/* Copyright (C) 2006 Dave Nomura dcnltc@us.ibm.com This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307, USA. The GNU General Public License is contained in the file COPYING. */ #include <stdio.h> #include <stdlib.h> #include <limits.h> typedef enum { FALSE=0, TRUE } bool_t; typedef enum { FADDS, FSUBS, FMULS, FDIVS, FMADDS, FMSUBS, FNMADDS, FNMSUBS, FADD, FSUB, FMUL, FDIV, FMADD, FMSUB, FNMADD, FNMSUB, FSQRT } flt_op_t; typedef enum { TO_NEAREST=0, TO_ZERO, TO_PLUS_INFINITY, TO_MINUS_INFINITY } round_mode_t; char *round_mode_name[] = { "near", "zero", "+inf", "-inf" }; const char *flt_op_names[] = { "fadds", "fsubs", "fmuls", "fdivs", "fmadds", "fmsubs", "fnmadds", "fnmsubs", "fadd", "fsub", "fmul", "fdiv", "fmadd", "fmsub", "fnmadd", "fnmsub", "fsqrt" }; typedef unsigned int fpscr_t; typedef union { float flt; struct { unsigned int sign:1; unsigned int exp:8; unsigned int frac:23; } layout; } flt_overlay; typedef union { double dbl; struct { unsigned int sign:1; unsigned int exp:11; unsigned int frac_hi:20; unsigned int frac_lo:32; } layout; struct { unsigned int hi; unsigned int lo; } dbl_pair; } dbl_overlay; void assert_fail(const char *msg, const char* expr, const char* file, int line, const char*fn); #define STRING(__str) #__str #define assert(msg, expr) \ ((void) ((expr) ? 0 : \ (assert_fail (msg, STRING(expr), \ __FILE__, __LINE__, \ __PRETTY_FUNCTION__), 0))) float denorm_small; double dbl_denorm_small; float norm_small; bool_t debug = FALSE; bool_t long_is_64_bits = sizeof(long) == 8; void assert_fail (msg, expr, file, line, fn) const char* msg; const char* expr; const char* file; int line; const char*fn; { printf( "\n%s: %s:%d (%s): Assertion `%s' failed.\n", msg, file, line, fn, expr ); exit( 1 ); } void set_rounding_mode(round_mode_t mode) { switch(mode) { case TO_NEAREST: asm volatile("mtfsfi 7, 0"); break; case TO_ZERO: asm volatile("mtfsfi 7, 1"); break; case TO_PLUS_INFINITY: asm volatile("mtfsfi 7, 2"); break; case TO_MINUS_INFINITY: asm volatile("mtfsfi 7, 3"); break; } } void print_double(char *msg, double dbl) { dbl_overlay D; D.dbl = dbl; printf("%15s : dbl %-20a = %c(%4d, %05x%08x)\n", msg, D.dbl, (D.layout.sign == 0 ? '+' : '-'), D.layout.exp, D.layout.frac_hi, D.layout.frac_lo); } void print_single(char *msg, float *flt) { flt_overlay F; F.flt = *flt; /* NOTE: for the purposes of comparing the fraction of a single with ** a double left shift the .frac so that hex digits are grouped ** from left to right. this is necessary because the size of a ** single mantissa (23) bits is not a multiple of 4 */ printf("%15s : flt %-20a = %c(%4d, %06x)\n", msg, F.flt, (F.layout.sign == 0 ? '+' : '-'), F.layout.exp, F.layout.frac << 1); } int check_dbl_to_flt_round(round_mode_t mode, double dbl, float *expected) { int status = 0; flt_overlay R, E; char *result; set_rounding_mode(mode); E.flt = *expected; R.flt = (float)dbl; if ((R.layout.sign != E.layout.sign) || (R.layout.exp != E.layout.exp) || (R.layout.frac != E.layout.frac)) { result = "FAILED"; status = 1; } else { result = "PASSED"; status = 0; } printf("%s:%s:(double)(%-20a) = %20a", round_mode_name[mode], result, R.flt, dbl); if (status) { print_single("\n\texpected", &E.flt); print_single("\n\trounded ", &R.flt); } putchar('\n'); return status; } int test_dbl_to_float_convert(char *msg, float *base) { int status = 0; double half = (double)denorm_small/2; double qtr = half/2; double D_hi = (double)*base + half + qtr; double D_lo = (double)*base + half - qtr; float F_lo = *base; float F_hi = F_lo + denorm_small; /* ** .....