// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "v8.h" #if defined(V8_TARGET_ARCH_X64) #include "code-stubs.h" #include "codegen.h" #include "compiler.h" #include "debug.h" #include "full-codegen.h" #include "parser.h" #include "scopes.h" #include "stub-cache.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm_) class JumpPatchSite BASE_EMBEDDED { public: explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { #ifdef DEBUG info_emitted_ = false; #endif } ~JumpPatchSite() { ASSERT(patch_site_.is_bound() == info_emitted_); } void EmitJumpIfNotSmi(Register reg, Label* target, Label::Distance near_jump = Label::kFar) { __ testb(reg, Immediate(kSmiTagMask)); EmitJump(not_carry, target, near_jump); // Always taken before patched. } void EmitJumpIfSmi(Register reg, Label* target, Label::Distance near_jump = Label::kFar) { __ testb(reg, Immediate(kSmiTagMask)); EmitJump(carry, target, near_jump); // Never taken before patched. } void EmitPatchInfo() { if (patch_site_.is_bound()) { int delta_to_patch_site = masm_->SizeOfCodeGeneratedSince(&patch_site_); ASSERT(is_int8(delta_to_patch_site)); __ testl(rax, Immediate(delta_to_patch_site)); #ifdef DEBUG info_emitted_ = true; #endif } else { __ nop(); // Signals no inlined code. } } private: // jc will be patched with jz, jnc will become jnz. void EmitJump(Condition cc, Label* target, Label::Distance near_jump) { ASSERT(!patch_site_.is_bound() && !info_emitted_); ASSERT(cc == carry || cc == not_carry); __ bind(&patch_site_); __ j(cc, target, near_jump); } MacroAssembler* masm_; Label patch_site_; #ifdef DEBUG bool info_emitted_; #endif }; int FullCodeGenerator::self_optimization_header_size() { return 20; } // Generate code for a JS function. On entry to the function the receiver // and arguments have been pushed on the stack left to right, with the // return address on top of them. The actual argument count matches the // formal parameter count expected by the function. // // The live registers are: // o rdi: the JS function object being called (i.e. ourselves) // o rsi: our context // o rbp: our caller's frame pointer // o rsp: stack pointer (pointing to return address) // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-x64.h for its layout. void FullCodeGenerator::Generate() { CompilationInfo* info = info_; handler_table_ = isolate()->factory()->NewFixedArray(function()->handler_count(), TENURED); SetFunctionPosition(function()); Comment cmnt(masm_, "[ function compiled by full code generator"); // We can optionally optimize based on counters rather than statistical // sampling. if (info->ShouldSelfOptimize()) { if (FLAG_trace_opt_verbose) { PrintF("[adding self-optimization header to %s]\n", *info->function()->debug_name()->ToCString()); } has_self_optimization_header_ = true; MaybeObject* maybe_cell = isolate()->heap()->AllocateJSGlobalPropertyCell( Smi::FromInt(Compiler::kCallsUntilPrimitiveOpt)); JSGlobalPropertyCell* cell; if (maybe_cell->To(&cell)) { __ movq(rax, Handle<JSGlobalPropertyCell>(cell), RelocInfo::EMBEDDED_OBJECT); __ SmiAddConstant(FieldOperand(rax, JSGlobalPropertyCell::kValueOffset), Smi::FromInt(-1)); Handle<Code> compile_stub( isolate()->builtins()->builtin(Builtins::kLazyRecompile)); __ j(zero, compile_stub, RelocInfo::CODE_TARGET); ASSERT(masm_->pc_offset() == self_optimization_header_size()); } } #ifdef DEBUG if (strlen(FLAG_stop_at) > 0 && info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { __ int3(); } #endif // Strict mode functions and builtins need to replace the receiver // with undefined when called as functions (without an explicit // receiver object). rcx is zero for method calls and non-zero for // function calls. if (!info->is_classic_mode() || info->is_native()) { Label ok; __ testq(rcx, rcx); __ j(zero, &ok, Label::kNear); // +1 for return address. int receiver_offset = (info->scope()->num_parameters() + 1) * kPointerSize; __ LoadRoot(kScratchRegister, Heap::kUndefinedValueRootIndex); __ movq(Operand(rsp, receiver_offset), kScratchRegister); __ bind(&ok); } // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm_, StackFrame::MANUAL); __ push(rbp); // Caller's frame pointer. __ movq(rbp, rsp); __ push(rsi); // Callee's context. __ push(rdi); // Callee's JS Function. { Comment cmnt(masm_, "[ Allocate locals"); int locals_count = info->scope()->num_stack_slots(); if (locals_count == 1) { __ PushRoot(Heap::kUndefinedValueRootIndex); } else if (locals_count > 1) { __ LoadRoot(rdx, Heap::kUndefinedValueRootIndex); for (int i = 0; i < locals_count; i++) { __ push(rdx); } } } bool function_in_register = true; // Possibly allocate a local context. int heap_slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; if (heap_slots > 0) { Comment cmnt(masm_, "[ Allocate local context"); // Argument to NewContext is the function, which is still in rdi. __ push(rdi); if (heap_slots <= FastNewContextStub::kMaximumSlots) { FastNewContextStub stub(heap_slots); __ CallStub(&stub); } else { __ CallRuntime(Runtime::kNewFunctionContext, 1); } function_in_register = false; // Context is returned in both rax and rsi. It replaces the context // passed to us. It's saved in the stack and kept live in rsi. __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); // Copy any necessary parameters into the context. int num_parameters = info->scope()->num_parameters(); for (int i = 0; i < num_parameters; i++) { Variable* var = scope()->parameter(i); if (var->IsContextSlot()) { int parameter_offset = StandardFrameConstants::kCallerSPOffset + (num_parameters - 1 - i) * kPointerSize; // Load parameter from stack. __ movq(rax, Operand(rbp, parameter_offset)); // Store it in the context. int context_offset = Context::SlotOffset(var->index()); __ movq(Operand(rsi, context_offset), rax); // Update the write barrier. This clobbers rax and rbx. __ RecordWriteContextSlot( rsi, context_offset, rax, rbx, kDontSaveFPRegs); } } } // Possibly allocate an arguments object. Variable* arguments = scope()->arguments(); if (arguments != NULL) { // Arguments object must be allocated after the context object, in // case the "arguments" or ".arguments" variables are in the context. Comment cmnt(masm_, "[ Allocate arguments object"); if (function_in_register) { __ push(rdi); } else { __ push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } // The receiver is just before the parameters on the caller's stack. int num_parameters = info->scope()->num_parameters(); int offset = num_parameters * kPointerSize; __ lea(rdx, Operand(rbp, StandardFrameConstants::kCallerSPOffset + offset)); __ push(rdx); __ Push(Smi::FromInt(num_parameters)); // Arguments to ArgumentsAccessStub: // function, receiver address, parameter count. // The stub will rewrite receiver and parameter count if the previous // stack frame was an arguments adapter frame. ArgumentsAccessStub::Type type; if (!is_classic_mode()) { type = ArgumentsAccessStub::NEW_STRICT; } else if (function()->has_duplicate_parameters()) { type = ArgumentsAccessStub::NEW_NON_STRICT_SLOW; } else { type = ArgumentsAccessStub::NEW_NON_STRICT_FAST; } ArgumentsAccessStub stub(type); __ CallStub(&stub); SetVar(arguments, rax, rbx, rdx); } if (FLAG_trace) { __ CallRuntime(Runtime::kTraceEnter, 0); } // Visit the declarations and body unless there is an illegal // redeclaration. if (scope()->HasIllegalRedeclaration()) { Comment cmnt(masm_, "[ Declarations"); scope()->VisitIllegalRedeclaration(this); } else { PrepareForBailoutForId(AstNode::kFunctionEntryId, NO_REGISTERS); { Comment cmnt(masm_, "[ Declarations"); // For named function expressions, declare the function name as a // constant. if (scope()->is_function_scope() && scope()->function() != NULL) { VariableProxy* proxy = scope()->function(); ASSERT(proxy->var()->mode() == CONST || proxy->var()->mode() == CONST_HARMONY); ASSERT(proxy->var()->location() != Variable::UNALLOCATED); EmitDeclaration(proxy, proxy->var()->mode(), NULL); } VisitDeclarations(scope()->declarations()); } { Comment cmnt(masm_, "[ Stack check"); PrepareForBailoutForId(AstNode::kDeclarationsId, NO_REGISTERS); Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); StackCheckStub stub; __ CallStub(&stub); __ bind(&ok); } { Comment cmnt(masm_, "[ Body"); ASSERT(loop_depth() == 0); VisitStatements(function()->body()); ASSERT(loop_depth() == 0); } } // Always emit a 'return undefined' in case control fell off the end of // the body. { Comment cmnt(masm_, "[ return <undefined>;"); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); EmitReturnSequence(); } } void FullCodeGenerator::ClearAccumulator() { __ Set(rax, 0); } void FullCodeGenerator::EmitStackCheck(IterationStatement* stmt, Label* back_edge_target) { Comment cmnt(masm_, "[ Stack check"); Label ok; __ CompareRoot(rsp, Heap::kStackLimitRootIndex); __ j(above_equal, &ok, Label::kNear); StackCheckStub stub; __ CallStub(&stub); // Record a mapping of this PC offset to the OSR id. This is used to find // the AST id from the unoptimized code in order to use it as a key into // the deoptimization input data found in the optimized code. RecordStackCheck(stmt->OsrEntryId()); // Loop stack checks can be patched to perform on-stack replacement. In // order to decide whether or not to perform OSR we embed the loop depth // in a test instruction after the call so we can extract it from the OSR // builtin. ASSERT(loop_depth() > 0); __ testl(rax, Immediate(Min(loop_depth(), Code::kMaxLoopNestingMarker))); __ bind(&ok); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); // Record a mapping of the OSR id to this PC. This is used if the OSR // entry becomes the target of a bailout. We don't expect it to be, but // we want it to work if it is. PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); } void FullCodeGenerator::EmitReturnSequence() { Comment cmnt(masm_, "[ Return sequence"); if (return_label_.is_bound()) { __ jmp(&return_label_); } else { __ bind(&return_label_); if (FLAG_trace) { __ push(rax); __ CallRuntime(Runtime::kTraceExit, 1); } #ifdef DEBUG // Add a label for checking the size of the code used for returning. Label check_exit_codesize; masm_->bind(&check_exit_codesize); #endif CodeGenerator::RecordPositions(masm_, function()->end_position() - 1); __ RecordJSReturn(); // Do not use the leave instruction here because it is too short to // patch with the code required by the debugger. __ movq(rsp, rbp); __ pop(rbp); int arguments_bytes = (info_->scope()->num_parameters() + 1) * kPointerSize; __ Ret(arguments_bytes, rcx); #ifdef ENABLE_DEBUGGER_SUPPORT // Add padding that will be overwritten by a debugger breakpoint. We // have just generated at least 7 bytes: "movq rsp, rbp; pop rbp; ret k" // (3 + 1 + 3). const int kPadding = Assembler::kJSReturnSequenceLength - 7; for (int i = 0; i < kPadding; ++i) { masm_->int3(); } // Check that the size of the code used for returning is large enough // for the debugger's requirements. ASSERT(Assembler::kJSReturnSequenceLength <= masm_->SizeOfCodeGeneratedSince(&check_exit_codesize)); #endif } } void FullCodeGenerator::EffectContext::Plug(Variable* var) const { ASSERT(var->IsStackAllocated() || var->IsContextSlot()); } void FullCodeGenerator::AccumulatorValueContext::Plug(Variable* var) const { ASSERT(var->IsStackAllocated() || var->IsContextSlot()); codegen()->GetVar(result_register(), var); } void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { ASSERT(var->IsStackAllocated() || var->IsContextSlot()); MemOperand operand = codegen()->VarOperand(var, result_register()); __ push(operand); } void FullCodeGenerator::TestContext::Plug(Variable* var) const { codegen()->GetVar(result_register(), var); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Heap::RootListIndex index) const { __ LoadRoot(result_register(), index); } void FullCodeGenerator::StackValueContext::Plug( Heap::RootListIndex index) const { __ PushRoot(index); } void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (index == Heap::kUndefinedValueRootIndex || index == Heap::kNullValueRootIndex || index == Heap::kFalseValueRootIndex) { if (false_label_ != fall_through_) __ jmp(false_label_); } else if (index == Heap::kTrueValueRootIndex) { if (true_label_ != fall_through_) __ jmp(true_label_); } else { __ LoadRoot(result_register(), index); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { } void FullCodeGenerator::AccumulatorValueContext::Plug( Handle<Object> lit) const { __ Move(result_register(), lit); } void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { __ Push(lit); } void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); ASSERT(!lit->IsUndetectableObject()); // There are no undetectable literals. if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { if (false_label_ != fall_through_) __ jmp(false_label_); } else if (lit->IsTrue() || lit->IsJSObject()) { if (true_label_ != fall_through_) __ jmp(true_label_); } else if (lit->IsString()) { if (String::cast(*lit)->length() == 0) { if (false_label_ != fall_through_) __ jmp(false_label_); } else { if (true_label_ != fall_through_) __ jmp(true_label_); } } else if (lit->IsSmi()) { if (Smi::cast(*lit)->value() == 0) { if (false_label_ != fall_through_) __ jmp(false_label_); } else { if (true_label_ != fall_through_) __ jmp(true_label_); } } else { // For simplicity we always test the accumulator register. __ Move(result_register(), lit); codegen()->DoTest(this); } } void FullCodeGenerator::EffectContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); __ Drop(count); } void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( int count, Register reg) const { ASSERT(count > 0); __ Drop(count); __ Move(result_register(), reg); } void FullCodeGenerator::StackValueContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); if (count > 1) __ Drop(count - 1); __ movq(Operand(rsp, 0), reg); } void FullCodeGenerator::TestContext::DropAndPlug(int count, Register reg) const { ASSERT(count > 0); // For simplicity we always test the accumulator register. __ Drop(count); __ Move(result_register(), reg); codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); codegen()->DoTest(this); } void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, Label* materialize_false) const { ASSERT(materialize_true == materialize_false); __ bind(materialize_true); } void FullCodeGenerator::AccumulatorValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ Move(result_register(), isolate()->factory()->true_value()); __ jmp(&done, Label::kNear); __ bind(materialize_false); __ Move(result_register(), isolate()->factory()->false_value()); __ bind(&done); } void FullCodeGenerator::StackValueContext::Plug( Label* materialize_true, Label* materialize_false) const { Label done; __ bind(materialize_true); __ Push(isolate()->factory()->true_value()); __ jmp(&done, Label::kNear); __ bind(materialize_false); __ Push(isolate()->factory()->false_value()); __ bind(&done); } void FullCodeGenerator::TestContext::Plug(Label* materialize_true, Label* materialize_false) const { ASSERT(materialize_true == true_label_); ASSERT(materialize_false == false_label_); } void FullCodeGenerator::EffectContext::Plug(bool flag) const { } void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ LoadRoot(result_register(), value_root_index); } void FullCodeGenerator::StackValueContext::Plug(bool flag) const { Heap::RootListIndex value_root_index = flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; __ PushRoot(value_root_index); } void FullCodeGenerator::TestContext::Plug(bool flag) const { codegen()->PrepareForBailoutBeforeSplit(condition(), true, true_label_, false_label_); if (flag) { if (true_label_ != fall_through_) __ jmp(true_label_); } else { if (false_label_ != fall_through_) __ jmp(false_label_); } } void FullCodeGenerator::DoTest(Expression* condition, Label* if_true, Label* if_false, Label* fall_through) { ToBooleanStub stub(result_register()); __ push(result_register()); __ CallStub(&stub); __ testq(result_register(), result_register()); // The stub returns nonzero for true. Split(not_zero, if_true, if_false, fall_through); } void FullCodeGenerator::Split(Condition cc, Label* if_true, Label* if_false, Label* fall_through) { if (if_false == fall_through) { __ j(cc, if_true); } else if (if_true == fall_through) { __ j(NegateCondition(cc), if_false); } else { __ j(cc, if_true); __ jmp(if_false); } } MemOperand FullCodeGenerator::StackOperand(Variable* var) { ASSERT(var->IsStackAllocated()); // Offset is negative because higher indexes are at lower addresses. int offset = -var->index() * kPointerSize; // Adjust by a (parameter or local) base offset. if (var->IsParameter()) { offset += (info_->scope()->num_parameters() + 1) * kPointerSize; } else { offset += JavaScriptFrameConstants::kLocal0Offset; } return Operand(rbp, offset); } MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { ASSERT(var->IsContextSlot() || var->IsStackAllocated()); if (var->IsContextSlot()) { int context_chain_length = scope()->ContextChainLength(var->scope()); __ LoadContext(scratch, context_chain_length); return ContextOperand(scratch, var->index()); } else { return StackOperand(var); } } void FullCodeGenerator::GetVar(Register dest, Variable* var) { ASSERT(var->IsContextSlot() || var->IsStackAllocated()); MemOperand location = VarOperand(var, dest); __ movq(dest, location); } void FullCodeGenerator::SetVar(Variable* var, Register src, Register scratch0, Register scratch1) { ASSERT(var->IsContextSlot() || var->IsStackAllocated()); ASSERT(!scratch0.is(src)); ASSERT(!scratch0.is(scratch1)); ASSERT(!scratch1.is(src)); MemOperand location = VarOperand(var, scratch0); __ movq(location, src); // Emit the write barrier code if the location is in the heap. if (var->IsContextSlot()) { int offset = Context::SlotOffset(var->index()); __ RecordWriteContextSlot(scratch0, offset, src, scratch1, kDontSaveFPRegs); } } void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, bool should_normalize, Label* if_true, Label* if_false) { // Only prepare for bailouts before splits if we're in a test // context. Otherwise, we let the Visit function deal with the // preparation to avoid preparing with the same AST id twice. if (!context()->IsTest() || !info_->IsOptimizable()) return; Label skip; if (should_normalize) __ jmp(&skip, Label::kNear); PrepareForBailout(expr, TOS_REG); if (should_normalize) { __ CompareRoot(rax, Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, NULL); __ bind(&skip); } } void FullCodeGenerator::EmitDeclaration(VariableProxy* proxy, VariableMode mode, FunctionLiteral* function) { // If it was not possible to allocate the variable at compile time, we // need to "declare" it at runtime to make sure it actually exists in the // local context. Variable* variable = proxy->var(); bool binding_needs_init = (function == NULL) && (mode == CONST || mode == CONST_HARMONY || mode == LET); switch (variable->location()) { case Variable::UNALLOCATED: ++global_count_; break; case Variable::PARAMETER: case Variable::LOCAL: if (function != NULL) { Comment cmnt(masm_, "[ Declaration"); VisitForAccumulatorValue(function); __ movq(StackOperand(variable), result_register()); } else if (binding_needs_init) { Comment cmnt(masm_, "[ Declaration"); __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movq(StackOperand(variable), kScratchRegister); } break; case Variable::CONTEXT: // The variable in the decl always resides in the current function // context. ASSERT_EQ(0, scope()->ContextChainLength(variable->scope())); if (FLAG_debug_code) { // Check that we're not inside a with or catch context. __ movq(rbx, FieldOperand(rsi, HeapObject::kMapOffset)); __ CompareRoot(rbx, Heap::kWithContextMapRootIndex); __ Check(not_equal, "Declaration in with context."); __ CompareRoot(rbx, Heap::kCatchContextMapRootIndex); __ Check(not_equal, "Declaration in catch context."); } if (function != NULL) { Comment cmnt(masm_, "[ Declaration"); VisitForAccumulatorValue(function); __ movq(ContextOperand(rsi, variable->index()), result_register()); int offset = Context::SlotOffset(variable->index()); // We know that we have written a function, which is not a smi. __ RecordWriteContextSlot(rsi, offset, result_register(), rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); PrepareForBailoutForId(proxy->id(), NO_REGISTERS); } else if (binding_needs_init) { Comment cmnt(masm_, "[ Declaration"); __ LoadRoot(kScratchRegister, Heap::kTheHoleValueRootIndex); __ movq(ContextOperand(rsi, variable->index()), kScratchRegister); // No write barrier since the hole value is in old space. PrepareForBailoutForId(proxy->id(), NO_REGISTERS); } break; case Variable::LOOKUP: { Comment cmnt(masm_, "[ Declaration"); __ push(rsi); __ Push(variable->name()); // Declaration nodes are always introduced in one of four modes. ASSERT(mode == VAR || mode == CONST || mode == CONST_HARMONY || mode == LET); PropertyAttributes attr = (mode == CONST || mode == CONST_HARMONY) ? READ_ONLY : NONE; __ Push(Smi::FromInt(attr)); // Push initial value, if any. // Note: For variables we must not push an initial value (such as // 'undefined') because we may have a (legal) redeclaration and we // must not destroy the current value. if (function != NULL) { VisitForStackValue(function); } else if (binding_needs_init) { __ PushRoot(Heap::kTheHoleValueRootIndex); } else { __ Push(Smi::FromInt(0)); // Indicates no initial value. } __ CallRuntime(Runtime::kDeclareContextSlot, 4); break; } } } void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { // Call the runtime to declare the globals. __ push(rsi); // The context is the first argument. __ Push(pairs); __ Push(Smi::FromInt(DeclareGlobalsFlags())); __ CallRuntime(Runtime::kDeclareGlobals, 3); // Return value is ignored. } void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { Comment cmnt(masm_, "[ SwitchStatement"); Breakable nested_statement(this, stmt); SetStatementPosition(stmt); // Keep the switch value on the stack until a case matches. VisitForStackValue(stmt->tag()); PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); ZoneList<CaseClause*>* clauses = stmt->cases(); CaseClause* default_clause = NULL; // Can occur anywhere in the list. Label next_test; // Recycled for each test. // Compile all the tests with branches to their bodies. for (int i = 0; i < clauses->length(); i++) { CaseClause* clause = clauses->at(i); clause->body_target()->Unuse(); // The default is not a test, but remember it as final fall through. if (clause->is_default()) { default_clause = clause; continue; } Comment cmnt(masm_, "[ Case comparison"); __ bind(&next_test); next_test.Unuse(); // Compile the label expression. VisitForAccumulatorValue(clause->label()); // Perform the comparison as if via '==='. __ movq(rdx, Operand(rsp, 0)); // Switch value. bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ movq(rcx, rdx); __ or_(rcx, rax); patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear); __ cmpq(rdx, rax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()); __ bind(&slow_case); } // Record position before stub call for type feedback. SetSourcePosition(clause->position()); Handle<Code> ic = CompareIC::GetUninitialized(Token::EQ_STRICT); __ call(ic, RelocInfo::CODE_TARGET, clause->CompareId()); patch_site.EmitPatchInfo(); __ testq(rax, rax); __ j(not_equal, &next_test); __ Drop(1); // Switch value is no longer needed. __ jmp(clause->body_target()); } // Discard the test value and jump to the default if present, otherwise to // the end of the statement. __ bind(&next_test); __ Drop(1); // Switch value is no longer needed. if (default_clause == NULL) { __ jmp(nested_statement.break_label()); } else { __ jmp(default_clause->body_target()); } // Compile all the case bodies. for (int i = 0; i < clauses->length(); i++) { Comment cmnt(masm_, "[ Case body"); CaseClause* clause = clauses->at(i); __ bind(clause->body_target()); PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS); VisitStatements(clause->statements()); } __ bind(nested_statement.break_label()); PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); } void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { Comment cmnt(masm_, "[ ForInStatement"); SetStatementPosition(stmt); Label loop, exit; ForIn loop_statement(this, stmt); increment_loop_depth(); // Get the object to enumerate over. Both SpiderMonkey and JSC // ignore null and undefined in contrast to the specification; see // ECMA-262 section 12.6.4. VisitForAccumulatorValue(stmt->enumerable()); __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, &exit); Register null_value = rdi; __ LoadRoot(null_value, Heap::kNullValueRootIndex); __ cmpq(rax, null_value); __ j(equal, &exit); PrepareForBailoutForId(stmt->PrepareId(), TOS_REG); // Convert the object to a JS object. Label convert, done_convert; __ JumpIfSmi(rax, &convert); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rcx); __ j(above_equal, &done_convert); __ bind(&convert); __ push(rax); __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); __ bind(&done_convert); __ push(rax); // Check for proxies. Label call_runtime; STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ CmpObjectType(rax, LAST_JS_PROXY_TYPE, rcx); __ j(below_equal, &call_runtime); // Check cache validity in generated code. This is a fast case for // the JSObject::IsSimpleEnum cache validity checks. If we cannot // guarantee cache validity, call the runtime system to check cache // validity or get the property names in a fixed array. __ CheckEnumCache(null_value, &call_runtime); // The enum cache is valid. Load the map of the object being // iterated over and use the cache for the iteration. Label use_cache; __ movq(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ jmp(&use_cache, Label::kNear); // Get the set of properties to enumerate. __ bind(&call_runtime); __ push(rax); // Duplicate the enumerable object on the stack. __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); // If we got a map from the runtime call, we can do a fast // modification check. Otherwise, we got a fixed array, and we have // to do a slow check. Label fixed_array; __ CompareRoot(FieldOperand(rax, HeapObject::kMapOffset), Heap::kMetaMapRootIndex); __ j(not_equal, &fixed_array, Label::kNear); // We got a map in register rax. Get the enumeration cache from it. __ bind(&use_cache); __ LoadInstanceDescriptors(rax, rcx); __ movq(rcx, FieldOperand(rcx, DescriptorArray::kEnumerationIndexOffset)); __ movq(rdx, FieldOperand(rcx, DescriptorArray::kEnumCacheBridgeCacheOffset)); // Set up the four remaining stack slots. __ push(rax); // Map. __ push(rdx); // Enumeration cache. __ movq(rax, FieldOperand(rdx, FixedArray::kLengthOffset)); __ push(rax); // Enumeration cache length (as smi). __ Push(Smi::FromInt(0)); // Initial index. __ jmp(&loop); // We got a fixed array in register rax. Iterate through that. Label non_proxy; __ bind(&fixed_array); Handle<JSGlobalPropertyCell> cell = isolate()->factory()->NewJSGlobalPropertyCell( Handle<Object>( Smi::FromInt(TypeFeedbackCells::kForInFastCaseMarker))); RecordTypeFeedbackCell(stmt->PrepareId(), cell); __ LoadHeapObject(rbx, cell); __ Move(FieldOperand(rbx, JSGlobalPropertyCell::kValueOffset), Smi::FromInt(TypeFeedbackCells::kForInSlowCaseMarker)); __ Move(rbx, Smi::FromInt(1)); // Smi indicates slow check __ movq(rcx, Operand(rsp, 0 * kPointerSize)); // Get enumerated object STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); __ CmpObjectType(rcx, LAST_JS_PROXY_TYPE, rcx); __ j(above, &non_proxy); __ Move(rbx, Smi::FromInt(0)); // Zero indicates proxy __ bind(&non_proxy); __ push(rbx); // Smi __ push(rax); // Array __ movq(rax, FieldOperand(rax, FixedArray::kLengthOffset)); __ push(rax); // Fixed array length (as smi). __ Push(Smi::FromInt(0)); // Initial index. // Generate code for doing the condition check. PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); __ bind(&loop); __ movq(rax, Operand(rsp, 0 * kPointerSize)); // Get the current index. __ cmpq(rax, Operand(rsp, 1 * kPointerSize)); // Compare to the array length. __ j(above_equal, loop_statement.break_label()); // Get the current entry of the array into register rbx. __ movq(rbx, Operand(rsp, 2 * kPointerSize)); SmiIndex index = masm()->SmiToIndex(rax, rax, kPointerSizeLog2); __ movq(rbx, FieldOperand(rbx, index.reg, index.scale, FixedArray::kHeaderSize)); // Get the expected map from the stack or a smi in the // permanent slow case into register rdx. __ movq(rdx, Operand(rsp, 3 * kPointerSize)); // Check if the expected map still matches that of the enumerable. // If not, we may have to filter the key. Label update_each; __ movq(rcx, Operand(rsp, 4 * kPointerSize)); __ cmpq(rdx, FieldOperand(rcx, HeapObject::kMapOffset)); __ j(equal, &update_each, Label::kNear); // For proxies, no filtering is done. // TODO(rossberg): What if only a prototype is a proxy? Not specified yet. __ Cmp(rdx, Smi::FromInt(0)); __ j(equal, &update_each, Label::kNear); // Convert the entry to a string or null if it isn't a property // anymore. If the property has been removed while iterating, we // just skip it. __ push(rcx); // Enumerable. __ push(rbx); // Current