline Vector<char> MutableCStrVector(char* data) { return Vector<char>(data, StrLength(data)); } inline Vector<char> MutableCStrVector(char* data, int max) { int length = StrLength(data); return Vector<char>(data, (length < max) ? length : max); } /* * A class that collects values into a backing store. * Specialized versions of the class can allow access to the backing store * in different ways. * There is no guarantee that the backing store is contiguous (and, as a * consequence, no guarantees that consecutively added elements are adjacent * in memory). The collector may move elements unless it has guaranteed not * to. */ template <typename T, int growth_factor = 2, int max_growth = 1 * MB> class Collector { public: explicit Collector(int initial_capacity = kMinCapacity) : index_(0), size_(0) { current_chunk_ = Vector<T>::New(initial_capacity); } virtual ~Collector() { // Free backing store (in reverse allocation order). current_chunk_.Dispose(); for (int i = chunks_.length() - 1; i >= 0; i--) { chunks_.at(i).Dispose(); } } // Add a single element. inline void Add(T value) { if (index_ >= current_chunk_.length()) { Grow(1); } current_chunk_[index_] = value; index_++; size_++; } // Add a block of contiguous elements and return a Vector backed by the // memory area. // A basic Collector will keep this vector valid as long as the Collector // is alive. inline Vector<T> AddBlock(int size, T initial_value) { ASSERT(size > 0); if (size > current_chunk_.length() - index_) { Grow(size); } T* position = current_chunk_.start() + index_; index_ += size; size_ += size; for (int i = 0; i < size; i++) { position[i] = initial_value; } return Vector<T>(position, size); } // Add a contiguous block of elements and return a vector backed // by the added block. // A basic Collector will keep this vector valid as long as the Collector // is alive. inline Vector<T> AddBlock(Vector<const T> source) { if (source.length() > current_chunk_.length() - index_) { Grow(source.length()); } T* position = current_chunk_.start() + index_; index_ += source.length(); size_ += source.length(); for (int i = 0; i < source.length(); i++) { position[i] = source[i]; } return Vector<T>(position, source.length()); } // Write the contents of the collector into the provided vector. void WriteTo(Vector<T> destination) { ASSERT(size_ <= destination.length()); int position = 0; for (int i = 0; i < chunks_.length(); i++) { Vector<T> chunk = chunks_.at(i); for (int j = 0; j < chunk.length(); j++) { destination[position] = chunk[j]; position++; } } for (int i = 0; i < index_; i++) { destination[position] = current_chunk_[i]; position++; } } // Allocate a single contiguous vector, copy all the collected // elements to the vector, and return it. // The caller is responsible for freeing the memory of the returned // vector (e.g., using Vector::Dispose). Vector<T> ToVector() { Vector<T> new_store = Vector<T>::New(size_); WriteTo(new_store); return new_store; } // Resets the collector to be empty. virtual void Reset(); // Total number of elements added to collector so far. inline int size() { return size_; } protected: static const int kMinCapacity = 16; List<Vector<T> > chunks_; Vector<T> current_chunk_; // Block of memory currently being written into. int index_; // Current index in current chunk. int size_; // Total number of elements in collector. // Creates a new current chunk, and stores the old chunk in the chunks_ list. void Grow(int min_capacity) { ASSERT(growth_factor > 1); int new_capacity; int current_length = current_chunk_.length(); if (current_length < kMinCapacity) { // The collector started out as empty. new_capacity = min_capacity * growth_factor; if (new_capacity < kMinCapacity) new_capacity = kMinCapacity; } else { int growth = current_length * (growth_factor - 1); if (growth > max_growth) { growth = max_growth; } new_capacity = current_length + growth; if (new_capacity < min_capacity) { new_capacity = min_capacity + growth; } } NewChunk(new_capacity); ASSERT(index_ + min_capacity <= current_chunk_.length()); } // Before replacing the current chunk, give a subclass the option to move // some of the current data into the new chunk. The function may update // the current index_ value to represent data no longer in the current chunk. // Returns the initial index of the new chunk (after copied data). virtual void NewChunk(int new_capacity) { Vector<T> new_chunk = Vector<T>::New(new_capacity); if (index_ > 