+-----+-----+-----+-----+---.... ** ^F_lo ^ ^ ^ ** D_lo ** D_hi ** F_hi ** F_lo and F_hi are two consecutive single float model numbers ** denorm_small distance apart. D_lo and D_hi are two numbers ** within that range that are not representable as single floats ** and will be rounded to either F_lo or F_hi. */ printf("-------------------------- %s --------------------------\n", msg); if (debug) { print_double("D_lo", D_lo); print_double("D_hi", D_hi); print_single("F_lo", &F_lo); print_single("F_hi", &F_hi); } /* round to nearest */ status |= check_dbl_to_flt_round(TO_NEAREST, D_hi, &F_hi); status |= check_dbl_to_flt_round(TO_NEAREST, D_lo, &F_lo); /* round to zero */ status |= check_dbl_to_flt_round(TO_ZERO, D_hi, (D_hi > 0 ? &F_lo : &F_hi)); status |= check_dbl_to_flt_round(TO_ZERO, D_lo, (D_hi > 0 ? &F_lo : &F_hi)); /* round to +inf */ status |= check_dbl_to_flt_round(TO_PLUS_INFINITY, D_hi, &F_hi); status |= check_dbl_to_flt_round(TO_PLUS_INFINITY, D_lo, &F_hi); /* round to -inf */ status |= check_dbl_to_flt_round(TO_MINUS_INFINITY, D_hi, &F_lo); status |= check_dbl_to_flt_round(TO_MINUS_INFINITY, D_lo, &F_lo); return status; } void init() { flt_overlay F; dbl_overlay D; /* small is the smallest denormalized single float number */ F.layout.sign = 0; F.layout.exp = 0; F.layout.frac = 1; denorm_small = F.flt; /* == 2^(-149) */ if (debug) { print_double("float small", F.flt); } D.layout.sign = 0; D.layout.exp = 0; D.layout.frac_hi = 0; D.layout.frac_lo = 1; dbl_denorm_small = D.dbl; /* == 2^(-1022) */ if (debug) { print_double("double small", D.dbl); } /* n_small is the smallest normalized single precision float */ F.layout.exp = 1; norm_small = F.flt; } int check_int_to_flt_round(round_mode_t mode, long L, float *expected) { int status = 0; int I = L; char *int_name = "int"; flt_overlay R, E; char *result; int iter; set_rounding_mode(mode); E.flt = *expected; for (iter = 0; iter < 2; iter++) { int stat = 0; R.flt = (iter == 0 ? (float)I : (float)L); if ((R.layout.sign != E.layout.sign) || (R.layout.exp != E.layout.exp) || (R.layout.frac != E.layout.frac)) { result = "FAILED"; stat = 1; } else { result = "PASSED"; stat = 0; } printf("%s:%s:(float)(%4s)%9d = %11.1f", round_mode_name[mode], result, int_name, I, R.flt); if (stat) { print_single("\n\texpected: %.1f ", &E.flt); print_single("\n\trounded ", &R.flt); } putchar('\n'); status |= stat; if (!long_is_64_bits) break; int_name = "long"; } return status; } int check_long_to_dbl_round(round_mode_t mode, long L, double *expected) { int status = 0; dbl_overlay R, E; char *result; set_rounding_mode(mode); E.dbl = *expected; R.dbl = (double)L; if ((R.layout.sign != E.layout.sign) || (R.layout.exp != E.layout.exp) || (R.layout.frac_lo != E.layout.frac_lo) || (R.layout.frac_hi != E.layout.frac_hi)) { result = "FAILED"; status = 1; } else { result = "PASSED"; status = 0; } printf("%s:%s:(double)(%18ld) = %20.1f", round_mode_name[mode], result, L, R.dbl); if (status) { printf("\n\texpected %.1f : ", E.dbl); } putchar('\n'); return