// This program is a thorough test of the LOADVn/STOREVn shadow memory // operations. #include <assert.h> #include <stdlib.h> #include <stdio.h> #include <string.h> #include "memcheck/memcheck.h" // All the sizes here are in *bytes*, not bits. typedef unsigned char U1; typedef unsigned short U2; typedef unsigned int U4; typedef unsigned long long U8; typedef float F4; typedef double F8; #define SZB_OF_a 64 // a[] is the array in which we do our loads and stores. // b[] is another one in which we do some copying. U8 a [SZB_OF_a / 8]; // Type is U8 to ensure it's 8-aligned U8 b [SZB_OF_a / 8]; // same size as a[] // XXX: should check the error cases for SET/GET_VBITS also // For the byte 'x', build a value of 'size' bytes from that byte, eg: // size 1 --> x // size 2 --> xx // size 4 --> xxxx // size 8 --> xxxxxxxx // where the 0 bits are seen by Memcheck as defined, and the 1 bits are // seen as undefined (ie. the value of each bit matches its V bit, ie. the // resulting value is the same as its metavalue). // U8 build(int size, U1 byte) { int i; U8 mask = 0; U8 shres; U8 res = 0xffffffffffffffffULL, res2; VALGRIND_MAKE_MEM_UNDEFINED(&res, 8); assert(1 == size || 2 == size || 4 == size || 8 == size); for (i = 0; i < size; i++) { mask <<= 8; mask |= (U8)byte; } res &= mask; // res is now considered partially defined, but we know exactly what its // value is (it happens to be the same as its metavalue). (void)VALGRIND_GET_VBITS(&res, &shres, 8); res2 = res; (void)VALGRIND_MAKE_MEM_DEFINED(&res2, 8); // avoid the 'undefined' warning assert(res2 == shres); return res; } // Check that all the bytes in a[x..y-1] have their V byte equal // to either 'expected_byte' or 'expected_byte_alt'. // 'str' and 'offset' are only used for printing an error message if // something goes wrong. void check_all(U4 x, U4 y, U1 expected_byte, U1 expected_byte_alt, char* str, int offset) { U1 sh[SZB_OF_a]; // Used for getting a[]'s V bits int i; (void)VALGRIND_GET_VBITS(a, sh, sizeof(a)); for (i = x; i < y; i++) { if ( expected_byte != sh[i] && expected_byte_alt != sh[i] ) { fprintf(stderr, "\n\nFAILURE: %s, offset %d, byte %d -- " "is 0x%x, should be 0x%x or 0x%x\n\n", str, offset, i, sh[i], expected_byte, expected_byte_alt); exit(1); } } } int main(void) { int h, i, j; U1 *undefA, expected_byte, expected_byte_alt; if (0 == RUNNING_ON_VALGRIND) { fprintf(stderr, "error: this program only works when run under Valgrind\n"); exit(1); } // Check a[] has the expected alignment, and that it's not too high in // the address space (which would trigger the slow cases in // LOADVn/STOREVn) on 64-bit platforms). assert( 0 == (long)a % 8); if (sizeof(void*) == 8) { assert( ((U1*)(&a[0])) < ((U1*)(32ULL * 1024*1024*1024)/*32G*/) ); } // Check basic types have the expected sizes. assert(1 == sizeof(U1)); assert(2 == sizeof(U2)); assert(4 == sizeof(U4)); assert(8 == sizeof(U8)); // Create an array of values that has all the possible V bit metavalues. // Because 0 represents a defined bit, and because undefA[] is initially // zeroed, we have the nice property that: // // i == undefA[i] == V_bits_of(undefA[i]) // // which is useful for testing below. undefA = calloc(1, 256); // one for each possible undefinedness value VALGRIND_MAKE_MEM_UNDEFINED(undefA, 256); for (i = 0; i < 256; i++) { undefA[i] &= i; } // This code does a whole lot of reads and writes of a particular size // (NNN = 1, 2, 4 or 8), with varying alignments, of values with // different not/partially/fully defined metavalues, and checks that the // V bits are set in a[] as expected using GET_VBITS. // // 'Ty' is the type of the thing we are copying. It can be an integer // type or an FP type. 