entry. __ InvokeBuiltin(Builtins::FILTER_KEY, CALL_FUNCTION); __ Cmp(rax, Smi::FromInt(0)); __ j(equal, loop_statement.continue_label()); __ movq(rbx, rax); // Update the 'each' property or variable from the possibly filtered // entry in register rbx. __ bind(&update_each); __ movq(result_register(), rbx); // Perform the assignment as if via '='. { EffectContext context(this); EmitAssignment(stmt->each()); } // Generate code for the body of the loop. Visit(stmt->body()); // Generate code for going to the next element by incrementing the // index (smi) stored on top of the stack. __ bind(loop_statement.continue_label()); __ SmiAddConstant(Operand(rsp, 0 * kPointerSize), Smi::FromInt(1)); EmitStackCheck(stmt, &loop); __ jmp(&loop); // Remove the pointers stored on the stack. __ bind(loop_statement.break_label()); __ addq(rsp, Immediate(5 * kPointerSize)); // Exit and decrement the loop depth. PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); __ bind(&exit); decrement_loop_depth(); } void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info, bool pretenure) { // Use the fast case closure allocation code that allocates in new // space for nested functions that don't need literals cloning. If // we're running with the --always-opt or the --prepare-always-opt // flag, we need to use the runtime function so that the new function // we are creating here gets a chance to have its code optimized and // doesn't just get a copy of the existing unoptimized code. if (!FLAG_always_opt && !FLAG_prepare_always_opt && !pretenure && scope()->is_function_scope() && info->num_literals() == 0) { FastNewClosureStub stub(info->language_mode()); __ Push(info); __ CallStub(&stub); } else { __ push(rsi); __ Push(info); __ Push(pretenure ? isolate()->factory()->true_value() : isolate()->factory()->false_value()); __ CallRuntime(Runtime::kNewClosure, 3); } context()->Plug(rax); } void FullCodeGenerator::VisitVariableProxy(VariableProxy* expr) { Comment cmnt(masm_, "[ VariableProxy"); EmitVariableLoad(expr); } void FullCodeGenerator::EmitLoadGlobalCheckExtensions(Variable* var, TypeofState typeof_state, Label* slow) { Register context = rsi; Register temp = rdx; Scope* s = scope(); while (s != NULL) { if (s->num_heap_slots() > 0) { if (s->calls_non_strict_eval()) { // Check that extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); } // Load next context in chain. __ movq(temp, ContextOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering rsi. context = temp; } // If no outer scope calls eval, we do not need to check more // context extensions. If we have reached an eval scope, we check // all extensions from this point. if (!s->outer_scope_calls_non_strict_eval() || s->is_eval_scope()) break; s = s->outer_scope(); } if (s != NULL && s->is_eval_scope()) { // Loop up the context chain. There is no frame effect so it is // safe to use raw labels here. Label next, fast; if (!context.is(temp)) { __ movq(temp, context); } // Load map for comparison into register, outside loop. __ LoadRoot(kScratchRegister, Heap::kGlobalContextMapRootIndex); __ bind(&next); // Terminate at global context. __ cmpq(kScratchRegister, FieldOperand(temp, HeapObject::kMapOffset)); __ j(equal, &fast, Label::kNear); // Check that extension is NULL. __ cmpq(ContextOperand(temp, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); // Load next context in chain. __ movq(temp, ContextOperand(temp, Context::PREVIOUS_INDEX)); __ jmp(&next); __ bind(&fast); } // All extension objects were empty and it is safe to use a global // load IC call. __ movq(rax, GlobalObjectOperand()); __ Move(rcx, var->name()); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); RelocInfo::Mode mode = (typeof_state == INSIDE_TYPEOF) ? RelocInfo::CODE_TARGET : RelocInfo::CODE_TARGET_CONTEXT; __ call(ic, mode); } MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, Label* slow) { ASSERT(var->IsContextSlot()); Register context = rsi; Register temp = rbx; for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { if (s->num_heap_slots() > 0) { if (s->calls_non_strict_eval()) { // Check that extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); } __ movq(temp, ContextOperand(context, Context::PREVIOUS_INDEX)); // Walk the rest of the chain without clobbering rsi. context = temp; } } // Check that last extension is NULL. __ cmpq(ContextOperand(context, Context::EXTENSION_INDEX), Immediate(0)); __ j(not_equal, slow); // This function is used only for loads, not stores, so it's safe to // return an rsi-based operand (the write barrier cannot be allowed to // destroy the rsi register). return ContextOperand(context, var->index()); } void FullCodeGenerator::EmitDynamicLookupFastCase(Variable* var, TypeofState typeof_state, Label* slow, Label* done) { // Generate fast-case code for variables that might be shadowed by // eval-introduced variables. Eval is used a lot without // introducing variables. In those cases, we do not want to // perform a runtime call for all variables in the scope // containing the eval. if (var->mode() == DYNAMIC_GLOBAL) { EmitLoadGlobalCheckExtensions(var, typeof_state, slow); __ jmp(done); } else if (var->mode() == DYNAMIC_LOCAL) { Variable* local = var->local_if_not_shadowed(); __ movq(rax, ContextSlotOperandCheckExtensions(local, slow)); if (local->mode() == CONST || local->mode() == CONST_HARMONY || local->mode() == LET) { __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(not_equal, done); if (local->mode() == CONST) { __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); } else { // LET || CONST_HARMONY __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError, 1); } } __ jmp(done); } } void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy) { // Record position before possible IC call. SetSourcePosition(proxy->position()); Variable* var = proxy->var(); // Three cases: global variables, lookup variables, and all other types of // variables. switch (var->location()) { case Variable::UNALLOCATED: { Comment cmnt(masm_, "Global variable"); // Use inline caching. Variable name is passed in rcx and the global // object on the stack. __ Move(rcx, var->name()); __ movq(rax, GlobalObjectOperand()); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); __ call(ic, RelocInfo::CODE_TARGET_CONTEXT); context()->Plug(rax); break; } case Variable::PARAMETER: case Variable::LOCAL: case Variable::CONTEXT: { Comment cmnt(masm_, var->IsContextSlot() ? "Context slot" : "Stack slot"); if (var->binding_needs_init()) { // var->scope() may be NULL when the proxy is located in eval code and // refers to a potential outside binding. Currently those bindings are // always looked up dynamically, i.e. in that case // var->location() == LOOKUP. // always holds. ASSERT(var->scope() != NULL); // Check if the binding really needs an initialization check. The check // can be skipped in the following situation: we have a LET or CONST // binding in harmony mode, both the Variable and the VariableProxy have // the same declaration scope (i.e. they are both in global code, in the // same function or in the same eval code) and the VariableProxy is in // the source physically located after the initializer of the variable. // // We cannot skip any initialization checks for CONST in non-harmony // mode because const variables may be declared but never initialized: // if (false) { const x; }; var y = x; // // The condition on the declaration scopes is a conservative check for // nested functions that access a binding and are called before the // binding is initialized: // function() { f(); let x = 1; function f() { x = 2; } } // bool skip_init_check; if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { skip_init_check = false; } else { // Check that we always have valid source position. ASSERT(var->initializer_position() != RelocInfo::kNoPosition); ASSERT(proxy->position() != RelocInfo::kNoPosition); skip_init_check = var->mode() != CONST && var->initializer_position() < proxy->position(); } if (!skip_init_check) { // Let and const need a read barrier. Label done; GetVar(rax, var); __ CompareRoot(rax, Heap::kTheHoleValueRootIndex); __ j(not_equal, &done, Label::kNear); if (var->mode() == LET || var->mode() == CONST_HARMONY) { // Throw a reference error when using an uninitialized let/const // binding in harmony mode. __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError, 1); } else { // Uninitalized const bindings outside of harmony mode are unholed. ASSERT(var->mode() == CONST); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); } __ bind(&done); context()->Plug(rax); break; } } context()->Plug(var); break; } case Variable::LOOKUP: { Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(var, NOT_INSIDE_TYPEOF, &slow, &done); __ bind(&slow); Comment cmnt(masm_, "Lookup slot"); __ push(rsi); // Context. __ Push(var->name()); __ CallRuntime(Runtime::kLoadContextSlot, 2); __ bind(&done); context()->Plug(rax); break; } } } void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { Comment cmnt(masm_, "[ RegExpLiteral"); Label materialized; // Registers will be used as follows: // rdi = JS function. // rcx = literals array. // rbx = regexp literal. // rax = regexp literal clone. __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ movq(rcx, FieldOperand(rdi, JSFunction::kLiteralsOffset)); int literal_offset = FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; __ movq(rbx, FieldOperand(rcx, literal_offset)); __ CompareRoot(rbx, Heap::kUndefinedValueRootIndex); __ j(not_equal, &materialized, Label::kNear); // Create regexp literal using runtime function // Result will be in rax. __ push(rcx); __ Push(Smi::FromInt(expr->literal_index())); __ Push(expr->pattern()); __ Push(expr->flags()); __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); __ movq(rbx, rax); __ bind(&materialized); int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; Label allocated, runtime_allocate; __ AllocateInNewSpace(size, rax, rcx, rdx, &runtime_allocate, TAG_OBJECT); __ jmp(&allocated); __ bind(&runtime_allocate); __ push(rbx); __ Push(Smi::FromInt(size)); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ pop(rbx); __ bind(&allocated); // Copy the content into the newly allocated memory. // (Unroll copy loop once for better throughput). for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) { __ movq(rdx, FieldOperand(rbx, i)); __ movq(rcx, FieldOperand(rbx, i + kPointerSize)); __ movq(FieldOperand(rax, i), rdx); __ movq(FieldOperand(rax, i + kPointerSize), rcx); } if ((size % (2 * kPointerSize)) != 0) { __ movq(rdx, FieldOperand(rbx, size - kPointerSize)); __ movq(FieldOperand(rax, size - kPointerSize), rdx); } context()->Plug(rax); } void FullCodeGenerator::EmitAccessor(Expression* expression) { if (expression == NULL) { __ PushRoot(Heap::kNullValueRootIndex); } else { VisitForStackValue(expression); } } void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { Comment cmnt(masm_, "[ ObjectLiteral"); Handle<FixedArray> constant_properties = expr->constant_properties(); __ movq(rdi, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rdi, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(constant_properties); int flags = expr->fast_elements() ? ObjectLiteral::kFastElements : ObjectLiteral::kNoFlags; flags |= expr->has_function() ? ObjectLiteral::kHasFunction : ObjectLiteral::kNoFlags; __ Push(Smi::FromInt(flags)); int properties_count = constant_properties->length() / 2; if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateObjectLiteral, 4); } else if (flags != ObjectLiteral::kFastElements || properties_count > FastCloneShallowObjectStub::kMaximumClonedProperties) { __ CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); } else { FastCloneShallowObjectStub stub(properties_count); __ CallStub(&stub); } // If result_saved is true the result is on top of the stack. If // result_saved is false the result is in rax. bool result_saved = false; // Mark all computed expressions that are bound to a key that // is shadowed by a later occurrence of the same key. For the // marked expressions, no store code is emitted. expr->CalculateEmitStore(); AccessorTable accessor_table(isolate()->zone()); for (int i = 0; i < expr->properties()->length(); i++) { ObjectLiteral::Property* property = expr->properties()->at(i); if (property->IsCompileTimeValue()) continue; Literal* key = property->key(); Expression* value = property->value(); if (!result_saved) { __ push(rax); // Save result on the stack result_saved = true; } switch (property->kind()) { case ObjectLiteral::Property::CONSTANT: UNREACHABLE(); case ObjectLiteral::Property::MATERIALIZED_LITERAL: ASSERT(!CompileTimeValue::IsCompileTimeValue(value)); // Fall through. case ObjectLiteral::Property::COMPUTED: if (key->handle()->IsSymbol()) { if (property->emit_store()) { VisitForAccumulatorValue(value); __ Move(rcx, key->handle()); __ movq(rdx, Operand(rsp, 0)); Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); __ call(ic, RelocInfo::CODE_TARGET, key->id()); PrepareForBailoutForId(key->id(), NO_REGISTERS); } else { VisitForEffect(value); } break; } // Fall through. case ObjectLiteral::Property::PROTOTYPE: __ push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(key); VisitForStackValue(value); if (property->emit_store()) { __ Push(Smi::FromInt(NONE)); // PropertyAttributes __ CallRuntime(Runtime::kSetProperty, 4); } else { __ Drop(3); } break; case ObjectLiteral::Property::GETTER: accessor_table.lookup(key)->second->getter = value; break; case ObjectLiteral::Property::SETTER: accessor_table.lookup(key)->second->setter = value; break; } } // Emit code to define accessors, using only a single call to the runtime for // each pair of corresponding getters and setters. for (AccessorTable::Iterator it = accessor_table.begin(); it != accessor_table.end(); ++it) { __ push(Operand(rsp, 0)); // Duplicate receiver. VisitForStackValue(it->first); EmitAccessor(it->second->getter); EmitAccessor(it->second->setter); __ Push(Smi::FromInt(NONE)); __ CallRuntime(Runtime::kDefineOrRedefineAccessorProperty, 5); } if (expr->has_function()) { ASSERT(result_saved); __ push(Operand(rsp, 0)); __ CallRuntime(Runtime::kToFastProperties, 1); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(rax); } } void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { Comment cmnt(masm_, "[ ArrayLiteral"); ZoneList<Expression*>* subexprs = expr->values(); int length = subexprs->length(); Handle<FixedArray> constant_elements = expr->constant_elements(); ASSERT_EQ(2, constant_elements->length()); ElementsKind