status; } int test_int_to_float_convert(char *msg) { int status = 0; int int24_hi = 0x03ff0fff; int int24_lo = 0x03ff0ffd; float pos_flt_lo = 67047420.0; float pos_flt_hi = 67047424.0; float neg_flt_lo = -67047420.0; float neg_flt_hi = -67047424.0; printf("-------------------------- %s --------------------------\n", msg); status |= check_int_to_flt_round(TO_NEAREST, int24_lo, &pos_flt_lo); status |= check_int_to_flt_round(TO_NEAREST, int24_hi, &pos_flt_hi); status |= check_int_to_flt_round(TO_ZERO, int24_lo, &pos_flt_lo); status |= check_int_to_flt_round(TO_ZERO, int24_hi, &pos_flt_lo); status |= check_int_to_flt_round(TO_PLUS_INFINITY, int24_lo, &pos_flt_hi); status |= check_int_to_flt_round(TO_PLUS_INFINITY, int24_hi, &pos_flt_hi); status |= check_int_to_flt_round(TO_MINUS_INFINITY, int24_lo, &pos_flt_lo); status |= check_int_to_flt_round(TO_MINUS_INFINITY, int24_hi, &pos_flt_lo); status |= check_int_to_flt_round(TO_NEAREST, -int24_lo, &neg_flt_lo); status |= check_int_to_flt_round(TO_NEAREST, -int24_hi, &neg_flt_hi); status |= check_int_to_flt_round(TO_ZERO, -int24_lo, &neg_flt_lo); status |= check_int_to_flt_round(TO_ZERO, -int24_hi, &neg_flt_lo); status |= check_int_to_flt_round(TO_PLUS_INFINITY, -int24_lo, &neg_flt_lo); status |= check_int_to_flt_round(TO_PLUS_INFINITY, -int24_hi, &neg_flt_lo); status |= check_int_to_flt_round(TO_MINUS_INFINITY, -int24_lo, &neg_flt_hi); status |= check_int_to_flt_round(TO_MINUS_INFINITY, -int24_hi, &neg_flt_hi); return status; } #ifdef __powerpc64__ int test_long_to_double_convert(char *msg) { int status = 0; long long55_hi = 0x07ff0ffffffffff; long long55_lo = 0x07ff0fffffffffd; double pos_dbl_lo = 36012304344547324.0; double pos_dbl_hi = 36012304344547328.0; double neg_dbl_lo = -36012304344547324.0; double neg_dbl_hi = -36012304344547328.0; printf("-------------------------- %s --------------------------\n", msg); status |= check_long_to_dbl_round(TO_NEAREST, long55_lo, &pos_dbl_lo); status |= check_long_to_dbl_round(TO_NEAREST, long55_hi, &pos_dbl_hi); status |= check_long_to_dbl_round(TO_ZERO, long55_lo, &pos_dbl_lo); status |= check_long_to_dbl_round(TO_ZERO, long55_hi, &pos_dbl_lo); status |= check_long_to_dbl_round(TO_PLUS_INFINITY, long55_lo, &pos_dbl_hi); status |= check_long_to_dbl_round(TO_PLUS_INFINITY, long55_hi, &pos_dbl_hi); status |= check_long_to_dbl_round(TO_MINUS_INFINITY, long55_lo, &pos_dbl_lo); status |= check_long_to_dbl_round(TO_MINUS_INFINITY, long55_hi, &pos_dbl_lo); status |= check_long_to_dbl_round(TO_NEAREST, -long55_lo, &neg_dbl_lo); status |= check_long_to_dbl_round(TO_NEAREST, -long55_hi, &neg_dbl_hi); status |= check_long_to_dbl_round(TO_ZERO, -long55_lo, &neg_dbl_lo); status |= check_long_to_dbl_round(TO_ZERO, -long55_hi, &neg_dbl_lo); status |= check_long_to_dbl_round(TO_PLUS_INFINITY, -long55_lo, &neg_dbl_lo); status |= check_long_to_dbl_round(TO_PLUS_INFINITY, -long55_hi, &neg_dbl_lo); status |= check_long_to_dbl_round(TO_MINUS_INFINITY, -long55_lo, &neg_dbl_hi); status |= check_long_to_dbl_round(TO_MINUS_INFINITY, -long55_hi, &neg_dbl_hi); return status; } #endif int check_single_arithmetic_op(flt_op_t op) { char *result; int status = 0; dbl_overlay R, E; double qtr, half, fA, fB, fD; round_mode_t mode; int q, s; bool_t two_args = TRUE; float