'ITy' is the same-sized integer type (and thus // will be the same as 'Ty' if 'ITy' is an integer type). 'ITy' is used // when doing shifting/masking and stuff like that. #define DO(NNN, Ty, ITy, isF4) \ fprintf(stderr, "-- NNN: %d %s %s ------------------------\n", NNN, #Ty, #ITy); \ /* For all of the alignments from (0..NNN-1), eg. if NNN==4, we do */ \ /* alignments of 0, 1, 2, 3. */ \ for (h = 0; h < NNN; h++) { \ \ size_t n = sizeof(a); \ size_t nN = n / sizeof(Ty); \ Ty* aN = (Ty*)a; \ Ty* bN = (Ty*)b; \ Ty* aNb = (Ty*)(((U1*)aN) + h); /* set offset from a[] */ \ Ty* bNb = (Ty*)(((U1*)bN) + h); /* set offset from b[] */ \ \ fprintf(stderr, "h = %d (checking %d..%d) ", h, h, (int)(n-NNN+h)); \ \ /* For each of the 256 possible V byte values... */ \ for (j = 0; j < 256; j++) { \ /* build the value for i (one of: i, ii, iiii, iiiiiiii) */ \ U8 tmp = build(NNN, j); \ ITy undefN_ITy = (ITy)tmp; \ Ty* undefN_Ty; \ { /* This just checks that no overflow occurred when squeezing */ \ /* the output of build() into a variable of type 'Ty'. */ \ U8 tmpDef = tmp; \ ITy undefN_ITyDef = undefN_ITy; \ VALGRIND_MAKE_MEM_DEFINED(&tmpDef, 8 ); \ VALGRIND_MAKE_MEM_DEFINED(&undefN_ITyDef, NNN); \ assert(tmpDef == (U8)undefN_ITyDef); \ } \ \ /* We have to use an array for undefN_Ty -- because if we try to * convert an integer type from build into an FP type with a * straight cast -- eg "float f = (float)i" -- the value gets * converted. With this pointer/array nonsense the exact bit * pattern gets used as an FP value unchanged (that FP value is * undoubtedly nonsense, but that's not a problem here). */ \ undefN_Ty = (Ty*)&undefN_ITy; \ if (0 == j % 32) fprintf(stderr, "%d...", j); /* progress meter */ \ \ \ /* A nasty exception: most machines so far (x86/PPC32/PPC64) * don't have 32-bit floats. So 32-bit floats get cast to 64-bit * floats. Memcheck does a PCast in this case, which means that if * any V bits for the 32-bit float are undefined (ie. 0 != j), all * the V bits in the 64-bit float are undefined. So account for * this when checking. AMD64 typically does FP arithmetic on * SSE, effectively giving it access to 32-bit FP registers. So * in short, for floats, we have to allow either 'j' or 0xFF * as an acceptable result. Sigh. */ \ if (isF4) { \ expected_byte = j; \ expected_byte_alt = 0 != j ? 0xFF : j; \ } else { \ expected_byte = j; \ expected_byte_alt = j; \ } \ \ /* STOREVn. Note that we use the first element of the undefN_Ty * array, as explained above. */ \ for (i = 0; i < nN-1; i++) { aNb[i] = undefN_Ty[0]; } \ check_all(h, n-NNN+h, expected_byte, expected_byte_alt, "STOREVn", h); \ \ /* LOADVn -- by copying the values to one place and then back, * we ensure that LOADVn gets exercised. */ \ for (i = 0; i < nN-1; i++) { bNb[i] = aNb[i]; } \ for (i = 0; i < nN-1; i++) { aNb[i] = bNb[i]; } \ check_all(h, n-NNN+h, expected_byte, expected_byte_alt, "LOADVn", h); \ } \ fprintf(stderr, "\n"); \ } // For sizes 4 and 8 we do both integer and floating-point types. The // reason being that on 32-bit machines just using integer types never // exercises LOADV8/STOREV8 -- for integer types these loads/stores get // broken into two 32-bit loads/stores. DO(1, U1, U1, /*isF4*/0); DO(2, U2, U2, /*isF4*/0); DO(4, U4, U4, /*isF4*/0); DO(4, F4, U4, /*isF4*/1); DO(8, U8, U8, /*isF4*/0); DO(8, F8, U8, /*isF4*/0); return 0; }