constant_elements_kind = static_cast<ElementsKind>(Smi::cast(constant_elements->get(0))->value()); bool has_constant_fast_elements = constant_elements_kind == FAST_ELEMENTS; Handle<FixedArrayBase> constant_elements_values( FixedArrayBase::cast(constant_elements->get(1))); __ movq(rbx, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); __ push(FieldOperand(rbx, JSFunction::kLiteralsOffset)); __ Push(Smi::FromInt(expr->literal_index())); __ Push(constant_elements); Heap* heap = isolate()->heap(); if (has_constant_fast_elements && constant_elements_values->map() == heap->fixed_cow_array_map()) { // If the elements are already FAST_ELEMENTS, the boilerplate cannot // change, so it's possible to specialize the stub in advance. __ IncrementCounter(isolate()->counters()->cow_arrays_created_stub(), 1); FastCloneShallowArrayStub stub( FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); __ CallStub(&stub); } else if (expr->depth() > 1) { __ CallRuntime(Runtime::kCreateArrayLiteral, 3); } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { __ CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); } else { ASSERT(constant_elements_kind == FAST_ELEMENTS || constant_elements_kind == FAST_SMI_ONLY_ELEMENTS || FLAG_smi_only_arrays); // If the elements are already FAST_ELEMENTS, the boilerplate cannot // change, so it's possible to specialize the stub in advance. FastCloneShallowArrayStub::Mode mode = has_constant_fast_elements ? FastCloneShallowArrayStub::CLONE_ELEMENTS : FastCloneShallowArrayStub::CLONE_ANY_ELEMENTS; FastCloneShallowArrayStub stub(mode, length); __ CallStub(&stub); } bool result_saved = false; // Is the result saved to the stack? // Emit code to evaluate all the non-constant subexpressions and to store // them into the newly cloned array. for (int i = 0; i < length; i++) { Expression* subexpr = subexprs->at(i); // If the subexpression is a literal or a simple materialized literal it // is already set in the cloned array. if (subexpr->AsLiteral() != NULL || CompileTimeValue::IsCompileTimeValue(subexpr)) { continue; } if (!result_saved) { __ push(rax); result_saved = true; } VisitForAccumulatorValue(subexpr); if (constant_elements_kind == FAST_ELEMENTS) { // Fast-case array literal with ElementsKind of FAST_ELEMENTS, they cannot // transition and don't need to call the runtime stub. int offset = FixedArray::kHeaderSize + (i * kPointerSize); __ movq(rbx, Operand(rsp, 0)); // Copy of array literal. __ movq(rbx, FieldOperand(rbx, JSObject::kElementsOffset)); // Store the subexpression value in the array's elements. __ movq(FieldOperand(rbx, offset), result_register()); // Update the write barrier for the array store. __ RecordWriteField(rbx, offset, result_register(), rcx, kDontSaveFPRegs, EMIT_REMEMBERED_SET, INLINE_SMI_CHECK); } else { // Store the subexpression value in the array's elements. __ movq(rbx, Operand(rsp, 0)); // Copy of array literal. __ movq(rdi, FieldOperand(rbx, JSObject::kMapOffset)); __ Move(rcx, Smi::FromInt(i)); __ Move(rdx, Smi::FromInt(expr->literal_index())); StoreArrayLiteralElementStub stub; __ CallStub(&stub); } PrepareForBailoutForId(expr->GetIdForElement(i), NO_REGISTERS); } if (result_saved) { context()->PlugTOS(); } else { context()->Plug(rax); } } void FullCodeGenerator::VisitAssignment(Assignment* expr) { Comment cmnt(masm_, "[ Assignment"); // Invalid left-hand sides are rewritten to have a 'throw ReferenceError' // on the left-hand side. if (!expr->target()->IsValidLeftHandSide()) { VisitForEffect(expr->target()); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* property = expr->target()->AsProperty(); if (property != NULL) { assign_type = (property->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate LHS expression. switch (assign_type) { case VARIABLE: // Nothing to do here. break; case NAMED_PROPERTY: if (expr->is_compound()) { // We need the receiver both on the stack and in the accumulator. VisitForAccumulatorValue(property->obj()); __ push(result_register()); } else { VisitForStackValue(property->obj()); } break; case KEYED_PROPERTY: { if (expr->is_compound()) { VisitForStackValue(property->obj()); VisitForAccumulatorValue(property->key()); __ movq(rdx, Operand(rsp, 0)); __ push(rax); } else { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); } break; } } // For compound assignments we need another deoptimization point after the // variable/property load. if (expr->is_compound()) { { AccumulatorValueContext context(this); switch (assign_type) { case VARIABLE: EmitVariableLoad(expr->target()->AsVariableProxy()); PrepareForBailout(expr->target(), TOS_REG); break; case NAMED_PROPERTY: EmitNamedPropertyLoad(property); PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG); break; case KEYED_PROPERTY: EmitKeyedPropertyLoad(property); PrepareForBailoutForId(expr->CompoundLoadId(), TOS_REG); break; } } Token::Value op = expr->binary_op(); __ push(rax); // Left operand goes on the stack. VisitForAccumulatorValue(expr->value()); OverwriteMode mode = expr->value()->ResultOverwriteAllowed() ? OVERWRITE_RIGHT : NO_OVERWRITE; SetSourcePosition(expr->position() + 1); AccumulatorValueContext context(this); if (ShouldInlineSmiCase(op)) { EmitInlineSmiBinaryOp(expr->binary_operation(), op, mode, expr->target(), expr->value()); } else { EmitBinaryOp(expr->binary_operation(), op, mode); } // Deoptimization point in case the binary operation may have side effects. PrepareForBailout(expr->binary_operation(), TOS_REG); } else { VisitForAccumulatorValue(expr->value()); } // Record source position before possible IC call. SetSourcePosition(expr->position()); // Store the value. switch (assign_type) { case VARIABLE: EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), expr->op()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); break; case NAMED_PROPERTY: EmitNamedPropertyAssignment(expr); break; case KEYED_PROPERTY: EmitKeyedPropertyAssignment(expr); break; } } void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Literal* key = prop->key()->AsLiteral(); __ Move(rcx, key->handle()); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); __ call(ic, RelocInfo::CODE_TARGET, prop->id()); } void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { SetSourcePosition(prop->position()); Handle<Code> ic = isolate()->builtins()->KeyedLoadIC_Initialize(); __ call(ic, RelocInfo::CODE_TARGET, prop->id()); } void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, Token::Value op, OverwriteMode mode, Expression* left, Expression* right) { // Do combined smi check of the operands. Left operand is on the // stack (popped into rdx). Right operand is in rax but moved into // rcx to make the shifts easier. Label done, stub_call, smi_case; __ pop(rdx); __ movq(rcx, rax); __ or_(rax, rdx); JumpPatchSite patch_site(masm_); patch_site.EmitJumpIfSmi(rax, &smi_case, Label::kNear); __ bind(&stub_call); __ movq(rax, rcx); BinaryOpStub stub(op, mode); __ call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); patch_site.EmitPatchInfo(); __ jmp(&done, Label::kNear); __ bind(&smi_case); switch (op) { case Token::SAR: __ SmiShiftArithmeticRight(rax, rdx, rcx); break; case Token::SHL: __ SmiShiftLeft(rax, rdx, rcx); break; case Token::SHR: __ SmiShiftLogicalRight(rax, rdx, rcx, &stub_call); break; case Token::ADD: __ SmiAdd(rax, rdx, rcx, &stub_call); break; case Token::SUB: __ SmiSub(rax, rdx, rcx, &stub_call); break; case Token::MUL: __ SmiMul(rax, rdx, rcx, &stub_call); break; case Token::BIT_OR: __ SmiOr(rax, rdx, rcx); break; case Token::BIT_AND: __ SmiAnd(rax, rdx, rcx); break; case Token::BIT_XOR: __ SmiXor(rax, rdx, rcx); break; default: UNREACHABLE(); break; } __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op, OverwriteMode mode) { __ pop(rdx); BinaryOpStub stub(op, mode); JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. __ call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); patch_site.EmitPatchInfo(); context()->Plug(rax); } void FullCodeGenerator::EmitAssignment(Expression* expr) { // Invalid left-hand sides are rewritten to have a 'throw // ReferenceError' on the left-hand side. if (!expr->IsValidLeftHandSide()) { VisitForEffect(expr); return; } // Left-hand side can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->AsProperty(); if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } switch (assign_type) { case VARIABLE: { Variable* var = expr->AsVariableProxy()->var(); EffectContext context(this); EmitVariableAssignment(var, Token::ASSIGN); break; } case NAMED_PROPERTY: { __ push(rax); // Preserve value. VisitForAccumulatorValue(prop->obj()); __ movq(rdx, rax); __ pop(rax); // Restore value. __ Move(rcx, prop->key()->AsLiteral()->handle()); Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); __ call(ic); break; } case KEYED_PROPERTY: { __ push(rax); // Preserve value. VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ movq(rcx, rax); __ pop(rdx); __ pop(rax); // Restore value. Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->KeyedStoreIC_Initialize() : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); __ call(ic); break; } } context()->Plug(rax); } void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op) { if (var->IsUnallocated()) { // Global var, const, or let. __ Move(rcx, var->name()); __ movq(rdx, GlobalObjectOperand()); Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); __ call(ic, RelocInfo::CODE_TARGET_CONTEXT); } else if (op == Token::INIT_CONST) { // Const initializers need a write barrier. ASSERT(!var->IsParameter()); // No const parameters. if (var->IsStackLocal()) { Label skip; __ movq(rdx, StackOperand(var)); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(not_equal, &skip); __ movq(StackOperand(var), rax); __ bind(&skip); } else { ASSERT(var->IsContextSlot() || var->IsLookupSlot()); // Like var declarations, const declarations are hoisted to function // scope. However, unlike var initializers, const initializers are // able to drill a hole to that function context, even from inside a // 'with' context. We thus bypass the normal static scope lookup for // var->IsContextSlot(). __ push(rax); __ push(rsi); __ Push(var->name()); __ CallRuntime(Runtime::kInitializeConstContextSlot, 3); } } else if (var->mode() == LET && op != Token::INIT_LET) { // Non-initializing assignment to let variable needs a write barrier. if (var->IsLookupSlot()) { __ push(rax); // Value. __ push(rsi); // Context. __ Push(var->name()); __ Push(Smi::FromInt(language_mode())); __ CallRuntime(Runtime::kStoreContextSlot, 4); } else { ASSERT(var->IsStackAllocated() || var->IsContextSlot()); Label assign; MemOperand location = VarOperand(var, rcx); __ movq(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ j(not_equal, &assign, Label::kNear); __ Push(var->name()); __ CallRuntime(Runtime::kThrowReferenceError, 1); __ bind(&assign); __ movq(location, rax); if (var->IsContextSlot()) { __ movq(rdx, rax); __ RecordWriteContextSlot( rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs); } } } else if (!var->is_const_mode() || op == Token::INIT_CONST_HARMONY) { // Assignment to var or initializing assignment to let/const // in harmony mode. if (var->IsStackAllocated() || var->IsContextSlot()) { MemOperand location = VarOperand(var, rcx); if (FLAG_debug_code && op == Token::INIT_LET) { // Check for an uninitialized let binding. __ movq(rdx, location); __ CompareRoot(rdx, Heap::kTheHoleValueRootIndex); __ Check(equal, "Let binding re-initialization."); } // Perform the assignment. __ movq(location, rax); if (var->IsContextSlot()) { __ movq(rdx, rax); __ RecordWriteContextSlot( rcx, Context::SlotOffset(var->index()), rdx, rbx, kDontSaveFPRegs); } } else { ASSERT(var->IsLookupSlot()); __ push(rax); // Value. __ push(rsi); // Context. __ Push(var->name()); __ Push(Smi::FromInt(language_mode())); __ CallRuntime(Runtime::kStoreContextSlot, 4); } } // Non-initializing assignments to consts are ignored. } void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a named store IC. Property* prop = expr->target()->AsProperty(); ASSERT(prop != NULL); ASSERT(prop->key()->AsLiteral() != NULL); // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); __ push(Operand(rsp, kPointerSize)); // Receiver is now under value. __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } // Record source code position before IC call. SetSourcePosition(expr->position()); __ Move(rcx, prop->key()->AsLiteral()->handle()); if (expr->ends_initialization_block()) { __ movq(rdx, Operand(rsp, 0)); } else { __ pop(rdx); } Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); __ call(ic, RelocInfo::CODE_TARGET, expr->id()); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ push(rax); // Result of assignment, saved even if not needed. __ push(Operand(rsp, kPointerSize)); // Receiver is under value. __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(rax); __ Drop(1); } PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); } void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { // Assignment to a property, using a keyed store IC. // If the assignment starts a block of assignments to the same object, // change to slow case to avoid the quadratic behavior of repeatedly // adding fast properties. if (expr->starts_initialization_block()) { __ push(result_register()); // Receiver is now under the key and value. __ push(Operand(rsp, 2 * kPointerSize)); __ CallRuntime(Runtime::kToSlowProperties, 1); __ pop(result_register()); } __ pop(rcx); if (expr->ends_initialization_block()) { __ movq(rdx, Operand(rsp, 0)); // Leave receiver on the stack for later. } else { __ pop(rdx); } // Record source code position before IC call. SetSourcePosition(expr->position()); Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->KeyedStoreIC_Initialize() : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); __ call(ic, RelocInfo::CODE_TARGET, expr->id()); // If the assignment ends an initialization block, revert to fast case. if (expr->ends_initialization_block()) { __ pop(rdx); __ push(rax); // Result of assignment, saved even if not needed. __ push(rdx); __ CallRuntime(Runtime::kToFastProperties, 1); __ pop(rax); } PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); } void FullCodeGenerator::VisitProperty(Property* expr) { Comment cmnt(masm_, "[ Property"); Expression* key = expr->key(); if (key->IsPropertyName()) { VisitForAccumulatorValue(expr->obj()); EmitNamedPropertyLoad(expr); context()->Plug(rax); } else { VisitForStackValue(expr->obj()); VisitForAccumulatorValue(expr->key()); __ pop(rdx); EmitKeyedPropertyLoad(expr); context()->Plug(rax); } } void FullCodeGenerator::EmitCallWithIC(Call* expr, Handle<Object> name, RelocInfo::Mode mode) { // Code common for calls using the IC. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } __ Move(rcx, name); } // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode); __ call(ic, mode, expr->id()); RecordJSReturnSite(expr); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->Plug(rax); } void FullCodeGenerator::EmitKeyedCallWithIC(Call* expr, Expression* key) { // Load the key. VisitForAccumulatorValue(key); // Swap the name of the function and the receiver on the stack to follow // the calling convention for call ICs. __ pop(rcx); __ push(rax); __ push(rcx); // Load the arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } } // Record source position for debugger. SetSourcePosition(expr->position()); // Call the IC initialization code. Handle<Code> ic = isolate()->stub_cache()->ComputeKeyedCallInitialize(arg_count); __ movq(rcx, Operand(rsp, (arg_count + 1) * kPointerSize)); // Key. __ call(ic, RelocInfo::CODE_TARGET, expr->id()); RecordJSReturnSite(expr); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, rax); // Drop the key still on the stack. } void FullCodeGenerator::EmitCallWithStub(Call* expr, CallFunctionFlags flags) { // Code common for calls using the call stub. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope scope(masm()->positions_recorder()); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } } // Record source position for debugger. SetSourcePosition(expr->position()); CallFunctionStub stub(arg_count, flags); __ movq(rdi, Operand(rsp, (arg_count + 1) * kPointerSize)); __ CallStub(&stub); RecordJSReturnSite(expr); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); // Discard the function left on TOS. context()->DropAndPlug(1, rax); } void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) { // Push copy of the first argument or undefined if it doesn't exist. if (arg_count > 0) { __ push(Operand(rsp, arg_count * kPointerSize)); } else { __ PushRoot(Heap::kUndefinedValueRootIndex); } // Push the receiver of the enclosing function and do runtime call. __ push(Operand(rbp, (2 + info_->scope()->num_parameters()) * kPointerSize)); // Push the language mode. __ Push(Smi::FromInt(language_mode())); // Push the start position of the scope the calls resides in. __ Push(Smi::FromInt(scope()->start_position())); // Do the runtime call. __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5); } void FullCodeGenerator::VisitCall(Call* expr) { #ifdef DEBUG // We want to verify that RecordJSReturnSite gets called on all paths // through this function. Avoid early returns. expr->return_is_recorded_ = false; #endif Comment cmnt(masm_, "[ Call"); Expression* callee = expr->expression(); VariableProxy* proxy = callee->AsVariableProxy(); Property* property = callee->AsProperty(); if (proxy != NULL && proxy->var()->is_possibly_eval()) { // In a call to eval, we first call %ResolvePossiblyDirectEval to // resolve the function we need to call and the receiver of the call. // Then we call the resolved function using the given arguments. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); { PreservePositionScope pos_scope(masm()->positions_recorder()); VisitForStackValue(callee); __ PushRoot(Heap::kUndefinedValueRootIndex); // Reserved receiver slot. // Push the arguments. for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Push a copy of the function (found below the arguments) and resolve // eval. __ push(Operand(rsp, (arg_count + 1) * kPointerSize)); EmitResolvePossiblyDirectEval(arg_count); // The runtime call returns a pair of values in rax (function) and // rdx (receiver). Touch up the stack with the right values. __ movq(Operand(rsp, (arg_count + 0) * kPointerSize), rdx); __ movq(Operand(rsp, (arg_count + 1) * kPointerSize), rax); } // Record source position for debugger. SetSourcePosition(expr->position()); CallFunctionStub stub(arg_count, RECEIVER_MIGHT_BE_IMPLICIT); __ movq(rdi, Operand(rsp, (arg_count + 1) * kPointerSize)); __ CallStub(&stub); RecordJSReturnSite(expr); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->DropAndPlug(1, rax); } else if (proxy != NULL && proxy->var()->IsUnallocated()) { // Call to a global variable. Push global object as receiver for the // call IC lookup. __ push(GlobalObjectOperand()); EmitCallWithIC(expr, proxy->name(), RelocInfo::CODE_TARGET_CONTEXT); } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { // Call to a lookup slot (dynamically introduced variable). Label slow, done; { PreservePositionScope scope(masm()->positions_recorder()); // Generate code for loading from variables potentially shadowed by // eval-introduced variables. EmitDynamicLookupFastCase(proxy->var(), NOT_INSIDE_TYPEOF, &slow, &done); } __ bind(&slow); // Call the runtime to find the function to call (returned in rax) and // the object holding it (returned in rdx). __ push(context_register()); __ Push(proxy->name()); __ CallRuntime(Runtime::kLoadContextSlot, 2); __ push(rax); // Function. __ push(rdx); // Receiver. // If fast case code has been generated, emit code to push the function // and receiver and have the slow path jump around this code. if (done.is_linked()) { Label call; __ jmp(&call, Label::kNear); __ bind(&done); // Push function. __ push(rax); // The receiver is implicitly the global receiver. Indicate this by // passing the hole to the call function stub. __ PushRoot(Heap::kTheHoleValueRootIndex); __ bind(&call); } // The receiver is either the global receiver or an object found by // LoadContextSlot. That object could be the hole if the receiver is // implicitly the global object. EmitCallWithStub(expr, RECEIVER_MIGHT_BE_IMPLICIT); } else if (property != NULL) { { PreservePositionScope scope(masm()->positions_recorder()); VisitForStackValue(property->obj()); } if (property->key()->IsPropertyName()) { EmitCallWithIC(expr, property->key()->AsLiteral()->handle(), RelocInfo::CODE_TARGET); } else { EmitKeyedCallWithIC(expr, property->key()); } } else { // Call to an arbitrary expression not handled specially above. { PreservePositionScope scope(masm()->positions_recorder()); VisitForStackValue(callee); } // Load global receiver object. __ movq(rbx, GlobalObjectOperand()); __ push(FieldOperand(rbx, GlobalObject::kGlobalReceiverOffset)); // Emit function call. EmitCallWithStub(expr, NO_CALL_FUNCTION_FLAGS); } #ifdef DEBUG // RecordJSReturnSite should have been called. ASSERT(expr->return_is_recorded_); #endif } void FullCodeGenerator::VisitCallNew(CallNew* expr) { Comment cmnt(masm_, "[ CallNew"); // According to ECMA-262, section 11.2.2, page 44, the function // expression in new calls must be evaluated before the // arguments. // Push constructor on the stack. If it's not a function it's used as // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is // ignored. VisitForStackValue(expr->expression()); // Push the arguments ("left-to-right") on the stack. ZoneList<Expression*>* args = expr->arguments(); int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } // Call the construct call builtin that handles allocation and // constructor invocation. SetSourcePosition(expr->position()); // Load function and argument count into rdi and rax. __ Set(rax, arg_count); __ movq(rdi, Operand(rsp, arg_count * kPointerSize)); // Record call targets in unoptimized code, but not in the snapshot. CallFunctionFlags flags; if (!Serializer::enabled()) { flags = RECORD_CALL_TARGET; Handle<Object> uninitialized = TypeFeedbackCells::UninitializedSentinel(isolate()); Handle<JSGlobalPropertyCell> cell = isolate()->factory()->NewJSGlobalPropertyCell(uninitialized); RecordTypeFeedbackCell(expr->id(), cell); __ Move(rbx, cell); } else { flags = NO_CALL_FUNCTION_FLAGS; } CallConstructStub stub(flags); __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); PrepareForBailoutForId(expr->ReturnId(), TOS_REG); context()->Plug(rax); } void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ JumpIfSmi(rax, if_true); __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Condition non_negative_smi = masm()->CheckNonNegativeSmi(rax); Split(non_negative_smi, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, if_true); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); // Undetectable objects behave like undefined when tested with typeof. __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); __ j(not_zero, if_false); __ movzxbq(rbx, FieldOperand(rbx, Map::kInstanceTypeOffset)); __ cmpq(rbx, Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); __ j(below, if_false); __ cmpq(rbx, Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(below_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(above_equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsUndetectableObject(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rbx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(not_zero, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); if (FLAG_debug_code) __ AbortIfSmi(rax); // Check whether this map has already been checked to be safe for default // valueOf. __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rbx, Map::kBitField2Offset), Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); __ j(not_zero, if_true); // Check for fast case object. Generate false result for slow case object. __ movq(rcx, FieldOperand(rax, JSObject::kPropertiesOffset)); __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ CompareRoot(rcx, Heap::kHashTableMapRootIndex); __ j(equal, if_false); // Look for valueOf symbol in the descriptor array, and indicate false if // found. The type is not checked, so if it is a transition it is a false // negative. __ LoadInstanceDescriptors(rbx, rbx); __ movq(rcx, FieldOperand(rbx, FixedArray::kLengthOffset)); // rbx: descriptor array // rcx: length of descriptor array // Calculate the end of the descriptor array. SmiIndex index = masm_->SmiToIndex(rdx, rcx, kPointerSizeLog2); __ lea(rcx, Operand( rbx, index.reg, index.scale, FixedArray::kHeaderSize)); // Calculate location of the first key name. __ addq(rbx, Immediate(FixedArray::kHeaderSize + DescriptorArray::kFirstIndex * kPointerSize)); // Loop through all the keys in the descriptor array. If one of these is the // symbol valueOf the result is false. Label entry, loop; __ jmp(&entry); __ bind(&loop); __ movq(rdx, FieldOperand(rbx, 0)); __ Cmp(rdx, FACTORY->value_of_symbol()); __ j(equal, if_false); __ addq(rbx, Immediate(kPointerSize)); __ bind(&entry); __ cmpq(rbx, rcx); __ j(not_equal, &loop); // Reload map as register rbx was used as temporary above. __ movq(rbx, FieldOperand(rax, HeapObject::kMapOffset)); // If a valueOf property is not found on the object check that it's // prototype is the un-modified String prototype. If not result is false. __ movq(rcx, FieldOperand(rbx, Map::kPrototypeOffset)); __ testq(rcx, Immediate(kSmiTagMask)); __ j(zero, if_false); __ movq(rcx, FieldOperand(rcx, HeapObject::kMapOffset)); __ movq(rdx, Operand(rsi, Context::SlotOffset(Context::GLOBAL_INDEX))); __ movq(rdx, FieldOperand(rdx, GlobalObject::kGlobalContextOffset)); __ cmpq(rcx, ContextOperand(rdx, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); __ j(not_equal, if_false); // Set the bit in the map to indicate that it has been checked safe for // default valueOf and set true result. __ or_(FieldOperand(rbx, Map::kBitField2Offset), Immediate(1 << Map::kStringWrapperSafeForDefaultValueOf)); __ jmp(if_true); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_ARRAY_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ JumpIfSmi(rax, if_false); __ CmpObjectType(rax, JS_REGEXP_TYPE, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) { ASSERT(expr->arguments()->length() == 0); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); // Get the frame pointer for the calling frame. __ movq(rax, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); // Skip the arguments adaptor frame if it exists. Label check_frame_marker; __ Cmp(Operand(rax, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &check_frame_marker); __ movq(rax, Operand(rax, StandardFrameConstants::kCallerFPOffset)); // Check the marker in the calling frame. __ bind(&check_frame_marker); __ Cmp(Operand(rax, StandardFrameConstants::kMarkerOffset), Smi::FromInt(StackFrame::CONSTRUCT)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); // Load the two objects into registers and perform the comparison. VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ pop(rbx); __ cmpq(rax, rbx); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Split(equal, if_true, if_false, fall_through); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitArguments(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); // ArgumentsAccessStub expects the key in rdx and the formal // parameter count in rax. VisitForAccumulatorValue(args->at(0)); __ movq(rdx, rax); __ Move(rax, Smi::FromInt(info_->scope()->num_parameters())); ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) { ASSERT(expr->arguments()->length() == 0); Label exit; // Get the number of formal parameters. __ Move(rax, Smi::FromInt(info_->scope()->num_parameters())); // Check if the calling frame is an arguments adaptor frame. __ movq(rbx, Operand(rbp, StandardFrameConstants::kCallerFPOffset)); __ Cmp(Operand(rbx, StandardFrameConstants::kContextOffset), Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ j(not_equal, &exit, Label::kNear); // Arguments adaptor case: Read the arguments length from the // adaptor frame. __ movq(rax, Operand(rbx, ArgumentsAdaptorFrameConstants::kLengthOffset)); __ bind(&exit); if (FLAG_debug_code) __ AbortIfNotSmi(rax); context()->Plug(rax); } void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); Label done, null, function, non_function_constructor; VisitForAccumulatorValue(args->at(0)); // If the object is a smi, we return null. __ JumpIfSmi(rax, &null); // Check that the object is a JS object but take special care of JS // functions to make sure they have 'Function' as their class. // Assume that there are only two callable types, and one of them is at // either end of the type range for JS object types. Saves extra comparisons. STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ CmpObjectType(rax, FIRST_SPEC_OBJECT_TYPE, rax); // Map is now in rax. __ j(below, &null); STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == FIRST_SPEC_OBJECT_TYPE + 1); __ j(equal, &function); __ CmpInstanceType(rax, LAST_SPEC_OBJECT_TYPE); STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_SPEC_OBJECT_TYPE - 1); __ j(equal, &function); // Assume that there is no larger type. STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1); // Check if the constructor in the map is a JS function. __ movq(rax, FieldOperand(rax, Map::kConstructorOffset)); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rbx); __ j(not_equal, &non_function_constructor); // rax now contains the constructor function. Grab the // instance class name from there. __ movq(rax, FieldOperand(rax, JSFunction::kSharedFunctionInfoOffset)); __ movq(rax, FieldOperand(rax, SharedFunctionInfo::kInstanceClassNameOffset)); __ jmp(&done); // Functions have class 'Function'. __ bind(&function); __ Move(rax, isolate()->factory()->function_class_symbol()); __ jmp(&done); // Objects with a non-function constructor have class 'Object'. __ bind(&non_function_constructor); __ Move(rax, isolate()->factory()->Object_symbol()); __ jmp(&done); // Non-JS objects have class null. __ bind(&null); __ LoadRoot(rax, Heap::kNullValueRootIndex); // All done. __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitLog(CallRuntime* expr) { // Conditionally generate a log call. // Args: // 0 (literal string): The type of logging (corresponds to the flags). // This is used to determine whether or not to generate the log call. // 1 (string): Format string. Access the string at argument index 2 // with '%2s' (see Logger::LogRuntime for all the formats). // 2 (array): Arguments to the format string. ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(args->length(), 3); if (CodeGenerator::ShouldGenerateLog(args->at(0))) { VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallRuntime(Runtime::kLog, 2); } // Finally, we're expected to leave a value on the top of the stack. __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); context()->Plug(rax); } void FullCodeGenerator::EmitRandomHeapNumber(CallRuntime* expr) { ASSERT(expr->arguments()->length() == 0); Label slow_allocate_heapnumber; Label heapnumber_allocated; __ AllocateHeapNumber(rbx, rcx, &slow_allocate_heapnumber); __ jmp(&heapnumber_allocated); __ bind(&slow_allocate_heapnumber); // Allocate a heap number. __ CallRuntime(Runtime::kNumberAlloc, 0); __ movq(rbx, rax); __ bind(&heapnumber_allocated); // Return a random uint32 number in rax. // The fresh HeapNumber is in rbx, which is callee-save on both x64 ABIs. __ PrepareCallCFunction(1); #ifdef _WIN64 __ movq(rcx, ContextOperand(context_register(), Context::GLOBAL_INDEX)); __ movq(rcx, FieldOperand(rcx, GlobalObject::kGlobalContextOffset)); #else __ movq(rdi, ContextOperand(context_register(), Context::GLOBAL_INDEX)); __ movq(rdi, FieldOperand(rdi, GlobalObject::kGlobalContextOffset)); #endif __ CallCFunction(ExternalReference::random_uint32_function(isolate()), 1); // Convert 32 random bits in rax to 0.(32 random bits) in a double // by computing: // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). __ movl(rcx, Immediate(0x49800000)); // 1.0 x 2^20 as single. __ movd(xmm1, rcx); __ movd(xmm0, rax); __ cvtss2sd(xmm1, xmm1); __ xorps(xmm0, xmm1); __ subsd(xmm0, xmm1); __ movsd(FieldOperand(rbx, HeapNumber::kValueOffset), xmm0); __ movq(rax, rbx); context()->Plug(rax); } void FullCodeGenerator::EmitSubString(CallRuntime* expr) { // Load the arguments on the stack and call the stub. SubStringStub stub; ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitRegExpExec(CallRuntime* expr) { // Load the arguments on the stack and call the stub. RegExpExecStub stub; ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 4); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); VisitForStackValue(args->at(3)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitValueOf(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); // Load the object. Label done; // If the object is a smi return the object. __ JumpIfSmi(rax, &done); // If the object is not a value type, return the object. __ CmpObjectType(rax, JS_VALUE_TYPE, rbx); __ j(not_equal, &done); __ movq(rax, FieldOperand(rax, JSValue::kValueOffset)); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitDateField(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); ASSERT_NE(NULL, args->at(1)->AsLiteral()); Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->handle())); VisitForAccumulatorValue(args->at(0)); // Load the object. Label runtime, done; Register object = rax; Register result = rax; Register scratch = rcx; #ifdef DEBUG __ AbortIfSmi(object); __ CmpObjectType(object, JS_DATE_TYPE, scratch); __ Assert(equal, "Trying to get date field from non-date."); #endif if (index->value() == 0) { __ movq(result, FieldOperand(object, JSDate::kValueOffset)); } else { if (index->value() < JSDate::kFirstUncachedField) { ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); __ movq(scratch, stamp); __ cmpq(scratch, FieldOperand(object, JSDate::kCacheStampOffset)); __ j(not_equal, &runtime, Label::kNear); __ movq(result, FieldOperand(object, JSDate::kValueOffset + kPointerSize * index->value())); __ jmp(&done); } __ bind(&runtime); __ PrepareCallCFunction(2); #ifdef _WIN64 __ movq(rcx, object); __ movq(rdx, index, RelocInfo::NONE); #else __ movq(rdi, object); __ movq(rsi, index, RelocInfo::NONE); #endif __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ bind(&done); } context()->Plug(rax); } void FullCodeGenerator::EmitMathPow(CallRuntime* expr) { // Load the arguments on the stack and call the runtime function. ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); MathPowStub stub(MathPowStub::ON_STACK); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); // Load the object. VisitForAccumulatorValue(args->at(1)); // Load the value. __ pop(rbx); // rax = value. rbx = object. Label done; // If the object is a smi, return the value. __ JumpIfSmi(rbx, &done); // If the object is not a value type, return the value. __ CmpObjectType(rbx, JS_VALUE_TYPE, rcx); __ j(not_equal, &done); // Store the value. __ movq(FieldOperand(rbx, JSValue::kValueOffset), rax); // Update the write barrier. Save the value as it will be // overwritten by the write barrier code and is needed afterward. __ movq(rdx, rax); __ RecordWriteField(rbx, JSValue::kValueOffset, rdx, rcx, kDontSaveFPRegs); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(args->length(), 1); // Load the argument on the stack and call the stub. VisitForStackValue(args->at(0)); NumberToStringStub stub; __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label done; StringCharFromCodeGenerator generator(rax, rbx); generator.GenerateFast(masm_); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(rbx); } void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = rbx; Register index = rax; Register result = rdx; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharCodeAtGenerator generator(object, index, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // NaN. __ LoadRoot(result, Heap::kNanValueRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move the undefined value into the result register, which will // trigger conversion. __ LoadRoot(result, Heap::kUndefinedValueRootIndex); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); Register object = rbx; Register index = rax; Register scratch = rdx; Register result = rax; __ pop(object); Label need_conversion; Label index_out_of_range; Label done; StringCharAtGenerator generator(object, index, scratch, result, &need_conversion, &need_conversion, &index_out_of_range, STRING_INDEX_IS_NUMBER); generator.GenerateFast(masm_); __ jmp(&done); __ bind(&index_out_of_range); // When the index is out of range, the spec requires us to return // the empty string. __ LoadRoot(result, Heap::kEmptyStringRootIndex); __ jmp(&done); __ bind(&need_conversion); // Move smi zero into the result register, which will trigger // conversion. __ Move(result, Smi::FromInt(0)); __ jmp(&done); NopRuntimeCallHelper call_helper; generator.GenerateSlow(masm_, call_helper); __ bind(&done); context()->Plug(result); } void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringAddStub stub(NO_STRING_ADD_FLAGS); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitStringCompare(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(2, args->length()); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); StringCompareStub stub; __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitMathSin(CallRuntime* expr) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::SIN, TranscendentalCacheStub::TAGGED); ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitMathCos(CallRuntime* expr) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::COS, TranscendentalCacheStub::TAGGED); ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitMathTan(CallRuntime* expr) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::TAN, TranscendentalCacheStub::TAGGED); ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitMathLog(CallRuntime* expr) { // Load the argument on the stack and call the stub. TranscendentalCacheStub stub(TranscendentalCache::LOG, TranscendentalCacheStub::TAGGED); ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitMathSqrt(CallRuntime* expr) { // Load the argument on the stack and call the runtime function. ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForStackValue(args->at(0)); __ CallRuntime(Runtime::kMath_sqrt, 1); context()->Plug(rax); } void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() >= 2); int arg_count = args->length() - 2; // 2 ~ receiver and function. for (int i = 0; i < arg_count + 1; i++) { VisitForStackValue(args->at(i)); } VisitForAccumulatorValue(args->last()); // Function. // Check for proxy. Label proxy, done; __ CmpObjectType(rax, JS_FUNCTION_PROXY_TYPE, rbx); __ j(equal, &proxy); // InvokeFunction requires the function in rdi. Move it in there. __ movq(rdi, result_register()); ParameterCount count(arg_count); __ InvokeFunction(rdi, count, CALL_FUNCTION, NullCallWrapper(), CALL_AS_METHOD); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); __ jmp(&done); __ bind(&proxy); __ push(rax); __ CallRuntime(Runtime::kCall, args->length()); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) { RegExpConstructResultStub stub; ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 3); VisitForStackValue(args->at(0)); VisitForStackValue(args->at(1)); VisitForStackValue(args->at(2)); __ CallStub(&stub); context()->Plug(rax); } void FullCodeGenerator::EmitGetFromCache(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(2, args->length()); ASSERT_NE(NULL, args->at(0)->AsLiteral()); int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); Handle<FixedArray> jsfunction_result_caches( isolate()->global_context()->jsfunction_result_caches()); if (jsfunction_result_caches->length() <= cache_id) { __ Abort("Attempt to use undefined cache."); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); context()->Plug(rax); return; } VisitForAccumulatorValue(args->at(1)); Register key = rax; Register cache = rbx; Register tmp = rcx; __ movq(cache, ContextOperand(rsi, Context::GLOBAL_INDEX)); __ movq(cache, FieldOperand(cache, GlobalObject::kGlobalContextOffset)); __ movq(cache, ContextOperand(cache, Context::JSFUNCTION_RESULT_CACHES_INDEX)); __ movq(cache, FieldOperand(cache, FixedArray::OffsetOfElementAt(cache_id))); Label done, not_found; // tmp now holds finger offset as a smi. STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); __ movq(tmp, FieldOperand(cache, JSFunctionResultCache::kFingerOffset)); SmiIndex index = __ SmiToIndex(kScratchRegister, tmp, kPointerSizeLog2); __ cmpq(key, FieldOperand(cache, index.reg, index.scale, FixedArray::kHeaderSize)); __ j(not_equal, ¬_found, Label::kNear); __ movq(rax, FieldOperand(cache, index.reg, index.scale, FixedArray::kHeaderSize + kPointerSize)); __ jmp(&done, Label::kNear); __ bind(¬_found); // Call runtime to perform the lookup. __ push(cache); __ push(key); __ CallRuntime(Runtime::kGetFromCache, 2); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitIsRegExpEquivalent(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT_EQ(2, args->length()); Register right = rax; Register left = rbx; Register tmp = rcx; VisitForStackValue(args->at(0)); VisitForAccumulatorValue(args->at(1)); __ pop(left); Label done, fail, ok; __ cmpq(left, right); __ j(equal, &ok, Label::kNear); // Fail if either is a non-HeapObject. Condition either_smi = masm()->CheckEitherSmi(left, right, tmp); __ j(either_smi, &fail, Label::kNear); __ j(zero, &fail, Label::kNear); __ movq(tmp, FieldOperand(left, HeapObject::kMapOffset)); __ cmpb(FieldOperand(tmp, Map::kInstanceTypeOffset), Immediate(JS_REGEXP_TYPE)); __ j(not_equal, &fail, Label::kNear); __ cmpq(tmp, FieldOperand(right, HeapObject::kMapOffset)); __ j(not_equal, &fail, Label::kNear); __ movq(tmp, FieldOperand(left, JSRegExp::kDataOffset)); __ cmpq(tmp, FieldOperand(right, JSRegExp::kDataOffset)); __ j(equal, &ok, Label::kNear); __ bind(&fail); __ Move(rax, isolate()->factory()->false_value()); __ jmp(&done, Label::kNear); __ bind(&ok); __ Move(rax, isolate()->factory()->true_value()); __ bind(&done); context()->Plug(rax); } void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); __ testl(FieldOperand(rax, String::kHashFieldOffset), Immediate(String::kContainsCachedArrayIndexMask)); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ j(zero, if_true); __ jmp(if_false); context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) { ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 1); VisitForAccumulatorValue(args->at(0)); if (FLAG_debug_code) { __ AbortIfNotString(rax); } __ movl(rax, FieldOperand(rax, String::kHashFieldOffset)); ASSERT(String::kHashShift >= kSmiTagSize); __ IndexFromHash(rax, rax); context()->Plug(rax); } void FullCodeGenerator::EmitFastAsciiArrayJoin(CallRuntime* expr) { Label bailout, return_result, done, one_char_separator, long_separator, non_trivial_array, not_size_one_array, loop, loop_1, loop_1_condition, loop_2, loop_2_entry, loop_3, loop_3_entry; ZoneList<Expression*>* args = expr->arguments(); ASSERT(args->length() == 2); // We will leave the separator on the stack until the end of the function. VisitForStackValue(args->at(1)); // Load this to rax (= array) VisitForAccumulatorValue(args->at(0)); // All aliases of the same register have disjoint lifetimes. Register array = rax; Register elements = no_reg; // Will be rax. Register index = rdx; Register string_length = rcx; Register string = rsi; Register scratch = rbx; Register array_length = rdi; Register result_pos = no_reg; // Will be rdi. Operand separator_operand = Operand(rsp, 2 * kPointerSize); Operand result_operand = Operand(rsp, 1 * kPointerSize); Operand array_length_operand = Operand(rsp, 0 * kPointerSize); // Separator operand is already pushed. Make room for the two // other stack fields, and clear the direction flag in anticipation // of calling CopyBytes. __ subq(rsp, Immediate(2 * kPointerSize)); __ cld(); // Check that the array is a JSArray __ JumpIfSmi(array, &bailout); __ CmpObjectType(array, JS_ARRAY_TYPE, scratch); __ j(not_equal, &bailout); // Check that the array has fast elements. __ CheckFastElements(scratch, &bailout); // Array has fast elements, so its length must be a smi. // If the array has length zero, return the empty string. __ movq(array_length, FieldOperand(array, JSArray::kLengthOffset)); __ SmiCompare(array_length, Smi::FromInt(0)); __ j(not_zero, &non_trivial_array); __ LoadRoot(rax, Heap::kEmptyStringRootIndex); __ jmp(&return_result); // Save the array length on the stack. __ bind(&non_trivial_array); __ SmiToInteger32(array_length, array_length); __ movl(array_length_operand, array_length); // Save the FixedArray containing array's elements. // End of array's live range. elements = array; __ movq(elements, FieldOperand(array, JSArray::kElementsOffset)); array = no_reg; // Check that all array elements are sequential ASCII strings, and // accumulate the sum of their lengths, as a smi-encoded value. __ Set(index, 0); __ Set(string_length, 0); // Loop condition: while (index < array_length). // Live loop registers: index(int32), array_length(int32), string(String*), // scratch, string_length(int32), elements(FixedArray*). if (FLAG_debug_code) { __ cmpq(index, array_length); __ Assert(below, "No empty arrays here in EmitFastAsciiArrayJoin"); } __ bind(&loop); __ movq(string, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ JumpIfSmi(string, &bailout); __ movq(scratch, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); __ andb(scratch, Immediate( kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); __ cmpb(scratch, Immediate(kStringTag | kAsciiStringTag | kSeqStringTag)); __ j(not_equal, &bailout); __ AddSmiField(string_length, FieldOperand(string, SeqAsciiString::kLengthOffset)); __ j(overflow, &bailout); __ incl(index); __ cmpl(index, array_length); __ j(less, &loop); // Live registers: // string_length: Sum of string lengths. // elements: FixedArray of strings. // index: Array length. // array_length: Array length. // If array_length is 1, return elements[0], a string. __ cmpl(array_length, Immediate(1)); __ j(not_equal, ¬_size_one_array); __ movq(rax, FieldOperand(elements, FixedArray::kHeaderSize)); __ jmp(&return_result); __ bind(¬_size_one_array); // End of array_length live range. result_pos = array_length; array_length = no_reg; // Live registers: // string_length: Sum of string lengths. // elements: FixedArray of strings. // index: Array length. // Check that the separator is a sequential ASCII string. __ movq(string, separator_operand); __ JumpIfSmi(string, &bailout); __ movq(scratch, FieldOperand(string, HeapObject::kMapOffset)); __ movzxbl(scratch, FieldOperand(scratch, Map::kInstanceTypeOffset)); __ andb(scratch, Immediate( kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask)); __ cmpb(scratch, Immediate(kStringTag | kAsciiStringTag | kSeqStringTag)); __ j(not_equal, &bailout); // Live registers: // string_length: Sum of string lengths. // elements: FixedArray of strings. // index: Array length. // string: Separator string. // Add (separator length times (array_length - 1)) to string_length. __ SmiToInteger32(scratch, FieldOperand(string, SeqAsciiString::kLengthOffset)); __ decl(index); __ imull(scratch, index); __ j(overflow, &bailout); __ addl(string_length, scratch); __ j(overflow, &bailout); // Live registers and stack values: // string_length: Total length of result string. // elements: FixedArray of strings. __ AllocateAsciiString(result_pos, string_length, scratch, index, string, &bailout); __ movq(result_operand, result_pos); __ lea(result_pos, FieldOperand(result_pos, SeqAsciiString::kHeaderSize)); __ movq(string, separator_operand); __ SmiCompare(FieldOperand(string, SeqAsciiString::kLengthOffset), Smi::FromInt(1)); __ j(equal, &one_char_separator); __ j(greater, &long_separator); // Empty separator case: __ Set(index, 0); __ movl(scratch, array_length_operand); __ jmp(&loop_1_condition); // Loop condition: while (index < array_length). __ bind(&loop_1); // Each iteration of the loop concatenates one string to the result. // Live values in registers: // index: which element of the elements array we are adding to the result. // result_pos: the position to which we are currently copying characters. // elements: the FixedArray of strings we are joining. // scratch: array length. // Get string = array[index]. __ movq(string, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ SmiToInteger32(string_length, FieldOperand(string, String::kLengthOffset)); __ lea(string, FieldOperand(string, SeqAsciiString::kHeaderSize)); __ CopyBytes(result_pos, string, string_length); __ incl(index); __ bind(&loop_1_condition); __ cmpl(index, scratch); __ j(less, &loop_1); // Loop while (index < array_length). __ jmp(&done); // Generic bailout code used from several places. __ bind(&bailout); __ LoadRoot(rax, Heap::kUndefinedValueRootIndex); __ jmp(&return_result); // One-character separator case __ bind(&one_char_separator); // Get the separator ASCII character value. // Register "string" holds the separator. __ movzxbl(scratch, FieldOperand(string, SeqAsciiString::kHeaderSize)); __ Set(index, 0); // Jump into the loop after the code that copies the separator, so the first // element is not preceded by a separator __ jmp(&loop_2_entry); // Loop condition: while (index < length). __ bind(&loop_2); // Each iteration of the loop concatenates one string to the result. // Live values in registers: // elements: The FixedArray of strings we are joining. // index: which element of the elements array we are adding to the result. // result_pos: the position to which we are currently copying characters. // scratch: Separator character. // Copy the separator character to the result. __ movb(Operand(result_pos, 0), scratch); __ incq(result_pos); __ bind(&loop_2_entry); // Get string = array[index]. __ movq(string, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ SmiToInteger32(string_length, FieldOperand(string, String::kLengthOffset)); __ lea(string, FieldOperand(string, SeqAsciiString::kHeaderSize)); __ CopyBytes(result_pos, string, string_length); __ incl(index); __ cmpl(index, array_length_operand); __ j(less, &loop_2); // End while (index < length). __ jmp(&done); // Long separator case (separator is more than one character). __ bind(&long_separator); // Make elements point to end of elements array, and index // count from -array_length to zero, so we don't need to maintain // a loop limit. __ movl(index, array_length_operand); __ lea(elements, FieldOperand(elements, index, times_pointer_size, FixedArray::kHeaderSize)); __ neg(index); // Replace separator string with pointer to its first character, and // make scratch be its length. __ movq(string, separator_operand); __ SmiToInteger32(scratch, FieldOperand(string, String::kLengthOffset)); __ lea(string, FieldOperand(string, SeqAsciiString::kHeaderSize)); __ movq(separator_operand, string); // Jump into the loop after the code that copies the separator, so the first // element is not preceded by a separator __ jmp(&loop_3_entry); // Loop condition: while (index < length). __ bind(&loop_3); // Each iteration of the loop concatenates one string to the result. // Live values in registers: // index: which element of the elements array we are adding to the result. // result_pos: the position to which we are currently copying characters. // scratch: Separator length. // separator_operand (rsp[0x10]): Address of first char of separator. // Copy the separator to the result. __ movq(string, separator_operand); __ movl(string_length, scratch); __ CopyBytes(result_pos, string, string_length, 2); __ bind(&loop_3_entry); // Get string = array[index]. __ movq(string, Operand(elements, index, times_pointer_size, 0)); __ SmiToInteger32(string_length, FieldOperand(string, String::kLengthOffset)); __ lea(string, FieldOperand(string, SeqAsciiString::kHeaderSize)); __ CopyBytes(result_pos, string, string_length); __ incq(index); __ j(not_equal, &loop_3); // Loop while (index < 0). __ bind(&done); __ movq(rax, result_operand); __ bind(&return_result); // Drop temp values from the stack, and restore context register. __ addq(rsp, Immediate(3 * kPointerSize)); __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); context()->Plug(rax); } void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { Handle<String> name = expr->name(); if (name->length() > 0 && name->Get(0) == '_') { Comment cmnt(masm_, "[ InlineRuntimeCall"); EmitInlineRuntimeCall(expr); return; } Comment cmnt(masm_, "[ CallRuntime"); ZoneList<Expression*>* args = expr->arguments(); if (expr->is_jsruntime()) { // Prepare for calling JS runtime function. __ movq(rax, GlobalObjectOperand()); __ push(FieldOperand(rax, GlobalObject::kBuiltinsOffset)); } // Push the arguments ("left-to-right"). int arg_count = args->length(); for (int i = 0; i < arg_count; i++) { VisitForStackValue(args->at(i)); } if (expr->is_jsruntime()) { // Call the JS runtime function using a call IC. __ Move(rcx, expr->name()); RelocInfo::Mode mode = RelocInfo::CODE_TARGET; Handle<Code> ic = isolate()->stub_cache()->ComputeCallInitialize(arg_count, mode); __ call(ic, mode, expr->id()); // Restore context register. __ movq(rsi, Operand(rbp, StandardFrameConstants::kContextOffset)); } else { __ CallRuntime(expr->function(), arg_count); } context()->Plug(rax); } void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { switch (expr->op()) { case Token::DELETE: { Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); Property* property = expr->expression()->AsProperty(); VariableProxy* proxy = expr->expression()->AsVariableProxy(); if (property != NULL) { VisitForStackValue(property->obj()); VisitForStackValue(property->key()); StrictModeFlag strict_mode_flag = (language_mode() == CLASSIC_MODE) ? kNonStrictMode : kStrictMode; __ Push(Smi::FromInt(strict_mode_flag)); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(rax); } else if (proxy != NULL) { Variable* var = proxy->var(); // Delete of an unqualified identifier is disallowed in strict mode // but "delete this" is allowed. ASSERT(language_mode() == CLASSIC_MODE || var->is_this()); if (var->IsUnallocated()) { __ push(GlobalObjectOperand()); __ Push(var->name()); __ Push(Smi::FromInt(kNonStrictMode)); __ InvokeBuiltin(Builtins::DELETE, CALL_FUNCTION); context()->Plug(rax); } else if (var->IsStackAllocated() || var->IsContextSlot()) { // Result of deleting non-global variables is false. 'this' is // not really a variable, though we implement it as one. The // subexpression does not have side effects. context()->Plug(var->is_this()); } else { // Non-global variable. Call the runtime to try to delete from the // context where the variable was introduced. __ push(context_register()); __ Push(var->name()); __ CallRuntime(Runtime::kDeleteContextSlot, 2); context()->Plug(rax); } } else { // Result of deleting non-property, non-variable reference is true. // The subexpression may have side effects. VisitForEffect(expr->expression()); context()->Plug(true); } break; } case Token::VOID: { Comment cmnt(masm_, "[ UnaryOperation (VOID)"); VisitForEffect(expr->expression()); context()->Plug(Heap::kUndefinedValueRootIndex); break; } case Token::NOT: { Comment cmnt(masm_, "[ UnaryOperation (NOT)"); if (context()->IsEffect()) { // Unary NOT has no side effects so it's only necessary to visit the // subexpression. Match the optimizing compiler by not branching. VisitForEffect(expr->expression()); } else if (context()->IsTest()) { const TestContext* test = TestContext::cast(context()); // The labels are swapped for the recursive call. VisitForControl(expr->expression(), test->false_label(), test->true_label(), test->fall_through()); context()->Plug(test->true_label(), test->false_label()); } else { // We handle value contexts explicitly rather than simply visiting // for control and plugging the control flow into the context, // because we need to prepare a pair of extra administrative AST ids // for the optimizing compiler. ASSERT(context()->IsAccumulatorValue() || context()->IsStackValue()); Label materialize_true, materialize_false, done; VisitForControl(expr->expression(), &materialize_false, &materialize_true, &materialize_true); __ bind(&materialize_true); PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS); if (context()->IsAccumulatorValue()) { __ LoadRoot(rax, Heap::kTrueValueRootIndex); } else { __ PushRoot(Heap::kTrueValueRootIndex); } __ jmp(&done, Label::kNear); __ bind(&materialize_false); PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS); if (context()->IsAccumulatorValue()) { __ LoadRoot(rax, Heap::kFalseValueRootIndex); } else { __ PushRoot(Heap::kFalseValueRootIndex); } __ bind(&done); } break; } case Token::TYPEOF: { Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); { StackValueContext context(this); VisitForTypeofValue(expr->expression()); } __ CallRuntime(Runtime::kTypeof, 1); context()->Plug(rax); break; } case Token::ADD: { Comment cmt(masm_, "[ UnaryOperation (ADD)"); VisitForAccumulatorValue(expr->expression()); Label no_conversion; __ JumpIfSmi(result_register(), &no_conversion); ToNumberStub convert_stub; __ CallStub(&convert_stub); __ bind(&no_conversion); context()->Plug(result_register()); break; } case Token::SUB: EmitUnaryOperation(expr, "[ UnaryOperation (SUB)"); break; case Token::BIT_NOT: EmitUnaryOperation(expr, "[ UnaryOperation (BIT_NOT)"); break; default: UNREACHABLE(); } } void FullCodeGenerator::EmitUnaryOperation(UnaryOperation* expr, const char* comment) { // TODO(svenpanne): Allowing format strings in Comment would be nice here... Comment cmt(masm_, comment); bool can_overwrite = expr->expression()->ResultOverwriteAllowed(); UnaryOverwriteMode overwrite = can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; UnaryOpStub stub(expr->op(), overwrite); // UnaryOpStub expects the argument to be in the // accumulator register rax. VisitForAccumulatorValue(expr->expression()); SetSourcePosition(expr->position()); __ call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->id()); context()->Plug(rax); } void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { Comment cmnt(masm_, "[ CountOperation"); SetSourcePosition(expr->position()); // Invalid left-hand-sides are rewritten to have a 'throw // ReferenceError' as the left-hand side. if (!expr->expression()->IsValidLeftHandSide()) { VisitForEffect(expr->expression()); return; } // Expression can only be a property, a global or a (parameter or local) // slot. enum LhsKind { VARIABLE, NAMED_PROPERTY, KEYED_PROPERTY }; LhsKind assign_type = VARIABLE; Property* prop = expr->expression()->AsProperty(); // In case of a property we use the uninitialized expression context // of the key to detect a named property. if (prop != NULL) { assign_type = (prop->key()->IsPropertyName()) ? NAMED_PROPERTY : KEYED_PROPERTY; } // Evaluate expression and get value. if (assign_type == VARIABLE) { ASSERT(expr->expression()->AsVariableProxy()->var() != NULL); AccumulatorValueContext context(this); EmitVariableLoad(expr->expression()->AsVariableProxy()); } else { // Reserve space for result of postfix operation. if (expr->is_postfix() && !context()->IsEffect()) { __ Push(Smi::FromInt(0)); } if (assign_type == NAMED_PROPERTY) { VisitForAccumulatorValue(prop->obj()); __ push(rax); // Copy of receiver, needed for later store. EmitNamedPropertyLoad(prop); } else { VisitForStackValue(prop->obj()); VisitForAccumulatorValue(prop->key()); __ movq(rdx, Operand(rsp, 0)); // Leave receiver on stack __ push(rax); // Copy of key, needed for later store. EmitKeyedPropertyLoad(prop); } } // We need a second deoptimization point after loading the value // in case evaluating the property load my have a side effect. if (assign_type == VARIABLE) { PrepareForBailout(expr->expression(), TOS_REG); } else { PrepareForBailoutForId(expr->CountId(), TOS_REG); } // Call ToNumber only if operand is not a smi. Label no_conversion; __ JumpIfSmi(rax, &no_conversion, Label::kNear); ToNumberStub convert_stub; __ CallStub(&convert_stub); __ bind(&no_conversion); // Save result for postfix expressions. if (expr->is_postfix()) { if (!context()->IsEffect()) { // Save the result on the stack. If we have a named or keyed property // we store the result under the receiver that is currently on top // of the stack. switch (assign_type) { case VARIABLE: __ push(rax); break; case NAMED_PROPERTY: __ movq(Operand(rsp, kPointerSize), rax); break; case KEYED_PROPERTY: __ movq(Operand(rsp, 2 * kPointerSize), rax); break; } } } // Inline smi case if we are in a loop. Label done, stub_call; JumpPatchSite patch_site(masm_); if (ShouldInlineSmiCase(expr->op())) { if (expr->op() == Token::INC) { __ SmiAddConstant(rax, rax, Smi::FromInt(1)); } else { __ SmiSubConstant(rax, rax, Smi::FromInt(1)); } __ j(overflow, &stub_call, Label::kNear); // We could eliminate this smi check if we split the code at // the first smi check before calling ToNumber. patch_site.EmitJumpIfSmi(rax, &done, Label::kNear); __ bind(&stub_call); // Call stub. Undo operation first. if (expr->op() == Token::INC) { __ SmiSubConstant(rax, rax, Smi::FromInt(1)); } else { __ SmiAddConstant(rax, rax, Smi::FromInt(1)); } } // Record position before stub call. SetSourcePosition(expr->position()); // Call stub for +1/-1. BinaryOpStub stub(expr->binary_op(), NO_OVERWRITE); if (expr->op() == Token::INC) { __ Move(rdx, Smi::FromInt(1)); } else { __ movq(rdx, rax); __ Move(rax, Smi::FromInt(1)); } __ call(stub.GetCode(), RelocInfo::CODE_TARGET, expr->CountId()); patch_site.EmitPatchInfo(); __ bind(&done); // Store the value returned in rax. switch (assign_type) { case VARIABLE: if (expr->is_postfix()) { // Perform the assignment as if via '='. { EffectContext context(this); EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context.Plug(rax); } // For all contexts except kEffect: We have the result on // top of the stack. if (!context()->IsEffect()) { context()->PlugTOS(); } } else { // Perform the assignment as if via '='. EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), Token::ASSIGN); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); context()->Plug(rax); } break; case NAMED_PROPERTY: { __ Move(rcx, prop->key()->AsLiteral()->handle()); __ pop(rdx); Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->StoreIC_Initialize() : isolate()->builtins()->StoreIC_Initialize_Strict(); __ call(ic, RelocInfo::CODE_TARGET, expr->id()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } case KEYED_PROPERTY: { __ pop(rcx); __ pop(rdx); Handle<Code> ic = is_classic_mode() ? isolate()->builtins()->KeyedStoreIC_Initialize() : isolate()->builtins()->KeyedStoreIC_Initialize_Strict(); __ call(ic, RelocInfo::CODE_TARGET, expr->id()); PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); if (expr->is_postfix()) { if (!context()->IsEffect()) { context()->PlugTOS(); } } else { context()->Plug(rax); } break; } } } void FullCodeGenerator::VisitForTypeofValue(Expression* expr) { VariableProxy* proxy = expr->AsVariableProxy(); ASSERT(!context()->IsEffect()); ASSERT(!context()->IsTest()); if (proxy != NULL && proxy->var()->IsUnallocated()) { Comment cmnt(masm_, "Global variable"); __ Move(rcx, proxy->name()); __ movq(rax, GlobalObjectOperand()); Handle<Code> ic = isolate()->builtins()->LoadIC_Initialize(); // Use a regular load, not a contextual load, to avoid a reference // error. __ call(ic); PrepareForBailout(expr, TOS_REG); context()->Plug(rax); } else if (proxy != NULL && proxy->var()->IsLookupSlot()) { Label done, slow; // Generate code for loading from variables potentially shadowed // by eval-introduced variables. EmitDynamicLookupFastCase(proxy->var(), INSIDE_TYPEOF, &slow, &done); __ bind(&slow); __ push(rsi); __ Push(proxy->name()); __ CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); PrepareForBailout(expr, TOS_REG); __ bind(&done); context()->Plug(rax); } else { // This expression cannot throw a reference error at the top level. VisitInDuplicateContext(expr); } } void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, Expression* sub_expr, Handle<String> check) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); { AccumulatorValueContext context(this); VisitForTypeofValue(sub_expr); } PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); if (check->Equals(isolate()->heap()->number_symbol())) { __ JumpIfSmi(rax, if_true); __ movq(rax, FieldOperand(rax, HeapObject::kMapOffset)); __ CompareRoot(rax, Heap::kHeapNumberMapRootIndex); Split(equal, if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->string_symbol())) { __ JumpIfSmi(rax, if_false); // Check for undetectable objects => false. __ CmpObjectType(rax, FIRST_NONSTRING_TYPE, rdx); __ j(above_equal, if_false); __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(zero, if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->boolean_symbol())) { __ CompareRoot(rax, Heap::kTrueValueRootIndex); __ j(equal, if_true); __ CompareRoot(rax, Heap::kFalseValueRootIndex); Split(equal, if_true, if_false, fall_through); } else if (FLAG_harmony_typeof && check->Equals(isolate()->heap()->null_symbol())) { __ CompareRoot(rax, Heap::kNullValueRootIndex); Split(equal, if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->undefined_symbol())) { __ CompareRoot(rax, Heap::kUndefinedValueRootIndex); __ j(equal, if_true); __ JumpIfSmi(rax, if_false); // Check for undetectable objects => true. __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->function_symbol())) { __ JumpIfSmi(rax, if_false); STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); __ CmpObjectType(rax, JS_FUNCTION_TYPE, rdx); __ j(equal, if_true); __ CmpInstanceType(rdx, JS_FUNCTION_PROXY_TYPE); Split(equal, if_true, if_false, fall_through); } else if (check->Equals(isolate()->heap()->object_symbol())) { __ JumpIfSmi(rax, if_false); if (!FLAG_harmony_typeof) { __ CompareRoot(rax, Heap::kNullValueRootIndex); __ j(equal, if_true); } __ CmpObjectType(rax, FIRST_NONCALLABLE_SPEC_OBJECT_TYPE, rdx); __ j(below, if_false); __ CmpInstanceType(rdx, LAST_NONCALLABLE_SPEC_OBJECT_TYPE); __ j(above, if_false); // Check for undetectable objects => false. __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(zero, if_true, if_false, fall_through); } else { if (if_false != fall_through) __ jmp(if_false); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { Comment cmnt(masm_, "[ CompareOperation"); SetSourcePosition(expr->position()); // First we try a fast inlined version of the compare when one of // the operands is a literal. if (TryLiteralCompare(expr)) return; // Always perform the comparison for its control flow. Pack the result // into the expression's context after the comparison is performed. Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); Token::Value op = expr->op(); VisitForStackValue(expr->left()); switch (op) { case Token::IN: VisitForStackValue(expr->right()); __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); __ CompareRoot(rax, Heap::kTrueValueRootIndex); Split(equal, if_true, if_false, fall_through); break; case Token::INSTANCEOF: { VisitForStackValue(expr->right()); InstanceofStub stub(InstanceofStub::kNoFlags); __ CallStub(&stub); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ testq(rax, rax); // The stub returns 0 for true. Split(zero, if_true, if_false, fall_through); break; } default: { VisitForAccumulatorValue(expr->right()); Condition cc = no_condition; switch (op) { case Token::EQ_STRICT: case Token::EQ: cc = equal; break; case Token::LT: cc = less; break; case Token::GT: cc = greater; break; case Token::LTE: cc = less_equal; break; case Token::GTE: cc = greater_equal; break; case Token::IN: case Token::INSTANCEOF: default: UNREACHABLE(); } __ pop(rdx); bool inline_smi_code = ShouldInlineSmiCase(op); JumpPatchSite patch_site(masm_); if (inline_smi_code) { Label slow_case; __ movq(rcx, rdx); __ or_(rcx, rax); patch_site.EmitJumpIfNotSmi(rcx, &slow_case, Label::kNear); __ cmpq(rdx, rax); Split(cc, if_true, if_false, NULL); __ bind(&slow_case); } // Record position and call the compare IC. SetSourcePosition(expr->position()); Handle<Code> ic = CompareIC::GetUninitialized(op); __ call(ic, RelocInfo::CODE_TARGET, expr->id()); patch_site.EmitPatchInfo(); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); __ testq(rax, rax); Split(cc, if_true, if_false, fall_through); } } // Convert the result of the comparison into one expected for this // expression's context. context()->Plug(if_true, if_false); } void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, Expression* sub_expr, NilValue nil) { Label materialize_true, materialize_false; Label* if_true = NULL; Label* if_false = NULL; Label* fall_through = NULL; context()->PrepareTest(&materialize_true, &materialize_false, &if_true, &if_false, &fall_through); VisitForAccumulatorValue(sub_expr); PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); Heap::RootListIndex nil_value = nil == kNullValue ? Heap::kNullValueRootIndex : Heap::kUndefinedValueRootIndex; __ CompareRoot(rax, nil_value); if (expr->op() == Token::EQ_STRICT) { Split(equal, if_true, if_false, fall_through); } else { Heap::RootListIndex other_nil_value = nil == kNullValue ? Heap::kUndefinedValueRootIndex : Heap::kNullValueRootIndex; __ j(equal, if_true); __ CompareRoot(rax, other_nil_value); __ j(equal, if_true); __ JumpIfSmi(rax, if_false); // It can be an undetectable object. __ movq(rdx, FieldOperand(rax, HeapObject::kMapOffset)); __ testb(FieldOperand(rdx, Map::kBitFieldOffset), Immediate(1 << Map::kIsUndetectable)); Split(not_zero, if_true, if_false, fall_through); } context()->Plug(if_true, if_false); } void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { __ movq(rax, Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); context()->Plug(rax); } Register FullCodeGenerator::result_register() { return rax; } Register FullCodeGenerator::context_register() { return rsi; } void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { ASSERT(IsAligned(frame_offset, kPointerSize)); __ movq(Operand(rbp, frame_offset), value); } void FullCodeGenerator::LoadContextField(Register dst, int context_index) { __ movq(dst, ContextOperand(rsi, context_index)); } void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { Scope* declaration_scope = scope()->DeclarationScope(); if (declaration_scope->is_global_scope()) { // Contexts nested in the global context have a canonical empty function // as their closure, not the anonymous closure containing the global // code. Pass a smi sentinel and let the runtime look up the empty // function. __ Push(Smi::FromInt(0)); } else if (declaration_scope->is_eval_scope()) { // Contexts created by a call to eval have the same closure as the // context calling eval, not the anonymous closure containing the eval // code. Fetch it from the context. __ push(ContextOperand(rsi, Context::CLOSURE_INDEX)); } else { ASSERT(declaration_scope->is_function_scope()); __ push(Operand(rbp, JavaScriptFrameConstants::kFunctionOffset)); } } // ---------------------------------------------------------------------------- // Non-local control flow support. void FullCodeGenerator::EnterFinallyBlock() { ASSERT(!result_register().is(rdx)); ASSERT(!result_register().is(rcx)); // Cook return address on top of stack (smi encoded Code* delta) __ pop(rdx); __ Move(rcx, masm_->CodeObject()); __ subq(rdx, rcx); __ Integer32ToSmi(rdx, rdx); __ push(rdx); // Store result register while executing finally block. __ push(result_register()); } void FullCodeGenerator::ExitFinallyBlock() { ASSERT(!result_register().is(rdx)); ASSERT(!result_register().is(rcx)); __ pop(result_register()); // Uncook return address. __ pop(rdx); __ SmiToInteger32(rdx, rdx); __ Move(rcx, masm_->CodeObject()); __ addq(rdx, rcx); __ jmp(rdx); } #undef __ #define __ ACCESS_MASM(masm()) FullCodeGenerator::NestedStatement* FullCodeGenerator::TryFinally::Exit( int* stack_depth, int* context_length) { // The macros used here must preserve the result register. // Because the handler block contains the context of the finally // code, we can restore it directly from there for the finally code // rather than iteratively unwinding contexts via their previous // links. __ Drop(*stack_depth); // Down to the handler block. if (*context_length > 0) { // Restore the context to its dedicated register and the stack. __ movq(rsi, Operand(rsp, StackHandlerConstants::kContextOffset)); __ movq(Operand(rbp, StandardFrameConstants::kContextOffset), rsi); } __ PopTryHandler(); __ call(finally_entry_); *stack_depth = 0; *context_length = 0; return previous_; } #undef __ } } // namespace v8::internal #endif // V8_TARGET_ARCH_X64