whole = denorm_small; #define BINOP(op) \ __asm__ volatile( \ op" %0, %1, %2\n\t" \ : "=f"(fD) : "f"(fA) , "f"(fB)); #define UNOP(op) \ __asm__ volatile( \ op" %0, %1\n\t" \ : "=f"(fD) : "f"(fA)); half = (double)whole/2; qtr = half/2; if (debug) { print_double("qtr", qtr); print_double("whole", whole); print_double("2*whole", 2*whole); } for (mode = TO_NEAREST; mode <= TO_MINUS_INFINITY; mode++) for (s = -1; s < 2; s += 2) for (q = 1; q < 4; q += 2) { double expected; double lo = s*whole; double hi = s*2*whole; switch(op) { case FADDS: fA = s*whole; fB = s*q*qtr; break; case FSUBS: fA = s*2*whole; fB = s*(q == 1 ? 3 : 1)*qtr; break; case FMULS: fA = 0.5; fB = s*(4+q)*half; break; case FDIVS: fA = s*(4+q)*half; fB = 2.0; break; default: assert("check_single_arithmetic_op: unexpected op", FALSE); break; } switch(mode) { case TO_NEAREST: expected = (q == 1 ? lo : hi); break; case TO_ZERO: expected = lo; break; case TO_PLUS_INFINITY: expected = (s == 1 ? hi : lo); break; case TO_MINUS_INFINITY: expected = (s == 1 ? lo : hi); break; } set_rounding_mode(mode); /* ** do the double precision dual operation just for comparison ** when debugging */ switch(op) { case FADDS: BINOP("fadds"); R.dbl = fD; BINOP("fadd"); break; case FSUBS: BINOP("fsubs"); R.dbl = fD; BINOP("fsub"); break; case FMULS: BINOP("fmuls"); R.dbl = fD; BINOP("fmul"); break; case FDIVS: BINOP("fdivs"); R.dbl = fD; BINOP("fdiv"); break; default: assert("check_single_arithmetic_op: unexpected op", FALSE); break; } #undef UNOP #undef BINOP E.dbl = expected; if ((R.layout.sign != E.layout.sign) || (R.layout.exp != E.layout.exp) || (R.layout.frac_lo != E.layout.frac_lo) || (R.layout.frac_hi != E.layout.frac_hi)) { result = "FAILED"; status = 1; } else { result = "PASSED"; status = 0; } printf("%s:%s:%s(%-13a", round_mode_name[mode], result, flt_op_names[op], fA); if (two_args) printf(", %-13a", fB); printf(") = %-13a", R.dbl); if (status) printf("\n\texpected %a", E.dbl); putchar('\n'); if (debug) { print_double("hi", hi); print_double("lo", lo); print_double("expected", expected); print_double("got", R.dbl); print_double("double result", fD); } } return status; } int check_single_guarded_arithmetic_op(flt_op_t op) { typedef struct { int num, den, frac; } fdivs_t; char *result; int status = 0; flt_overlay A, B, Z; dbl_overlay Res, Exp; double fA, fB, fC, fD; round_mode_t mode; int g, s; int arg_count; fdivs_t divs_guard_cases[16] = { { 105, 56, 0x700000 }, /* : 0 */ { 100, 57, 0x608FB8 }, /* : 1 */ { 000, 00, 0x000000 }, /* : X */ { 100, 52, 0x762762 }, /* : 3 */ { 000, 00, 0x000000 }, /* : X */ { 100, 55, 0x68BA2E }, /* : 5 */ { 000, 00, 0x000000 }, /* : X */ { 100, 51, 0x7AFAFA }, /* : 7 */ { 000, 00, 0x000000 }, /* : X */ { 100, 56, 0x649249 }, /* : 9 */ { 000, 00, 0x000000 }, /* : X */ { 100, 54, 0x6D097B }, /* : B */ { 000, 00, 0x000000 }, /* : X */ { 100, 59, 0x58F2FB }, /* : D */ { 000, 00, 0x000000 }, /* : X */ { 101, 52, 0x789D89 } /* : F */ }; /* 0x1.00000 00000000p-3 */ /* set up the invariant fields of B, the arg to cause rounding */ B.flt = 0.0; B.layout.exp = 124; /* -3 */ /* set up args so result is always Z = 1.200000000000<g>p+0 */ Z.flt = 1.0; Z.layout.sign = 0; #define TERNOP(op) \ arg_count = 3; \ __asm__ volatile( \ op" %0, %1, %2, %3\n\t" \ : "=f"(fD) : "f"(fA) , "f"(fB), "f"(fC)); #define BINOP(op) \ arg_count = 2; \ __asm__ volatile( \ op" %0, %1, %2\n\t" \ : "=f"(fD) : "f"(fA) , "f"(fB)); #define UNOP(op) \ arg_count = 1; \ __asm__ volatile( \ op" %0, %1\n\t" \ : "=f"(fD) : "f"(fA)); for (mode = TO_NEAREST; mode <= TO_MINUS_INFINITY; mode++) for (s = -1; s < 2; s += 2) for (g = 0; g < 16; g += 1) { double lo, hi, expected; int LSB; int guard = 0; int z_sign = s; /* ** one argument will have exponent = 0 as will the result (by ** design) so choose the other argument with exponent -3 to ** force a 3 bit shift for scaling leaving us with 3 guard bits ** and the LSB bit at the bottom of the manitssa. */ switch(op) { case FADDS: /* 1p+0 + 1.00000<g>p-3 */ B.layout.frac = g; fB = s*B.flt; fA = s*1.0; /* set up Z to be truncated result */ /* mask off LSB from resulting guard bits */ guard = g & 7; Z.layout.frac = 0x100000 | (g >> 3); break; case FSUBS: /* 1.200002p+0 - 1.000000000000<g>p-3 */ A.flt = 1.125; /* add enough to avoid scaling of the result */ A.layout.frac |= 0x2; fA = s*A.flt; B.layout.frac = g; fB = s*B.flt; /* set up Z to be truncated result */ guard = (0x10-g); Z.layout.frac = guard>>3; /* mask off LSB from resulting guard bits */ guard &= 7; break; case FMULS: /* 1 + g*2^-23 */ A.flt = 1.0; A.layout.frac = g; fA = s*A.flt; fB = 1.125; /* set up Z to be truncated result */ Z.flt = 1.0; Z.layout.frac = 0x100000; Z.layout.frac |= g + (g>>3); guard = g & 7; break; case FDIVS: /* g >> 3 == LSB, g & 7 == guard bits */ guard = g & 7; if ((guard & 1) == 0) { /* special case: guard bit X = 0 */ A.flt = denorm_small; A.layout.frac = g; fA = A.flt; fB = s*8.0; Z.flt = 0.0; Z.layout.frac |= (g >> 3); } else { fA = s*divs_guard_cases[g].num; fB = divs_guard_cases[g].den; Z.flt = 1.0; Z.layout.frac = divs_guard_cases[g].frac; } break; case FMADDS: case FMSUBS: case FNMADDS: case FNMSUBS: /* 1 + g*2^-23 */ A.flt = 1.0; A.layout.frac = g; fA = s*A.flt; fB = 1.125; /* 1.000001p-1 */ A.flt = 0.5; A.layout.frac = 1; fC = (op == FMADDS || op == FNMADDS ? s : -s)*A.flt; /* set up Z to be truncated result */ z_sign = (op == FNMADDS || op == FNMSUBS ? -s : s); guard = ((g & 7) + 0x4) & 7; Z.flt = 1.0; Z.layout.frac = 0x500000; Z.layout.frac |= g + (g>>3) + ((g & 7)>> 2 ? 1 : 0); break; default: assert("check_single_arithmetic_op: unexpected op", FALSE); break; } /* get LSB for tie breaking */ LSB = Z.layout.frac & 1; /* set up hi and lo */ lo = z_sign*Z.flt; Z.layout.frac += 1; hi = z_sign*Z.flt; switch(mode) { case TO_NEAREST: /* look at 3 guard bits to determine expected rounding */ switch(guard) { case 0: case 1: case 2: case 3: expected = lo; break; case 4: /* tie: round to even */ if (debug) printf("tie: LSB = %d\n", LSB); expected = (LSB == 0 ? lo : hi); break; case 5: case 6: case 7: expected = hi; break; default: assert("check_single_guarded_arithmetic_op: unexpected guard", FALSE); } break; case TO_ZERO: expected = lo; break; case TO_PLUS_INFINITY: if (guard == 0) { /* no rounding */ expected = lo; } else { expected = (s == 1 ? hi : lo); } break; case TO_MINUS_INFINITY: if (guard == 0) { /* no rounding */ expected = lo; } else { expected = (s == 1 ? lo : hi); } break; } set_rounding_mode(mode); /* ** do the double precision dual operation just for comparison ** when debugging */ switch(op) { case FADDS: BINOP("fadds"); Res.dbl = fD; break; case FSUBS: BINOP("fsubs"); Res.dbl = fD; break; case FMULS: BINOP("fmuls"); Res.dbl = fD; break; case FDIVS: BINOP("fdivs"); Res.dbl = fD; break; case FMADDS: TERNOP("fmadds"); Res.dbl = fD; break; case FMSUBS: TERNOP("fmsubs"); Res.dbl = fD; break; case FNMADDS: TERNOP("fnmadds"); Res.dbl = fD; break; case FNMSUBS: TERNOP("fnmsubs"); Res.dbl = fD; break; default: assert("check_single_guarded_arithmetic_op: unexpected op", FALSE); break; } #undef UNOP #undef BINOP #undef TERNOP Exp.dbl = expected; if ((Res.layout.sign != Exp.layout.sign) || (Res.layout.exp != Exp.layout.exp) || (Res.layout.frac_lo != Exp.layout.frac_lo) || (Res.layout.frac_hi != Exp.layout.frac_hi)) { result = "FAILED"; status = 1; } else { result = "PASSED"; status = 0; } printf("%s:%s:%s(%-13f", round_mode_name[mode], result, flt_op_names[op], fA); if (arg_count > 1) printf(", %-13a", fB); if (arg_count > 2) printf(", %-13a", fC); printf(") = %-13a", Res.dbl); if (status) printf("\n\texpected %a", Exp.dbl); putchar('\n'); if (debug) { print_double("hi", hi); print_double("lo", lo); print_double("expected", expected); print_double("got", Res.dbl); } } return status; } int check_double_guarded_arithmetic_op(flt_op_t op) { typedef struct { int num, den, hi, lo; } fdiv_t; typedef struct { double arg; int exp, hi, lo; } fsqrt_t; char *result; int status = 0; dbl_overlay A, B, Z; dbl_overlay Res, Exp; double fA, fB, fC, fD; round_mode_t mode; int g, s; int arg_count; fdiv_t div_guard_cases[16] = { { 62, 62, 0x00000, 0x00000000 }, /* 0 */ { 64, 62, 0x08421, 0x08421084 }, /* 1 */ { 66, 62, 0x10842, 0x10842108 }, /* 2 */ { 100, 62, 0x9ce73, 0x9ce739ce }, /* 3 */ { 100, 62, 0x9ce73, 0x9ce739ce }, /* X */ { 102, 62, 0xa5294, 0xa5294a52 }, /* 5 */ { 106, 62, 0xb5ad6, 0xb5ad6b5a }, /* 6 */ { 108, 62, 0xbdef7, 0xbdef7bde }, /* 7 */ { 108, 108, 0x00000, 0x00000000 }, /* 8 */ { 112, 62, 0xce739, 0xce739ce7 }, /* 9 */ { 114, 62, 0xd6b5a, 0xd6b5ad6b }, /* A */ { 116, 62, 0xdef7b, 0xdef7bdef }, /* B */ { 84, 62, 0x5ad6b, 0x5ad6b5ad }, /* X */ { 118, 62, 0xe739c, 0xe739ce73 }, /* D */ { 90, 62, 0x739ce, 0x739ce739 }, /* E */ { 92, 62, 0x7bdef, 0x7bdef7bd } /* F */ }; fsqrt_t sqrt_guard_cases[16] = { { 0x1.08800p0, 0, 0x04371, 0xd9ab72fb}, /* :0 B8.8440 */ { 0x0.D2200p0, -1, 0xcfdca, 0xf353049e}, /* :1 A4.6910 */ { 0x1.A8220p0, 0, 0x49830, 0x2b49cd6d}, /* :2 E9.D411 */ { 0x1.05A20p0, 0, 0x02cd1, 0x3b44f3bf}, /* :3 B7.82D1 */ { 0x0.CA820p0, -1, 0xc7607, 0x3cec0937}, /* :4 A1.6541 */ { 0x1.DCA20p0, 0, 0x5d4f8, 0xd4e4c2b2}, /* :5 F7.EE51 */ { 0x1.02C80p0, 0, 0x01630, 0x9cde7483}, /* :6 B6.8164 */ { 0x0.DC800p0, -1, 0xdb2cf, 0xe686fe7c}, /* :7 A8.6E40 */ { 0x0.CF920p0, -1, 0xcd089, 0xb6860626}, /* :8 A3.67C9 */ { 0x1.1D020p0, 0, 0x0e1d6, 0x2e78ed9d}, /* :9 BF.8E81 */ { 0x0.E1C80p0, -1, 0xe0d52, 0x6020fb6b}, /* :A AA.70E4 */ { 0x0.C8000p0, -1, 0xc48c6, 0x001f0abf}, /* :B A0.6400 */ { 0x1.48520p0, 0, 0x21e9e, 0xd813e2e2}, /* :C CD.A429 */ { 0x0.F4C20p0, -1, 0xf4a1b, 0x09bbf0b0}, /* :D B1.7A61 */ { 0x0.CD080p0, -1, 0xca348, 0x79b907ae}, /* :E A2.6684 */ { 0x1.76B20p0, 0, 0x35b67, 0x81aed827} /* :F DB.BB59 */ }; /* 0x1.00000 00000000p-3 */ /* set up the invariant fields of B, the arg to cause rounding */ B.dbl = 0.0; B.layout.exp = 