0) { chunks_.Add(current_chunk_.SubVector(0, index_)); } else { current_chunk_.Dispose(); } current_chunk_ = new_chunk; index_ = 0; } }; /* * A collector that allows sequences of values to be guaranteed to * stay consecutive. * If the backing store grows while a sequence is active, the current * sequence might be moved, but after the sequence is ended, it will * not move again. * NOTICE: Blocks allocated using Collector::AddBlock(int) can move * as well, if inside an active sequence where another element is added. */ template <typename T, int growth_factor = 2, int max_growth = 1 * MB> class SequenceCollector : public Collector<T, growth_factor, max_growth> { public: explicit SequenceCollector(int initial_capacity) : Collector<T, growth_factor, max_growth>(initial_capacity), sequence_start_(kNoSequence) { } virtual ~SequenceCollector() {} void StartSequence() { ASSERT(sequence_start_ == kNoSequence); sequence_start_ = this->index_; } Vector<T> EndSequence() { ASSERT(sequence_start_ != kNoSequence); int sequence_start = sequence_start_; sequence_start_ = kNoSequence; if (sequence_start == this->index_) return Vector<T>(); return this->current_chunk_.SubVector(sequence_start, this->index_); } // Drops the currently added sequence, and all collected elements in it. void DropSequence() { ASSERT(sequence_start_ != kNoSequence); int sequence_length = this->index_ - sequence_start_; this->index_ = sequence_start_; this->size_ -= sequence_length; sequence_start_ = kNoSequence; } virtual void Reset() { sequence_start_ = kNoSequence; this->Collector<T, growth_factor, max_growth>::Reset(); } private: static const int kNoSequence = -1; int sequence_start_; // Move the currently active sequence to the new chunk. virtual void NewChunk(int new_capacity) { if (sequence_start_ == kNoSequence) { // Fall back on default behavior if no sequence has been started. this->Collector<T, growth_factor, max_growth>::NewChunk(new_capacity); return; } int sequence_length = this->index_ - sequence_start_; Vector<T> new_chunk = Vector<T>::New(sequence_length + new_capacity); ASSERT(sequence_length < new_chunk.length()); for (int i = 0; i < sequence_length; i++) { new_chunk[i] = this->current_chunk_[sequence_start_ + i]; } if (sequence_start_ > 0) { this->chunks_.Add(this->current_chunk_.SubVector(0, sequence_start_)); } else { this->current_chunk_.Dispose(); } this->current_chunk_ = new_chunk; this->index_ = sequence_length; sequence_start_ = 0; } }; // Compare ASCII/16bit chars to ASCII/16bit chars. template <typename lchar, typename rchar> inline int CompareChars(const lchar* lhs, const rchar* rhs, int chars) { const lchar* limit = lhs + chars; #ifdef V8_HOST_CAN_READ_UNALIGNED if (sizeof(*lhs) == sizeof(*rhs)) { // Number of characters in a uintptr_t. static const int kStepSize = sizeof(uintptr_t) / sizeof(*lhs); // NOLINT while (lhs <= limit - kStepSize) { if (*reinterpret_cast<const uintptr_t*>(lhs) != *reinterpret_cast<const uintptr_t*>(rhs)) { break; } lhs += kStepSize; rhs += kStepSize; } } #endif while (lhs < limit) { int r = static_cast<int>(*lhs) - static_cast<int>(*rhs); if (r != 0) return r; ++lhs; ++rhs; } return 0; } // Calculate 10^exponent. inline int TenToThe(int exponent) { ASSERT(exponent <= 9); ASSERT(exponent >= 1); int answer = 10; for (int i = 1; i < exponent; i++) answer *= 10; return answer; } // The type-based aliasing rule allows the compiler to assume that pointers of // different types (for some definition of different) never alias each other. // Thus the following code does not work: // // float f = foo(); // int fbits = *(int*)(&f); // // The compiler 'knows' that the int pointer can't refer to f since the types // don't match, so the compiler may cache f in a register, leaving random data // in fbits. Using C++ style casts makes no difference, however a pointer to // char data is assumed to alias any other pointer. This is the 'memcpy // exception'. // // Bit_cast uses the memcpy exception to move the bits from a variable of one // type of a variable of another type. Of course the end result is likely to // be implementation dependent. Most compilers (gcc-4.2 and MSVC 2005) // will completely optimize BitCast away. // // There is an additional use for BitCast. // Recent gccs will warn when they see casts that may result in breakage due to // the type-based aliasing rule. If you have checked that there is no breakage // you can use BitCast to cast one pointer type to another. This confuses gcc // enough