1020; /* set up args so result is always Z = 1.200000000000<g>p+0 */ Z.dbl = 1.0; Z.layout.sign = 0; #define TERNOP(op) \ arg_count = 3; \ __asm__ volatile( \ op" %0, %1, %2, %3\n\t" \ : "=f"(fD) : "f"(fA) , "f"(fB), "f"(fC)); #define BINOP(op) \ arg_count = 2; \ __asm__ volatile( \ op" %0, %1, %2\n\t" \ : "=f"(fD) : "f"(fA) , "f"(fB)); #define UNOP(op) \ arg_count = 1; \ __asm__ volatile( \ op" %0, %1\n\t" \ : "=f"(fD) : "f"(fA)); for (mode = TO_NEAREST; mode <= TO_MINUS_INFINITY; mode++) for (s = (op != FSQRT ? -1 : 1); s < 2; s += 2) for (g = 0; g < 16; g += 1) { double lo, hi, expected; int LSB; int guard; int z_sign = s; /* ** one argument will have exponent = 0 as will the result (by ** design) so choose the other argument with exponent -3 to ** force a 3 bit shift for scaling leaving us with 3 guard bits ** and the LSB bit at the bottom of the manitssa. */ switch(op) { case FADD: /* 1p+0 + 1.000000000000<g>p-3 */ B.layout.frac_lo = g; fB = s*B.dbl; fA = s*1.0; /* set up Z to be truncated result */ /* mask off LSB from resulting guard bits */ guard = g & 7; Z.layout.frac_hi = 0x20000; Z.layout.frac_lo = g >> 3; break; case FSUB: /* 1.2000000000002p+0 - 1.000000000000<g>p-3 */ A.dbl = 1.125; /* add enough to avoid scaling of the result */ A.layout.frac_lo = 0x2; fA = s*A.dbl; B.layout.frac_lo = g; fB = s*B.dbl; /* set up Z to be truncated result */ guard = (0x10-g); Z.layout.frac_hi = 0x0; Z.layout.frac_lo = guard>>3; /* mask off LSB from resulting guard bits */ guard &= 7; break; case FMUL: /* 1 + g*2^-52 */ A.dbl = 1.0; A.layout.frac_lo = g; fA = s*A.dbl; fB = 1.125; /* set up Z to be truncated result */ Z.dbl = 1.0; Z.layout.frac_hi = 0x20000; Z.layout.frac_lo = g + (g>>3); guard = g & 7; break; case FMADD: case FMSUB: case FNMADD: case FNMSUB: /* 1 + g*2^-52 */ A.dbl = 1.0; A.layout.frac_lo = g; fA = s*A.dbl; fB = 1.125; /* 1.0000000000001p-1 */ A.dbl = 0.5; A.layout.frac_lo = 1; fC = (op == FMADD || op == FNMADD ? s : -s)*A.dbl; /* set up Z to be truncated result */ z_sign = (op == FNMADD || op == FNMSUB ? -s : s); guard = ((g & 7) + 0x4) & 7; Z.dbl = 1.0; Z.layout.frac_hi = 0xa0000; Z.layout.frac_lo = g + (g>>3) + ((g & 7)>> 2 ? 1 : 0); break; case FDIV: /* g >> 3 == LSB, g & 7 == guard bits */ guard = g & 7; if (guard == 0x4) { /* special case guard bits == 4, inexact tie */ fB = s*2.0; Z.dbl = 0.0; if (g >> 3) { fA = dbl_denorm_small + 2*dbl_denorm_small; Z.layout.frac_lo = 0x1; } else { fA = dbl_denorm_small; } } else { fA = s*div_guard_cases[g].num; fB = div_guard_cases[g].den; printf("%d/%d\n", s*div_guard_cases[g].num, div_guard_cases[g].den); Z.dbl = 1.0; Z.layout.frac_hi = div_guard_cases[g].hi; Z.layout.frac_lo = div_guard_cases[g].lo; } break; case FSQRT: fA = s*sqrt_guard_cases[g].arg; Z.dbl = 1.0; Z.layout.exp = sqrt_guard_cases[g].exp + 1023; Z.layout.frac_hi = sqrt_guard_cases[g].hi; Z.layout.frac_lo = sqrt_guard_cases[g].lo; guard = g >> 1; if (g & 1) guard |= 1; /* don't have test cases for when X bit = 0 */ if (guard == 0 || guard == 4) continue; break; default: assert("check_double_guarded_arithmetic_op: unexpected op", FALSE); break; } /* get LSB for tie breaking */ LSB = Z.layout.frac_lo & 1; /* set up hi and lo */ lo = z_sign*Z.dbl; Z.layout.frac_lo += 1; hi = z_sign*Z.dbl; switch(mode) { case TO_NEAREST: /* look at 3 guard bits to determine expected rounding */ switch(guard) { case 0: case 1: case 2: case 3: expected = lo; break; case 4: /* tie: round to even */ if (debug) printf("tie: LSB = %d\n", LSB); expected = (LSB == 0 ? lo : hi); break; case 5: case 6: case 7: expected = hi; break; default: assert("check_double_guarded_arithmetic_op: unexpected guard", FALSE); } break; case TO_ZERO: expected = lo; break; case TO_PLUS_INFINITY: if (guard == 0) { /* no rounding */ expected = lo; } else { expected = (s == 1 ? hi : lo); } break; case TO_MINUS_INFINITY: if (guard == 0) { /* no rounding */ expected = lo; } else { expected = (s == 1 ? lo : hi); } break; } set_rounding_mode(mode); /* ** do the double precision dual operation just for comparison ** when debugging */ switch(op) { case FADD: BINOP("fadd"); Res.dbl = fD; break; case FSUB: BINOP("fsub"); Res.dbl = fD; break; case FMUL: BINOP("fmul"); Res.dbl = fD; break; case FMADD: TERNOP("fmadd"); Res.dbl = fD; break; case FMSUB: TERNOP("fmsub"); Res.dbl = fD; break; case FNMADD: TERNOP("fnmadd"); Res.dbl = fD; break; case FNMSUB: TERNOP("fnmsub"); Res.dbl = fD; break; case FDIV: BINOP("fdiv"); Res.dbl = fD; break; case FSQRT: UNOP("fsqrt"); Res.dbl = fD; break; default: assert("check_double_guarded_arithmetic_op: unexpected op", FALSE); break; } #undef UNOP #undef BINOP #undef TERNOP Exp.dbl = expected; if ((Res.layout.sign != Exp.layout.sign) || (Res.layout.exp != Exp.layout.exp) || (Res.layout.frac_lo != Exp.layout.frac_lo) || (Res.layout.frac_hi != Exp.layout.frac_hi)) { result = "FAILED"; status = 1; } else { result = "PASSED"; status = 0; } printf("%s:%s:%s(%-13a", round_mode_name[mode], result, flt_op_names[op], fA); if (arg_count > 1) printf(", %-13a", fB); if (arg_count > 2) printf(", %-13a", fC); printf(") = %-13a", Res.dbl); if (status) printf("\n\texpected %a", Exp.dbl); putchar('\n'); if (debug) { print_double("hi", hi); print_double("lo", lo); print_double("expected", expected); print_double("got", Res.dbl); } } return status; } int test_float_arithmetic_ops() { int status = 0; flt_op_t op; /* ** choose FP operands whose result should be rounded to either ** lo or hi. */ printf("-------------------------- %s --------------------------\n", "test rounding of float operators without guard bits"); for (op = FADDS; op <= FDIVS; op++) { status |= check_single_arithmetic_op(op); } printf("-------------------------- %s --------------------------\n", "test rounding of float operators with guard bits"); for (op = FADDS; op <= FNMSUBS; op++) { status |= check_single_guarded_arithmetic_op(op); } printf("-------------------------- %s --------------------------\n", "test rounding of double operators with guard bits"); for (op = FADD; op <= FSQRT; op++) { status |= check_double_guarded_arithmetic_op(op); } return status; } int main() { int status = 0; init(); status |= test_dbl_to_float_convert("test denormalized convert", &denorm_small); status |= test_dbl_to_float_convert("test normalized convert", &norm_small); status |= test_int_to_float_convert("test (float)int convert"); status |= test_int_to_float_convert("test (float)int convert"); #ifdef __powerpc64__ status |= test_long_to_double_convert("test (double)long convert"); #endif status |= test_float_arithmetic_ops(); return status; }