that it can no longer see that you have cast one pointer type to // another thus avoiding the warning. // We need different implementations of BitCast for pointer and non-pointer // values. We use partial specialization of auxiliary struct to work around // issues with template functions overloading. template <class Dest, class Source> struct BitCastHelper { STATIC_ASSERT(sizeof(Dest) == sizeof(Source)); INLINE(static Dest cast(const Source& source)) { Dest dest; memcpy(&dest, &source, sizeof(dest)); return dest; } }; template <class Dest, class Source> struct BitCastHelper<Dest, Source*> { INLINE(static Dest cast(Source* source)) { return BitCastHelper<Dest, uintptr_t>:: cast(reinterpret_cast<uintptr_t>(source)); } }; template <class Dest, class Source> INLINE(Dest BitCast(const Source& source)); template <class Dest, class Source> inline Dest BitCast(const Source& source) { return BitCastHelper<Dest, Source>::cast(source); } template<typename ElementType, int NumElements> class EmbeddedContainer { public: EmbeddedContainer() : elems_() { } int length() { return NumElements; } ElementType& operator[](int i) { ASSERT(i < length()); return elems_[i]; } private: ElementType elems_[NumElements]; }; template<typename ElementType> class EmbeddedContainer<ElementType, 0> { public: int length() { return 0; } ElementType& operator[](int i) { UNREACHABLE(); static ElementType t = 0; return t; } }; // Helper class for building result strings in a character buffer. The // purpose of the class is to use safe operations that checks the // buffer bounds on all operations in debug mode. // This simple base class does not allow formatted output. class SimpleStringBuilder { public: // Create a string builder with a buffer of the given size. The // buffer is allocated through NewArray<char> and must be // deallocated by the caller of Finalize(). explicit SimpleStringBuilder(int size); SimpleStringBuilder(char* buffer, int size) : buffer_(buffer, size), position_(0) { } ~SimpleStringBuilder() { if (!is_finalized()) Finalize(); } int size() const { return buffer_.length(); } // Get the current position in the builder. int position() const { ASSERT(!is_finalized()); return position_; } // Reset the position. void Reset() { position_ = 0; } // Add a single character to the builder. It is not allowed to add // 0-characters; use the Finalize() method to terminate the string // instead. void AddCharacter(char c) { ASSERT(c != '\0'); ASSERT(!is_finalized() && position_ < buffer_.length()); buffer_[position_++] = c; } // Add an entire string to the builder. Uses strlen() internally to // compute the length of the input string. void AddString(const char* s); // Add the first 'n' characters of the given string 's' to the // builder. The input string must have enough characters. void AddSubstring(const char* s, int n); // Add character padding to the builder. If count is non-positive, // nothing is added to the builder. void AddPadding(char c, int count); // Add the decimal representation of the value. void AddDecimalInteger(int value); // Finalize the string by 0-terminating it and returning the buffer. char* Finalize(); protected: Vector<char> buffer_; int position_; bool is_finalized() const { return position_ < 0; } private: DISALLOW_IMPLICIT_CONSTRUCTORS(SimpleStringBuilder); }; // A poor man's version of STL's bitset: A bit set of enums E (without explicit // values), fitting into an integral type T. template <class E, class T = int> class EnumSet { public: explicit EnumSet(T bits = 0) : bits_(bits) {} bool IsEmpty() const { return bits_ == 0; } bool Contains(E element) const { return (bits_ & Mask(element)) != 0; } bool ContainsAnyOf(const EnumSet& set) const { return (bits_ & set.bits_) != 0; } void Add(E element) { bits_ |= Mask(element); } void Add(const EnumSet& set) { bits_ |= set.bits_; } void Remove(E element) { bits_ &= ~Mask(element); } void Remove(const EnumSet& set) { bits_ &= ~set.bits_; } void RemoveAll() { bits_ = 0; } void Intersect(const EnumSet& set) { bits_ &= set.bits_; } T ToIntegral() const { return bits_; } bool operator==(const EnumSet& set) { return bits_ == set.bits_; } private: T Mask(E element) const { // The strange typing in ASSERT is necessary to avoid stupid warnings, see: // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43680 ASSERT(element < static_cast<int>(sizeof(T) * CHAR_BIT)); return 1 << element; } T bits_; }; } } // namespace v8::internal #endif // V8_UTILS_H_